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Abstract. We determine here the structure of the title groups up to
isomorphism.

The purpose of this paper is to classify the title groups. Two subgroups
A and B of a p-group G are incident if A ≤ B or B ≤ A. If we know
something about the intersection A ∩ B of any two non-incident subgroups
A and B of a finite p-group G, then this has a very strong influence on the
structure of G and in some cases we can even determine the structure of G
up to isomorphism. All groups considered here will be finite p-groups and our
notation is standard (as introduced in [1]).

We prove here the following result.

Theorem 1. Let G be a nonabelian finite p-group such that A ∩ B is
maximal in A or B for any two non-incident subgroups A and B in G. Then
G is one of the following groups:

(a) minimal nonabelian groups: D8, Q8, S(p
3) (nonabelian group of order

p3 and exponent p), p > 2, Mpn , n ≥ 3 with n ≥ 4 in case p = 2,
(b) 2-groups of maximal class and order ≥ 24,
(c) G ∼= Q8 × C2,
(d) G = Q ∗ S with Q ∼= Q8, S ∼= C4 and Q ∩ S = Z(Q),
(e) a regular p-group G of order p4 and exponent p2, p > 2, with ℧1(G) ∼=

Cp and Ω1(G) ∼= S(p3),
(f) an irregular 3-group G of maximal class, |G| = 34 and exp(G) = 9,

where G has no elementary abelian subgroup of order 27.

Conversely, all the above p-groups satisfy the assumption of the theorem.

2010 Mathematics Subject Classification. 20D15.
Key words and phrases. Finite p-groups, 2-groups of maximal class, regular p-groups.

113



114 Z. JANKO

Proof. Let G be a p-group such that A ∩ B is maximal in A or B for
any two non-incident subgroups A and B in G. We note that this hypothesis
is hereditary for subgroups and factor-groups.

(i) Let A be an abelian subgroup of G. Then A is either cyclic or
elementary abelian with p2 ≤ |A| ≤ p3 or A ∼= Ce

p × Cp, e ≥ 2. From
now on we assume that G is nonabelian.

Indeed, first suppose that A is elementary abelian. If |A| ≥ p4, then A
has a subgroup A1 × A2 with A1

∼= A2
∼= Ep2 , contrary to our hypothesis.

Hence |A| ≤ p3. Now suppose that A is not elementary abelian so that
exp(A) = pe, e ≥ 2. Let A1 be a cyclic subgroup of order pe in A and let A2

be a complement of A1 in A. By our hypothesis, |A2| ≤ p and we are done.

(ii) Let M be a minimal nonabelian subgroup of G. Then

M ∼= D8, Q8, S(p
3), p > 2, or M ∼= Mpn , n ≥ 3 with n ≥ 4 in the case p = 2.

All these minimal nonabelian subgroups satisfy the hypothesis of our theorem.
From now on we assume that G is not minimal nonabelian.

Indeed, D8, Q8, and S(p
3) satisfy the hypothesis of our theorem. Let

M = 〈a, b | ap
u

= bp
v

= cp = 1, [a, b] = c, [a, c] = [b, c] = 1〉,

where u ≥ 2, v ≥ 1. Then we get

〈a〉 ∩ 〈b, c〉 = {1} with |〈a〉| ≥ p2 and |〈b, c〉| ≥ p2,

a contradiction. Let

M = 〈a, b | ap
u

= bp
v

= 1, [a, b] = ap
u−1

〉, where u ≥ 2, v ≥ 2.

But then
〈a〉 ∩ 〈b〉 = {1} with |〈a〉| ≥ p2 and |〈b〉| ≥ p2,

which is a contradiction. Hence we have u ≥ 2, v = 1 and soM ∼= Mpn , n ≥ 3
with n ≥ 4 in the case p = 2.

Conversely, let

Mpu+1
∼= M = 〈a, b | ap

u

= bp = 1, [a, b] = ap
u−1

〉,

where u ≥ 2 and u ≥ 3 if p = 2. Let X1, X2 be any two non-incident subgroups
of M such that setting X1 ∩ X2 = X , we have |X1 : X | ≥ p2 and |X2 :
X | ≥ p2. If both X1 and X2 are noncyclic, then X1 ≥ S, X2 ≥ S, where
S = Ω1(M) ∼= Ep2 . In this case X1 and X2 are incident since M/S is cyclic,
a contradiction. We may assume that X1 is cyclic so that |X1 : ℧1(X1)| = p
and ℧1(X1) > X . Since X1 ≥ M ′ ∼= Cp, we have X1 E M . Suppose that
℧1(X2) 6≤ X . Then ℧1(X1X2) is noncyclic, contrary to the fact that ℧1(M)
is cyclic. Hence ℧1(X2) ≤ X . But M ′ ≤ ℧1(X1) and so Φ(X1X2) ≤ ℧1(X1)
giving d(X1X2) ≥ 3, contrary to the fact that each subgroup Y ofM possesses
a cyclic subgroup of index p and so d(Y ) ≤ 2. We have proved that our group
M satisfies the hypothesis of our theorem.
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(iii) Suppose that G has no abelian normal subgroup of type (p, p). Then
G is a 2-group of maximal class and order ≥ 24. All these 2-groups of maximal
class satisfy the hypothesis of our theorem. In the sequel we assume that G
has a normal abelian subgroup U of type (p, p).

Let G be a 2-group of maximal class and order ≥ 24. Then G possesses a
unique cyclic subgroup 〈a〉 ∼= C2n , n ≥ 3, of index 2 which is a unique abelian

maximal subgroup of G. Set 〈z〉 = 〈a2
n−1

〉 so that for each x ∈ G− 〈a〉,

x2 ∈ 〈z〉 and C〈a〉(x) = 〈z〉.

Let X1 and X2 be two non-incident subgroups of G and set X = X1 ∩ X2.
Assume, by way of contradiction, |X1 : X | ≥ 4 and |X2 : X | ≥ 4. Since
Xi ∩ 〈a〉 6= {1}, i = 1, 2, we get Xi ≥ 〈z〉 and so X ≥ 〈z〉 implying |Xi| ≥ 8.
Assume that one of Xi, i = 1, 2, is contained in 〈a〉, say X1 ≤ 〈a〉. Since
X1 and X2 are non-incident, we have X2 6≤ 〈a〉 and X2 ∩ 〈a〉 6≥ X1 so that
X2 ∩ 〈a〉 = X2 ∩X1 = X . But then |X2 : X | = 2, a contradiction. We have
proved that both X1 and X2 are not contained in 〈a〉 and since |Xi| ≥ 8,
i = 1, 2, we see that both X1 and X2 are of maximal class. On the other
hand, X1 ∩〈a〉 and X2 ∩〈a〉 are incident of orders ≥ 4 and so we may assume
without loss of generality that X1 ∩ 〈a〉 ≤ X2 ∩ 〈a〉. We may set

X1 = (X1 ∩ 〈a〉)〈x1〉, where x1 ∈ G− 〈a〉 and x2
1 ∈ 〈z〉.

Since X1 6≤ X2, we have x1 6∈ X2 and X = X1 ∩ X2 = X1 ∩ 〈a〉 so that
|X1 : X | = 2, a contradiction.

(iv) If G possesses an elementary abelian subgroup E of order p3, then
exp(G) = p.

Suppose that this is false. Then there is a cyclic subgroup C ∼= Cp2 . By
hypothesis, |C ∩ E| = p. Then E = (C ∩ E) × R, where C ∩ R = {1} and
|C| = |R| = p2, contrary to our hypothesis.

(v) Let A be a maximal normal abelian subgroup of G containing U .
Then we have

A = 〈a〉 × 〈u〉,

where

〈a〉 ∼= Cpe , e ≥ 2, 〈u〉 ∼= Cp, ap
e−1

= z, 〈z〉 ≤ Z(G), U = 〈z, u〉

and G has no elementary abelian subgroups of order p3.

Let A be a maximal normal abelian subgroup of G containing U so that
A < G. Assume that G has an elementary abelian subgroup of order p3. By
(iv), exp(G) = p and so p > 2. By (i), we get either A = U ∼= Ep2 or A ∼= Ep3 .
However, if A = U , then |G| = p3 and G ∼= Mp3 or G ∼= S(p3), contrary to our
assumption that G is not minimal abelian. Hence we have A ∼= Ep3 . Let U0

be a subgroup of order p in U such that U0 ≤ Z(G) and let g ∈ G−A so that
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o(g) = p and S = 〈U0, g〉 ∼= Ep2 with S ∩ A = U0. Let T be a complement
of U0 in A so that A = T × U0. But then T ∩ S = {1} and |T | = |S| = p2,
contrary to our hypothesis.

We have proved that G has no elementary abelian subgroups of order
p3. If A = U , then G is minimal nonabelian of order p3, contrary to our
assumption in (ii). By (i), A is abelian of type (pe, p) with e ≥ 2 and we are
done.

(vi) If CG(U) > A, then G ∼= Q8 × C2 and so G is a group appearing in
part (c) of our theorem. From now on we may assume that CG(U) = A so
that |G : A| = p and exp(G) = pe.

Indeed, assume that CG(U) > A. Since G has no elementary abelian
subgroups of order p3, we have

Ω1(CG(U)) = U ≤ Z(CG(U)).

By [2, Lemma 57.1], for each x ∈ CG(U) − A, there is y ∈ A − U such that
M = 〈x, y〉 is minimal nonabelian, where Ω1(M) ≤ Z(M). By (ii), this forces
p = 2 and M ∼= Q8. Hence o(x) = o(y) = 4 and x2 = y2 = z (see (v)). All
elements x ∈ CG(U)−A are of order 4 with x2 = z and since for an element
y of order 4 in A− U ,

yx = y−1 = yz and (yu)x = (yu)z = (yu)−1,

it follows that x acts invertingly on Ω2(A) ∼= C4 × C2 which gives |CG(U) :
A| = 2. If e > 2, then

|〈a〉| ≥ 8, 〈x, u〉 ∼= C4 × C2 with 〈a〉 ∩ 〈x, u〉 = 〈z〉,

contrary to our hypothesis. Hence e = 2 and so CG(U) = Q×〈u〉 ∼= Q8 ×C2,
where Z(Q) = 〈z〉 and A ∼= C4 × C2. If G = CG(U), then we are done.
Therefore we may assume that G > CG(U) so that |G : CG(U)| = 2 and
|G| = 25. Suppose that there is g ∈ G − CG(U) such that g2 ∈ 〈z, u〉. Since
D = 〈z, u〉〈g〉 ∼= D8, we have g

2 ∈ 〈z〉. But then Q∩D = 〈z〉, contrary to our
hypothesis. We have proved that for each g ∈ G−CG(U), g2 ∈ CG(U)−〈z, u〉
and so Ω2(G) ∼= Q8×C2. By [2, Theorem 52.1], G is isomorphic to a uniquely
determined group of order 25 given in part (A2)(a) of [2,Theorem 49.1]. In
particular, there is an element y ∈ G−CG(U) of order 8 such that 〈y〉 ∩Q =
Z(Q), contrary to our hypothesis.

From now on we may assume that CG(U) = A so that |G : A| = p and
exp(G) = pe. Indeed, if exp(G) = pe+1, then G has a cyclic subgroup of index
p and so G is either a 2-group of maximal class or G ∼= Mpn which is minimal
nonabelian. But all these groups are excluded by our assumptions in (ii) and
(iii).

(vii) If there are elements of order ≤ p2 in G−A, then e = 2, A ∼= Cp2×Cp,
|G| = p4 and G is isomorphic to a group given in parts (d), (e) or (f) of our
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theorem. Conversely, all groups from parts (c) to (f) of our theorem satisfy
the hypothesis of that theorem.

Assume that there is g ∈ G − A such that gp ∈ 〈z, u〉 = Ω1(A) and so
gp ∈ 〈z〉, where

〈g, u〉 ∼= Mp3 or S(p3) with p > 2 or 〈g, u〉 ∼= D8.

If e > 2, then

|〈a〉 : 〈z〉| ≥ p2 and |〈g, u〉 : 〈z〉| ≥ p2, where 〈a〉 ∩ 〈g, u〉 = 〈z〉,

contrary to our hypothesis. Thus, e = 2, A ∼= Cp2 × Cp and |G| = p4.
First consider the case p = 2. Since G is not of maximal class, a result

of O. Taussky implies G′ = 〈z〉. Hence D = 〈g, u〉 ∼= D8 with D′ = 〈z〉 so
that G = D ∗ S, where |S| = 4 and D ∩ S = 〈z〉. But G has no elementary
abelian subgroups of order 8 and so S ∼= C4. Since D8 ∗ C4

∼= Q8 ∗ C4, we
have obtained the group from part (d) of our theorem.

Now we consider the case p > 2, where

D = 〈g, u〉 ∼= Mp3 or S(p3).

By (vi), exp(G) = p2 and so for each x ∈ G − A, xp ∈ 〈z〉 and this implies
℧1(G) = 〈z〉. We may use [2, Theorem 74.1]. If G is a group of part (a) of that
theorem, then [3, Proposition 149.1] implies that G is minimal nonabelian,
a contradiction. Hence G is a group of order p4 from parts (c) or (d) of [2,
Theorem 74.1]. We have obtained the groups stated in parts (e) and (f) of
our theorem.

Conversely, let G be any group of order p4 stated in parts (c), (d), (e),
(f) of our theorem. Note that in all these cases, ℧1(G) ∼= Cp and G has
no elementary abelian subgroups of order p3. We claim that G satisfies the
hypothesis of our theorem. Indeed, let X1, X2 be two non-incident subgroups
of G. If X1 or X2 is a maximal subgroup of G, sayX1, then |X2 : (X1∩X2)| =
p. We may assume, by way of contradiction, that |X1| = |X2| = p2 and
X1 ∩ X2 = {1}. Set ℧1(G) = 〈z〉 ∼= Cp, where 〈z〉 ≤ Z(G). If X1 or X2,
say X1, is elementary abelian of order p2, then z ∈ X1 because G has no
elementary abelian subgroups of order p3. But then ℧1(X2) = {1} and so
〈z〉 ×X2

∼= Ep3 , a contradiction. It follows that both X1 and X2 are cyclic of
order p2, which contradicts the fact that ℧1(G) ∼= Cp.

(viii) Finally, we consider the remaining case that Ω2(G) = Ω2(A) ∼=
Cp2 × Cp and we shall obtain in this case a contradiction.

Indeed, in this case we must have e ≥ 3 and so |G| = pe+2 ≥ p5 and by
(vi), G is of exponent pe.

First we consider the case p = 2. Since G is not minimal nonabelian, it
follows that G is not an L2-group and so [1, Lemma 42.1] implies that

G = 〈a, b | a2
e

= b8 = 1, ab = a−1, a2
e−1

= b4 = z〉, e ≥ 3.
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But then
o(a) ≥ 8, o(b) = 8 and 〈a〉 ∩ 〈b〉 = 〈z〉 ∼= C2,

contrary to our hypothesis.
Now suppose p > 2. Since |G| = pe+2 ≥ p5 and G is of exponent pe,

e ≥ 3, we may use [2, Theorem 74.1]. Hence G is one of the groups of parts
(a) or (b) of that theorem. However, if G is metacyclic, then the fact that
A is an abelian maximal subgroup of G implies together with [3, Proposition
149.1] that G is minimal nonabelian, a contradiction. Hence G is an L3-group.
But this contradicts our assumption that Ω2(G) = Ω2(A) ∼= Cp2 × Cp. Our
theorem is proved.
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