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Abstract. In this paper a J. C. C. Nitsche type inequality for
polyharmonic mappings between rounded annuli on the Euclidean space
Rd is considered. The case of radial biharmonic mappings between annuli
on the complex plane and the corresponding inequality is studied in detail.

1. Introduction

By d we denote a positive integer and by Rd we denote the Euclidean
space. The unit sphere is Sd−1 = {x ∈ Rd : |x| = 1}, where the norm of a
vector x = (x1, . . . , xd) ∈ Rd is defined by

|x| :=

√

√

√

√

d
∑

k=1

x2
k.

By A(r, R) = {x ∈ Rd : r < |x| < R} we denote an annulus with inner
and outer radii r and R, respectively. A mapping u is called radial if u(x) =
|x|u(x/|x|). The bi-harmonic equation is

∆2u = ∆∆u = 0.

The polyharmonic equation is defined by the induction:

(1.1) ∆mu := ∆
(

∆m−1u
)

= 0,

where m is a positive integer. By the Almansi representation theorem ([1]),
the class of m−harmonic functions coincides with the class of functions of the
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form

f(x) =
m−1
∑

k=0

|x|2kfk(x)

where fk are harmonic functions. Thus, a planar mapping u is bi-harmonic
if and only if u(z) = |z|2g(z) + h(z), where g and h are harmonic mappings,
i.e. the mappings w satisfying the Laplace equation ∆w = 0 in some simply
connected subdomain Ω of the complex plane C. Every analytic function
is a harmonic mapping and every bi-holomomorphic function is a harmonic
diffeomorphism. A well known Schottky theorem asserts that two annuli on
the complex plane can be mapped by means of a bi-holomorphic mapping
if and only if they have the same modulus. The aim of this paper to study
rigidity of polyharmonic mappings between annuli in the Euclidean space.

J. C. C. Nitsche ([9]) by considering the complex-valued univalent
harmonic functions

(1.2) f(z) =
ts− t2

(1 − t2)

1

z̄
+

1− ts

1− t2
z,

showed that an annulus 1 < |z| < t can then be mapped onto any annulus
1 < |w| < s with

(1.3) s ≥ n(t) :=
1 + t2

2t
.

J. C. C. Nitsche conjectured that, condition (1.3) is necessary as well. The
critical Nitsche map with zero initial speed is

f(z) =
1 + |z|2

2z̄
.

This means that this function makes the maximal distortion of rounded annuli
A(1, t).

Nitsche also showed that s ≥ s0 for some constant s0 = s0(t) > 1.
Thus, although the annulus 1 < |z| < t can be mapped harmonically onto
a punctured disk, it cannot be mapped onto any annulus that is “too thin”.
For the generalization of this conjecture to R

d and some related results we
refer to [6]. For the case of hyperbolic harmonic mappings we refer to [2].
Some other generalizations have been done in [7]. The Nitsche conjecture for
Euclidean harmonic mappings is settled recently in [3] by Iwaniec, Kovalev
and Onninen, showing that, only radial harmonic mappings g(z) = eiαf(z),
where f is defined in (1.2), which inspired the Nitsche conjecture, making the
extremal distortion of rounded annuli. For some partial results toward the
Nitsche conjecture and some other generalizations we refer to the papers [4],
[8] and [11].

In this paper, we consider a similar problem for polyharmonic mappings.
We begin by the case when d is not an odd integer smaller or equal to 2m− 1
and show that no Nitsche phenomenon can occur in this case. This is shown
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in Theorem 2.3. It is interesting that such kind of Nitsche phenomenon does
not occur for the biharmonic mappings in Euclidean spaceR3 (contrary to the
case of harmonic mappings, [7]). The main result (see Theorem 2.4(a)) implies
in particular that: if f is a radialm−harmonic mapping between annuli A(1, t)
and A(1, s) of the Euclidean space Rd such that d is not an odd integer
smaller than 2m, then s > s(t) > 1. In the second part of Theorem 2.4 we
present a Nitsche type inequality for harmonic mappings in the space. It can
be considered as a counterpart of all related results for harmonic mappings,
because we do not assume either injectivity or surjectivity of a harmonic
mapping. In Section 3 we find examples of radial bi-harmonic maps between
annuli in the complex plane and then we establish some quantitative estimates
of J. C. C. Nitsche type rigidity for radial biharmonic mappings. In addition,
Section 3 contains some hard but elementary computer aided computations.

2. General polyharmonic mappings

In this section we consider Nitsche phenomenon ofm−harmonic mappings
between annuli on Rd. We will treat two possible cases.

• Rigidity case: d is not an odd integer smaller or equal to 2m− 1.
• Non-rigidity case: d is an odd integer smaller or equal to 2m− 1.

We begin by the following lemma

Lemma 2.1. For the mapping f(x) = x/|x|, x ∈ Rd \ {0}, there holds the
following formula

∆mf =

m
∏

k=1

(2k − 1)(2k − d− 1)
x

|x|2m+1
.

Thus the mapping f(x) = x/|x| is m-harmonic on the space Rd \ {0} if and
only if d is an odd integer smaller or equal to 2m− 1.

Proof. We use the following formula which can be proved by direct
calculation

∆

(

x

|x|α

)

=
α(α− d)x

|x|α+2
.

By using the mathematical induction we obtain

∆m

(

x

|x|

)

=

m
∏

k=1

(2k − 1)(2k − d− 1)
x

|x|2m+1
.

It follows from Lemma 2.1 that the mapping f(z) = z/|z| is not bi-harmonic
in the complex plane, and the question arises: is there any nonconstant
biharmonic mapping with constant modulus? The following example gives
a positive answer to the previous question.
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Example 2.2. The function

f(z) =
z

z̄
=

z2

|z2|

is a biharmonic mapping of C \ {0} onto the unit circle T.

Theorem 2.3. Let d be an odd integer smaller or equal to 2m− 1. Then
for every t > 0 and s > 0 there exists an m−harmonic diffeomorphism between
the annuli A(1, t) and A(1, s).

Proof. Define

f(x) = α
x

|x|
+ (1 − α)x.

Then for 0 < α < 1 the mapping f is anm−harmonic diffeomorphism between
the annuli A(1, t) and A(1, s), where s = α+(1−α)t. Namely r → α+(1−α)r
is increasing in [1, t], α+ (1− α)t ≤ t,

f

(

x

|x|

)

=
x

|x|

and

f

(

t
x

|x|

)

= (α+ (1 − α)t)
x

|x|
.

The existence ofm−harmonic mappings between the annuliA(1, t) andA(1, s)
for s ≥ t is established in [6]. Namely for

(2.1) ρ ≥
dr

d− 1 + rd

the mapping defined by

(2.2) f(x) =

(

1− rd−1ρ

1− rd
+

rd−1ρ− rd

(1 − rd)|x|d

)

x

is a harmonic mapping between the annuli A(r, 1) and A(ρ, 1). Then the
mapping

g(x) =
1

ρ
f(rx)

defines the harmonic mapping between A(1, t) and A(1, s) for s ≥ t.

Theorem 2.4. Assume d is a positive integer and Rd is the Euclidean
space.

(a) Assume that d is not an odd integer smaller or equal to 2m − 1 and
let Pt be a family of m−harmonic orientation preserving mappings of
A(1, t) into itself, such that its closure w.r.t. sum norm contains no
m−harmonic mapping u between A(1, t) and Sd−1. Then there exists
a positive constant δ(t) > 0 such that s ≥ 1 + δ(t) and ‖u‖ ≥ 1 + δ(t)
for u ∈ Pt.
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(b) Let u be a harmonic mapping of the annulus A(1, t) into A(1, s) of
the Euclidean space Rd such that u(1+t

2 Sd−1) separates the boundary
components of A(1, s). Then there exists a positive constant δ(t) > 0
such that s ≥ 1 + δ(t).

Remark 2.5. Notice that in the statement (b) Theorem 2.4, we do not
assume either injectivity or surjectivity. The theorem gives essentially new
proof of Nitsche type rigidity for harmonic mappings. From Lemma 3.1
we obtain that the family Pt of radial m−harmonic mappings satisfies the
condition of Theorem 2.4(a), so the rigidity occur for this special class of
mappings.

Proof. Let C[A(1, t)] be the Banach space of continuous mappings of
the annulus A(1, t) into itself with the norm

‖f‖ = sup
x∈A(1,t)

|f(x)|.

Let Bt be the closure of Pt ⊂ C[A(t, 1)]. We prove that Bt contains only
polyharmonic function. We will prove first this fact for biharmonic mappings.
The general situation follows by mathematical induction. To prove that
Bt contains only m−harmonic function, assume that for some sequence of
functions un ∈ Bt and u ∈ C[A(1, t)] we have limn→∞ ‖un−u‖ = 0. Then for
all ϕ ∈ C4

0 [A(1, t)] we have

0 =

∫

A(1,t)

ϕ(x)∆2un(x)dA(x) =

∫

A(1,t)

un(x)∆
2ϕ(x)dA(x).

Letting n → ∞ we have
∫

A(1,t)

u(x)∆2ϕ(x)dA(x) = 0.

By Sobolev embedding theorem we have

W 4,1 ⊂ W 2,2.

It follows that

v(x) = ∆u(x)∆ϕ(x) ∈ L2(A(1, t))

and therefore,
∫

A(1,t)

u(x)∆2ϕ(x)dA(x) =

∫

A(1,t)

∆u∆ϕ(x)dA(x) = 0.

This implies that w = ∆u is a weak solution of the Laplace equation ∆w = 0.
By a well-known result, it follows that w is a smooth harmonic function.
Finally we obtain that u is a bi-harmonic function.

Let

f̃ :=
f

|f |
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be the projection of the mapping f on the unit sphere. Define

Pt = {f̃ : f ∈ Bt}.

Then Pt is a bounded closed subset of C[A(1, t)].
Next let us show that the class of bounded m−harmonic mappings is a

normal (compact) family of functions. From [10, Lemma 5] for a m−harmonic
function f we have the inequality

(2.3) |∇f(x)| ≤
C′(m, d)

rn+1

∫

|y−x|<r

|f(y)|dy.

If M = sup |f(x)|, then it follows from (2.3), by taking r = dist(x, ∂A(1, t))
that

(2.4) |∇f(x)| ≤
C(m, d)

dist(x, ∂A(1, t))
M.

Now the claim follows from Ascoli-Arzela theorem.
It follows that the class of bounded m−harmonic mappings is a normal

(compact) family of functions. Take ǫ < (t− 1)/2 and define

At,ǫ = A(1 + ǫ, t− ǫ).

In the following let Pt,ǫ (Bt,ǫ) denote the restriction of the class of mappings
Pt (i.e. of Bt) to the closed annulus At,ǫ. Since the mapping

Fǫ : Bt,ǫ → R

defined by Fǫ(f) = ‖f − f̃‖ is continuous and Bt,ǫ is compact, by the
Weierstrass theorem, we have

δt,ǫ =: dist(Pt,ǫ,Bt,ǫ) := inf
f∈Bt,ǫ,g∈Pt,ǫ

‖f − g‖

= inf
fǫ∈Bt,ǫ

‖fǫ − f̃ǫ‖ = ‖gǫ − g̃ǫ‖ ≤ inf
f∈Bt

‖f − f̃‖,

where gǫ is the restriction of a mapping g ∈ Pt. Since g̃ 6∈ Pt, it follows that
for some ǫ > 0 we have δt,ǫ > 0. We define

δt = sup
0≤ǫ≤(t−1)/2

δt,ǫ.

Now if f is a mapping between A(1, t) and A(1, s), with s < 1 + δt, then

‖f − f̃‖ = sup
z∈A(1,t)

(|f(z)| − 1) < δt,

which implies that f 6∈ Bt.
We now prove (b). In order to use the proof of (a), we show that if {un}

is a sequence of harmonic mappings satisfying the condition of the theorem,
and u = limn→∞ un then u is not a constant modulus. Since un(

1+t
2 Sd−1)
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separates the boundary components of A(1, s), there exist two convergent
sequences {xn} and {yn} from 1+t

2 Sd−1 such that

|un(xn)− un(yn)| > 2.

If x = limn→∞ xn and y = limn→∞ yn, then |u(x) − u(y)| ≥ 2, implying that
u is not a constant function.

Finally, we prove that there exists no nonconstant harmonic mapping on
the space with a constant modulus. To show the last fact we only need to
recall the formula

∆|u| = ρ‖DS‖2

for a harmonic mapping u(x) = ρ(x)S(x), |S(x)| = 1, and ‖DS‖2 is the
Hilbert-Schmidt norm of differential matrix DS (see eg. [6]). Thus if |u| is a
constant function then DS ≡ 0. Therefore S is a constant mapping, i.e. u is
a constant mapping, provided that |u| is a constant function.

3. Radial biharmonic mappings

A mapping f is called radial if there exists a constant ϕ and a real function
g such that

f(reiθ) = g(r)ei(θ+ϕ).

It is well known that, a radial solution u of the harmonic equation is given by
u(z) = Az + B/z̄, where a and b are two complex constants. To prove this
we start by the Laplacian in polar coordinates. Let U(r, θ) = u(reiθ). Then
∆u = 0 if and only if

∆U :=
1

r

∂

∂r

(

r
∂U

∂r

)

+
1

r2
∂2U

∂θ2
= 0.

Assuming that U(r, θ) = p(r)eiθ we obtain the equation

1

r2
(r2p′′(r) + rp′(r) − p(r)) = 0.

By taking the change of variables t = log r, P (t) = p(r) we obtain P (t) =
Aet +Be−t and therefore p(r) = Ar +B/r. Thus

u(z) = Az +
B

z̄
.

If v is bi-harmonic, then the mapping u = ∆v is harmonic. If v is radial, then
u is radial as well. It follows that

∆v = Az +
B

z̄

for some real constants A and B. Take V (r, θ) = v(reiθ). Then we have

(3.1)
1

r

∂

∂r

(

r
∂V

∂r

)

+
1

r2
∂2V

∂θ2
=

(

Ar +
B

r

)

eiθ.
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Put

V (r, θ) = g(r)eiθ.

Then (3.1) is equivalent with

1

r2
(r2g′′(r) + rg′(r) − g(r)) = Ar +

B

r
.

By taking again the change of variables t = log r, G(t) = g(r) we arrive at
the equation

G′′(t)−G(t) = Ae3t +Bet.

Thus

G(t) = de−t + aet + btet + ce3t, a, b, c, d ∈ R

and therefore

(3.2) g(r) =
d

r
+ ar + br log r + cr3.

It follows that, every radial solution of bi-harmonic equation has the form:

f(z) =
d

z̄
+ az + bz log |z|+ c|z|2z.

3.1. The technical lemmas. First of all we would like to notice that some
of calculations presented in this subsection are aided by using Mathematica 8
software. Throughout the section we will assume that the bi-harmonic
mapping f(reit) = g(r)eit : A(1, t) → A(1, s) maps the inner boundary
onto the inner boundary of corresponding annulus, i.e. g defined in (3.2)
is increasing. A similar analysis works for the case when g is a decreasing
function. We call a radial harmonic mapping f homogeneous if the initial and
the final speeds are equal to zero, i.e. if g′(1) = g′(t) = 0.

Lemma 3.1. Assume that t > 1 and s > 1. If the function g defined by
(3.2) satisfies g(1) = 1, g(t) = s, g′(1) = x > 0, g′(t) = y > 0, then there
exists a function h, such that h(1) = 1, h(t) = s, h′(1) = 0, h′(t) = 0, and

g(r) = A(r) +B(r)s + U(r)x + V (r)y,

and

h(r) = A(r) +B(r)s

where

A = [(3 + r2)(r2 − t2)(t2 − 1) + 2r2(3 − 2t2 − t4) log r

+ 2(r4 + t4 + r2(−3 + t4)) log t]/D,

B = [2r2(−1− 2t2 + 3t4) log r

− (−1 + r2)((−1 + t2)(r2 + 3t2) + 2(−1 + r2)t2 log t)]/(tD),
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U = [−2r2(−1 + t2)2 log r

+ (−1 + r2)((r2 − t2)(−1 + t2)− 2(r2 − t4) log t)]/D,

V = [−2r2(−1 + t2)2 log r

+ (−1 + r2)(−(r2 − t2)(−1 + t2) + 2(−1 + r2)t2 log t)]/D,

where D = 4r(−1 + t2)(1− t2 + (1 + t2) log t).

Proof. The proof is lengthy but straightforward and is therefore omitted.

Lemma 3.2. Under the conditions and notation of Lemma 3.1 there hold
the following relations

(3.3) B′(r) > 0, for 1 < r < t < ∞,

(3.4) −A′(r) > 0, for 1 < r < t < ∞,

(3.5) −
d

dr

A′(r)

B′(r)
> 0, for 1 < r < t < ∞,

(3.6) −
d

dr

U ′(r)

B′(r)
> 0, for 1 < r < t < ∞,

(3.7)
d

dr

V ′(r)

B′(r)
> 0, for 1 < r < t < ∞,

(3.8) lim
r→t−0

−A′(r)

B′(r)
=

t(3− 4t2 + t4 + 4t2 log t)

2− 2t2 + log t+ 3t4 log t
,

(3.9) lim
r→t−0

−U ′(r)

B′(r)
=

t(−1 + t4 − 4t2 log t)

2− 2t2 + log t+ 3t4 log t
,

(3.10) lim
r→t−0

−V ′(r)

B′(r)
= −∞,

(3.11) lim
r→1+0

−A′(r)

B′(r)
= −

t(−2t2(−1 + t2) + (3 + t4) log t)

1− 4t2 + 3t4 − 4t2 log t
,

(3.12) lim
r→1+0

−U ′(r)

B′(r)
= −∞,

(3.13) lim
r→1+0

−V ′(r)

B′(r)
=

t(−1 + t4 − 4t2 log t)

1− 4t2 + 3t4 − 4t2 log t
.

The proof of Lemma 3.1 lies on the following lemma.
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Lemma 3.3. For all 1 < t, 1 < r < t,

a)
2r2(−1− 2t2 + 3t4) log r

+ (1− r2)(3(r2 − t2)(−1 + t2) + 2(1 + 3r2)t2 log t) > 0,

b)
− 2r2(−3 + 2t2 + t4) log r

+ (r2 − 1)(3(r2 − t2)(−1 + t2) + 2(3r2 + t4) log t) < 0,

c)
(−1 + t2)(3(−1 + r2)(−r2 + t2) + 2r2(1 + 3t2) log r)

+ 2(1 + 2r2 − 3r4)t2 log t > 0,

d)
2(r4 − t2)(t2 − 1) log r

+ (1− r2)((r2 − t2)(−1 + t2) + 2(r2 − 1)t2 log t) > 0

e) 1− t2 + (1 + t2) log t > 0.

Proof of Lemma 3.3. By taking the substitution ρ = r2, τ = t2, the
inequality d) of the lemma is equivalent with the inequality

(3.14) h(τ) := (ρ2−τ)(−1+τ) log ρ+(ρ−1)((τ−ρ)(τ−1)+(1−ρ)τ log τ) ≥ 0.

Then

h′(τ) = (1 + ρ2 − 2τ) log ρ− (−1 + ρ)(2(ρ− τ) + (−1 + ρ) log τ),

h′′(τ) = −
(−1 + ρ)(−1 + ρ− 2τ)

τ
− 2 log ρ

and

h′′′(τ) =
(−1 + ρ)2

τ2
.

It follows that h′′ is increasing, and therefore

h′′(τ) ≥ h′′(ρ) = −1/ρ+ ρ− 2 log ρ.

But

(−1/ρ+ ρ− 2 log ρ)′ =
(ρ− 1)2

ρ2
,

and therefore −1/ρ+ ρ− 2 log ρ ≥ −1 + 1− 2 log 1 = 0. It follows that

h′′(τ) ≥ 0.

Thus

h′(τ) ≥ h′(ρ) = 0.

It follows finally that

h(ρ) ≥ h(τ) = 0.

The proof of a), b), c) and e) are similar to the proof of d) and are therefore
omitted.
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Proof of Lemma 3.1. First of all

A′(r) = [2r2(3− 2t2 − t4) log r

+ (r2 − 1)(3(r2 − t2)(−1 + t2) + 2(3r2 + t4) log t)]/(rD),

B′(r) = [2r2(3t4 − 2t2 − 1) log r

+ (1 − r2)(3(r2 − t2)(−1 + t2) + 2(1 + 3r2)t2 log t)]/(rtD),

U ′(r) = [(1 + 3r2)(r2 − t2)(t2 − 1) + 2r2(1− t2)2 log r

− 2(3r4 − t4 − r2(1 + t4)) log t]/(rD),

V ′(r) = [2r2(1− t2)2 log r

+ (1 − r2)((−1 + t2)(3r2 + t2) + 2(1 + 3r2)t2 log t)]/(rD),

where D = 4r(−1 + t2)(1− t2 + (1 + t2) log t). Lemma 3.3, a) and b) implies
that A′(r) < 0 and B′(r) > 0.

The derivative of −A′(r)/B′(r) is

12rt(−1 + t2)(1 − t2 + (1 + t2) log t)×

2(r4 − t2)(t2 − 1) log r − (r2 − 1)((r2 − t2)(t2 − 1) + 2(r2 − 1)t2 log t)

(2r2(1 + 2t2 − 3t4) log r + (r2 − 1)(3(r2 − t2)(t2 − 1) + 2(1 + 3r2)t2 log t))2
.

Lemma 3.3, d), e) implies that the last expression is positive. Thus (3.5) is
proved. The proof of (3.4), (3.3), (3.6) and (3.7) are similar. The proof of
relations (3.8)-(3.13) are similar and follows by l’Hôspital rule. See Figure 1
for the geometric interpretation of (3.12) and (3.13).

1.1 1.2 1.3 1.4 1.5

0.8

0.6

0.4

0.2

Figure 1. These two curves are graphs of the functions
−U ′(r)/B′(r) and −V ′(r)/B′(r) for t = 3/2, and 1 < r < t.
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Lemma 3.4. For every t > 1, and τ = 1+t
2 ,

−A′(τ)

B′(τ)
> 1.

Proof. Namely
−A′(τ)

B′(τ)
> 1

if and only if ϕ(t) > 0, where

ϕ(t) := (1− t2)(9 + 30t+ 9t2 +8(1 + t)2 log τ)− 2t(9 + 18t+17t2 +4t3) log t.

On the other hand

ϕ(5)(t) =
12(9 + 6t+ 2t2 + 6t3 + 9t4)

t4(1 + t)2
> 0

and ϕ(k)(1) ≥ 0, for k = 1, 2, 3, 4. It follows that ϕ(4)(t) > 0, ϕ(3)(t) > 0,
ϕ′′(t) > 0, ϕ′(t) > 0 and ϕ(t) > 0 for t > 1.

Lemma 3.5. Under the conditions and notation of Lemma 3.1 we have
U ′(r) = V ′(r) if and only if

(3.15) r = ρ :=

√

1

6
+

t2

6
+

1

6

√

1 + 14t2 + t4.

Moreover

U ′(ρ) = V ′(ρ) > 0,
−A′(ρ)

B′(ρ)
> 1.

Proof. As

U ′(r) − V ′(r) =
−3r4 + t2 + r2(1 + t2)

2r2(−1 + t2)

it follows that

U ′(r) = V ′(r) if and only if r = ρ :=

√

1

6
+

t2

6
+

1

6

√

1 + 14t2 + t4

or what is the same

t =
ρ
√

−1 + 3ρ2
√

1 + ρ2
.

By taking the substitution κ = ρ2, η = t2 we obtain

−2U ′(ρ) =
−2ρ2(t2 − 1)− 2ρ2(t2 − 1) log ρ+ (3ρ4 + t2 + ρ2(t2 − 1)) log t

2ρ2(1− t2 + (1 + t2) log t)

=
−2κ(η − 1)− κ(t2 − 1) log κ+ (3κ2 + η + κ/2(η − 1)) log η

κ(2− 2η + (1 + η) log η)
.

Since

η =
κ(3κ− 1)

1 + κ
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and

κ(2− 2η + (1 + η) log η) > 0

we have to prove that

L(κ) := −2κ(η − 1)− κ(t2 − 1) log κ+ (3κ2 + η + κ/2(η − 1)) log η > 0.

Then

L(κ) = κ
(−1− 2κ+ 3κ2)(2 + log κ)

1 + κ
− κ(−1 + 3κ) log

(

κ(−1 + 3κ)

1 + κ

)

=
κ

1 + κ
K(κ),

where

K(κ) = (−1− 2κ+ 3κ2)(2 + log κ)− κ(−1 + 3κ)(1 + κ) log

(

κ(−1 + 3κ)

1 + κ

)

.

Further,

K ′′′(κ) =
4(1− 4κ+ 14κ2 + 12κ3 + 9κ4)

κ2(−1 + 2κ+ 3κ2)2
> 0.

Moreover,

K ′′(1) ≥ 0, K ′(1) ≥ 0, K(1) ≥ 0

and therefore

K(κ) > 0.

Since r → −A′(r)/B′(r) is increasing, and

ρ =

√

1

6
+

t2

6
+

1

6

√

1 + 14t2 + t4 > τ =
1+ t

2
,

by Lemma 3.4 and (3.5) we obtain

(3.16)
−A′(ρ)

B′(ρ)
>

−A′(τ)

B′(τ)
> 1.

3.2. Rigidity of radial biharmonic mappings. As a direct corollary of
Lemma 3.1 we obtain

Theorem 3.6. If f(reiθ) = h(r)eiθ, h(1) = 1, h(t) = s, h′(1) = 0,
h′(t) = 0, is a radial homogeneous bi-Harmonic mapping of the annulus A(1, t)
onto the annulus A(1, s), then

s ≥ σ0(t) :=
t(3 − 4t2 + t4 + 4t2 log t)

2 − 2t2 + log t+ 3t4 log t
.

The critical bi-Nitsche homogeneous bi-harmonic mapping is

f(z) = h0(r)e
iθ , z = reiθ ,
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where

h0(r) =
(1− t2)(3t2 + 3(3− t2)r2 − r4)

4r(2− 2t2 + log t+ 3t4 log t)

+
(6t4 + 6(1 + t4)r2 − 2r4) log t+ 6(1− t2)2r2 log r

4r(2− 2t2 + log t+ 3t4 log t)
.

The condition is sufficient as well. The function σ0(t) is smaller than the
corresponding function n(t) for harmonic mappings. See Figure 2.

Theorem 3.7. If f(reiθ) = g(r)eiθ is a radial bi-harmonic diffeomorph-
ism of the annulus A(1, t) onto the annulus A(1, s), mapping the inner
boundary onto the inner boundary, then s ≥ σ(t) where the constant

σ(t) = inf
x≥0,y≥0

sup
1≤r≤t

{

−A′(r)

B′(r)
+ x

−U ′(r)

B′(r)
+ y

−V ′(r)

B′(r)

}

is bigger than −A′(ρ)
B′(ρ) (> 1) (cf. (3.15), (3.16)) and smaller than σ0(t). The

condition is sufficient as well. Moreover there exists a critical bi-Nitsche
mapping f(reit) = g0(r)e

it, between annuli A(1, t) and A(1, σ(t)) and it
satisfies the conditions g′0(1) > 0 and g′0(t) > 0.

Proof. Under the conditions of the theorem g is non-decreasing. Then

g′(r) ≥ 0, for 1 ≤ r ≤ t, and t > 1

if and only if

A′(r) +B′(r)s + U ′(r)x + V ′(r)y ≥ 0 for 1 ≤ r ≤ t, and t > 1.

Here x = g′(0) and y = g′(t). If

Xn(t) :=
−A′(rn)

B′(rn)
+ xn

−U ′(rn)

B′(rn)
+ yn

−V ′(rn)

B′(rn)
→ σ(t)

then because of (3.16)

Xn ≥
−A′(ρ)

B′(ρ)
+ xn

−U ′(ρ)

B′(ρ)
+ yn

−V ′(ρ)

B′(ρ)
>

−A′(ρ)

B′(ρ)
> 1.

It follows that the sequences xn and yn stay bounded when n → ∞. On the
other hand, it follows from (3.8), (3.9), (3.10), (3.11), (3.12) that there exist
1 < τ1(t) < τ2(t) < t such that the function

p(r) = −
U ′(r) + V ′(r)

B′(r)

is negative in intervals [1, τ1] and [τ2, t]. From (3.5), the maximum of −A′(r)
B′(r)

is −A′(t)
B′(t) := −A′(t−0)

B′(t−0) defined in (3.8). Thus there exists a small enough x > 0

such that
−A′(t)

B′(t)
>

−A′(r)

B′(r)
+ xp(r)



POLYHARMONIC MAPPINGS AND J. C. C. NITSCHE TYPE INEQUALITIES 177

for all r : 1 < r < t and fixed t. This means that

σ(t) < σ0(t).

Assume without loss of generality that xn → x0 and yn → y0 and rn → r0.
The sequence gn is monotonic and converges to a strictly monotonic function
g0. The resulting bi-harmonic mapping is critical. Since σ < σ0, because
A′(t−0) = B′(t−0) = 0, U ′(t−0) = 0, V ′(t−0) = 1 and (−U ′/B′)(t−0) > 0
it follows that x0 > 0, y0 > 0 and r0 < t.

Example 3.8. By using the previous theorem we obtain that there
does not exist a radial biharmonic mapping between annuli A(1, 2) and
A(1, 1.00098).

1.5 2.0 2.5 3.0

1.1

1.2

1.3

1.4

1.5

1.6

Figure 2. The curve above (below) corresponds to the
critical harmonic (bi-harmonic) mappings between annuli
A(1, t), and A(1, ω(t)), where ω(t) = σ0(t) and ω(t) = n(t)
respectively (1 < t ≤ 3).
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