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APOSYNDETIC PROPERTIES OF THE n−FOLD

SYMMETRIC PRODUCT SUSPENSION OF A CONTINUUM

Franco Barragán

Universidad Tecnológica de la Mixteca, Mexico

Abstract. In this paper the n−fold symmetric product suspension of
a continuum is investigated with respect to the properties of aposyndesis
such as: aposyndesis, finite aposyndesis, mutual aposyndesis and strictly
nonmutual aposyndesis.

1. Introduction

In 1941 F. B. Jones introduced the notion of aposyndesis ([8]). In [6,
Theorem 1], [11, Theorem 4], [12, Corollary 5.2], [13, Corollary 4.3], [15,
Corollary 2.36] and [7, Theorem 2.4] we can find some results of aposyndesis
in hyperspaces of continua. Given a continuum X and an integer n ≥ 1, in
1931 K. Borsuk and S. Ulam ([4]) defined the n−fold symmetric product of
X , Fn(X) = {A ⊂ X : A has at most n points}. For each integer n ≥ 2,
in the year 2009 we defined the n−fold symmetric product suspension of X
([1]), denoted by SFn(X), as the quotient space Fn(X)/F1(X). In [2] we
investigated the induced maps between these spaces.

In 1997 S. Maćıas showed in [11, Theorem 4], that Fn(X) is colocally
connected (in particular aposyndetic), for every n ≥ 2. In [11, Theorem
8] he also proved that Fn(X) is countable closed aposyndetic, for every
n ≥ 2. In the present paper, we prove that SFn(X) is colocally connected
(in particular aposyndetic), for every n ≥ 3. Also we prove that Fn(X)
is finitely aposyndetic, for every n ≥ 3. Furthermore, we show a class
of continua for which their second symmetric product suspensions are not

2010 Mathematics Subject Classification. 54B20, 54F15.
Key words and phrases. Aposyndetic continuum, chainable continuum, mutually

aposyndetic, symmetric product, strictly nonmutually aposyndetic.

179



180 F. BARRAGÁN

aposyndetic. Moreover, we prove that if a continuum is aposyndetic, then its
second symmetric product suspension is aposyndetic.

On the other hand, in 1999 J. M. Martinez-Motejano showed in [16,
Theorem 1] that Fn(X) is mutually aposyndetic, for every n ≥ 3. In [11,
Theorem 15] S. Maćıas proved that if X is a chainable continuum such
that its second symmetric product is mutually aposyndetic, then X is the
arc. In this paper we prove that SFn(X) is mutually aposyndetic, for every
n ≥ 3. Also we show that if a continuum is aposyndetic, then its second
symmetric product is mutually aposyndetic. Furthermore, we proved that
if a continuum is 2-aposyndetic and mutually aposyndetic, then its second
symmetric product suspension is mutually aposyndetic. Moreover, we verify
that if X is a chainable continuum such that its second symmetric product
suspension is mutually aposyndetic, then X is the arc.

In [11, Theorem 16] S. Maćıas proved that a chainable continuum
is indecomposable if and only if its second symmetric product is strictly
nonmutually aposyndetic. We show that a continuum with span zero is
indecomposable if and only if its second symmetric product suspension is
strictly nonmutually aposyndetic.

2. Definitions

The symbol N will denote the set of positive integers. A continuum is a
nonempty compact, connected metric space. A subcontinuum is a continuum
contained in a space X . If X is a continuum, then given A ⊂ X and ǫ > 0,
the open ball around A of radius ǫ is denoted by N(ǫ, A), the closure of A in
X by ClX(A), the interior of A in X is denoted by intX(A) and the boundary
of A in X is denoted by Bd(A). If A = {a}, we let N(a, ǫ) denote the open
ball around a of radius ǫ. An arc is any space which is homeomorphic to
the closed interval [0, 1]. A ray is a space homeomorphic to [0,∞). An Elsa
continuum, denoted E-continuum, is a compactification of the ray with an
arc as the remainder. A map means a continuous function. An onto map
f : X → Y between continua is said to be:

• monotone provided that f−1(y) is connected for each y ∈ Y ;
• open provided that if U is any open subset of X , then f(U) is an open
subset of Y .

A continuum X is said to be colocally connected, provided that each point
of it has a local base of open sets whose complements are connected. A
continuum X is said to be aposyndetic at x with respect to y, provided that
there exists a subcontinuum W of X such that x ∈ intX(W ) ⊂ W ⊂ X \ {y},
it is said to be aposyndetic at x, if it is aposyndetic at x with respect to
any point of X \ {x}, and it is said to be aposyndetic, if it is aposyndetic at
each of its points. A continuum X is 2-aposyndetic at x if for every pair of
points p and q lying in X \ {x}, there exists a subcontinuum W of X such
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that x ∈ intX(W ) ⊂ W ⊂ X \ {p, q}. A continuum is 2-aposyndetic if it
is 2-aposyndetic at every one of its points. Let F be a collection of finite
subsets of a continuum X . Then X is said to be finitely aposyndetic if for
each x ∈ X and each F ∈ F such that x 6∈ F , there exists a subcontinuum
W of X such that x ∈ intX(W ) and W ∩F = ∅. A continuum X is mutually
aposyndetic, provided that if x and y are two distinct points of X then there
exist two disjoint subcontinua Wx and Wy of X such that x ∈ intX(Wx) and
y ∈ intX(Wy). A continuum X is said to be strictly nonmutually aposyndetic
if each pair of subcontinua of X which have nonempty interior intersect. A
point x of a continuum X is called a cut point of X , provided that X \ {x}
is not connected. A point x of a continuum X is called a not-cut point of X ,
provided that X \ {x} is connected.

A chain in a continuum X is a finite collection {U1, U2, . . . , Um} of open
subsets of X such that Ui ∩ Uj 6= ∅ if and only if |i − j| ≤ 1 for each i, j ∈
{1, 2, . . . ,m}. The elements of a chain are called links. For ǫ > 0 an ǫ-chain is
a chain in which each link has diameter less than ǫ. A continuum is chainable
if for each ǫ > 0, it can be covered by an ǫ-chain. A continuum is decomposable
provided that it can be written as the union of two of its proper subcontinua.
A continuum is indecomposable if it is not decomposable.

Given a continuum X and n ∈ N, the product of X with itself n times
will be denoted by Xn. The symbol ∆X2 will denote the diagonal of X2,
that is, ∆X2 = {(x, x) ∈ X2 : x ∈ X}. If W is a subset of X2, we let
W ∗ denote the subset {(y, x) ∈ X2 : (x, y) ∈ W} of X2. Denote the first
and second projections of X2 onto X by π1 and π2, respectively. The span
of a continuum (X, d) (respectively, the semispan of X), denote by σ(X)
(respectively, σ0(X)), is the least upper bound of the set of all numbers ǫ ≥ 0
for which there exists a subcontinuum Z of X2 such that π1(Z) = π2(Z)
(respectively, π2(Z) ⊂ π1(Z)) and d(x, y) ≥ ǫ for each (x, y) ∈ Z.

Given a continuum X and n ∈ N, the n-fold symmetric product of X ,
denoted by Fn(X), is the hyperspace:

Fn(X) = {A ⊂ X : A has at most n points}

topologized with the Hausdorff metric, which is defined as follows:

H(A,B) = inf{ǫ > 0 : A ⊂ N(ǫ, B) and B ⊂ N(ǫ, A)}.

On the other hand, Fn(X) can be topologized with the topology defined as
follows: given a finite collection, U1, . . . , Um, of open sets of X , 〈U1, . . . , Um〉n,
denotes the following subset of Fn(X):

{

A ∈ Fn(X) : A ⊂
m
⋃

k=1

Uk and A ∩ Uk 6= ∅ for each k ∈ {1, . . . ,m}

}

.

It is known that the family of all subset of Fn(X) of the form 〈U1, . . . , Um〉n,
as defined above, form a basis for a topology for Fn(X) (see [18, 0.11]) called
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the Vietoris topology, and that the Vietoris topology and the topology induced
by the Hausdorff metric coincide [18, 0.13].

Given a continuum X and n ∈ N with n ≥ 2, we defined (in [1]) the n-fold
symmetric product suspension of the continuum X , denoted by SFn(X), as
the quotient space:

SFn(X) = Fn(X)/F1(X),

with the quotient topology.
Give a continuumX and an integer n ≥ 2, qnX : Fn(X) → SFn(X) denotes

the quotient map. Also, let Fn
X denotes the point qnX(F1(X)). We denote by

f2 : X2 → F2(X) the map given by f2(x, y) = {x, y}, for each (x, y) ∈ X2.

Remark 2.1. Let X be a continuum and let n ≥ 2 be an integer. Then
SFn(X) \ {Fn

X} is homeomorphic to Fn(X) \ F1(X).

3. Aposyndesis

Theorem 3.1. Let X be a continuum and let n ≥ 2 be an integer. Then
(1) and (2) below are true.

(1) SFn(X) is aposyndetic at Fn
X .

(2) If A ∈ SFn(X) \ {Fn
X}, then SFn(X) is aposyndetic at A respect to

any point of SFn(X) \ {Fn
X ,A}.

Proof. To prove (1), let B ∈ SFn(X) \ {Fn
X}. Let Γ and Λ be open

subsets of SFn(X) such that Fn
X ∈ Γ, B ∈ Λ and Γ ∩ Λ = ∅. Let B ∈

Fn(X)\F1(X) be such that qnX(B) = B. Hence, (qnX)−1(Λ) is an open subset of
Fn(X) such that B ∈ (qnX)−1(Λ) ⊂ Fn(X)\F1(X). By [11, Theorem 4], there
exists an open subset U of Fn(X) such that B ∈ U ⊂ (qnX)−1(Λ) and Fn(X)\U
is connected. It follows that B ∈ qnX(U) ⊂ Λ and qnX(Fn(X) \U) is connected.
Since U ∩ F1(X) = ∅, by Remark 2.1, we have that qnX(U) is an open subset
of SFn(X) and qnX(Fn(X) \ U) = SFn(X) \ qnX(U). Then SFn(X) \ qnX(U)
is a subcontinuum of SFn(X). We note that Fn

X ∈ Γ ⊂ SFn(X) \ qnX(U),
thus Fn

X ∈ intSFn(X)(SFn(X) \ qnX(U)). Therefore, SFn(X) \ qnX(U) is a
subcontinuum of SFn(X) such that Fn

X ∈ intSFn(X)(SFn(X) \ qnX(U)) ⊂
SFn(X) \ qnX(U) ⊂ SFn(X) \ {B}. Hence, SFn(X) is aposyndetic at Fn

X .
A similar argument can be used to verify (2).

Theorem 3.2. Let X be a continuum and let n ≥ 3 be an integer. Then
SFn(X) is aposyndetic.

Proof. By Theorem 3.1, it is sufficient to prove that, for each element
A ∈ SFn(X) \ {Fn

X}, SFn(X) is aposyndetic at A with respect to Fn
X . Let

A ∈ SFn(X) \ {Fn
X}. We take A ∈ Fn(X) \ F1(X) such that qnX(A) =

A. Fix points p, q ∈ A with p 6= q. Let U and V be open subsets of X
such that p ∈ U , q ∈ V , ClX(U) ∩ ClX(V ) = ∅ and A ⊂ U ∪ V . We
define C = 〈ClX(U), ClX(V ), X〉n∪〈Bd(U), Bd(V ), X〉n∪〈Bd(U), {p}, X〉n∪
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〈{p}, {q}, X〉n. By [16, Lemma 2], C is a subcontinuum of Fn(X). Since
A ∈ 〈U, V 〉n ⊂ C, we obtain that A ∈ intFn(X)(C) ⊂ C. Moreover, we note
that C∩F1(X) = ∅. Hence, by Remark 2.1, qnX(C) is a subcotinuum of SFn(X)
such that A ∈ intSFn(X)(q

n
X(C)) ⊂ qnX(C) ⊂ SFn(X) \ {Fn

X}. Consequently,
SFn(X) is aposyndetic at A with respect to Fn

X .

A continuum X is said to be unicoherent provided that whenever A and
B are proper subcontinua of X with X = A∪B, then A∩B is connected. We
proved in [1, Theorem 4.1] that for each integer n ≥ 3, SFn(X) is unicoherent.
Moreover, it is known that a unicoherent aposyndetic continuum is finitely
aposyndetic ([3]). Therefore, by Theorem 3.2 and [1, Theorem 4.1], we have
the following corollary.

Corollary 3.3. Let X be a continuum and let n ≥ 3 be an integer. Then
SFn(X) is finitely aposyndetic.

Lemma 3.4. Let X be a continuum and let n ≥ 2 be an integer. Then
Fn(X) \ F1(X) is connected.

Proof. We consider two cases.
(1) First we consider n = 2. Respect to X , we have two possibilities.

(1.1) The continuum X is the arc. Then F2(X) \ F1(X) is connected.
(1.2) The continuum X is not the arc. Then, by [9, Theorem 2], it follows

that F2(X) \ F1(X) is connected.

(2) Now we consider n ≥ 3. Let A,B ∈ Fn(X) \ F1(X) be such that A 6= B.
Without loss of generality, suppose that there exists a point b ∈ B \ A. Take
c ∈ B\{b}. Fix points x, y ∈ A with x 6= y. Let U and V be open subsets of X
such that x ∈ U , y ∈ V , b 6∈ ClX(U), ClX(U) ∩ClX(V ) = ∅ and A ⊂ U ∪ V .
Let C = 〈ClX(U), ClX(V ), X〉n ∪ 〈Bd(U), Bd(V ), X〉n ∪ 〈Bd(U), {b}, X〉n ∪
〈{b}, {c}, X〉n. By [16, Lemma 2], C is connected. Furthermore, C ⊂ Fn(X) \
F1(X), A ∈ 〈ClX(U), ClX(V ), X〉n and B ∈ 〈{b}, {c}, X〉n. Therefore, C is a
connected subset of Fn(X) \ F1(X) such that A,B ∈ C.

Theorem 3.5. Let X be a continuum and let n ≥ 2 be an integer. Then
each point of SFn(X) is a not-cut point of SFn(X).

Proof. Let A ∈ SFn(X). We have the following cases.
(1) Suppose that A = Fn

X . By Lemma 3.4, we have that Fn(X) \ F1(X) is
a connected subset of Fn(X). Then, by Remark 2.1, qnX(Fn(X) \ F1(X)) =
SFn(X) \ {Fn

X} is a connected subset of SFn(X). This implies that A is a
not-cut point of SFn(X).
(2) Suppose that A ∈ SFn(X)\ {Fn

X}. We take A ∈ Fn(X)\F1(X) such that
qnX(A) = A. By [11, Corollary 5], it follows that Fn(X) \ {A} is a connected
subset of Fn(X). Hence, qnX(Fn(X) \ {A}) = SFn(X) \ {A} is a connected
subset of SFn(X). Consequently, we conclude that A is a not-cut point of
SFn(X).
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It is known that if each point of X is a not-cut point of X , then the
continuum X is colocally connected if and only if X is aposyndetic ([21, 4.14,
p. 50]). Hence, by Theorems 3.2 and 3.5, we have the following:

Corollary 3.6. Let X be a continuum and let n ≥ 3 be an integer. Then
SFn(X) is colocally connected.

Lemma 3.7. Let X be a continuum. Then the following are equivalent:

(1) for each point (x1, x2) ∈ X2 \ △X2 , there exists a subcontinuum C of
X2 such that (x1, x2) ∈ intX2(C) and C ∩△X2 = ∅,

(2) for each element A ∈ SF2(X) \ {F 2
X}, SF2(X) is aposyndetic at A

with respect to F 2
X .

Proof. We prove that (1) implies (2). Let A ∈ SF2(X)\{F 2
X}. We take

A ∈ F2(X) \ F1(X) such that q2X(A) = A. Suppose that A = {a1, a2}. Since
(a1, a2) ∈ X2 \ △X2 , by (1), there exists a subcontinuum C of X2 such that
(a1, a2) ∈ intX2(C) and C ∩△X2 = ∅. Thus, since the map f2 : X2 → F2(X)
given by f2((x1, x2)) = {x1, x2} is an open map ([11, Lemma 9]), we obtain
that f2((a1, a2)) = A ∈ intF2(X)(f2(C)). Furthermore, since C ∩ △X2 = ∅,
it follows that f2(C) ∩ F1(X) = ∅. Hence, by Remark 2.1, q2X(f2(C)) is a
subcontinuum of SF2(X) such thatA ∈ intSF2(X)(q

2
X(f2(C))) ⊂ q2X(f2(C)) ⊂

SF2(X) \ {F 2
X}. This proves that SF2(X) is aposyndetic at A with respect

to F 2
X .
Next we prove that (2) implies (1). Let (a1, a2) ∈ X2 \ △X2 . We define

A = {a1, a2}. Then f2((a1, a2)) = A ∈ F2(X) \ F1(X). Let A = q2X(A).
Thus, A ∈ SF2(X)\{F 2

X}. By (2), there exists a subcontinuum Θ of SF2(X)
such that A ∈ intSF2(X)(Θ) ⊂ Θ ⊂ SF2(X) \ {F 2

X}. Define C = (q2X)−1(Θ).

Since q2X is a monotone map, and by [21, 2.2, p. 138], C is a subcontinuum of
F2(X), also A ∈ intF2(X)(C). Since F 2

X 6∈ Θ, we obtain that C ∩ F1(X) = ∅.

This implies that f−1
2 (C) ∩△X2 = ∅.

On the other hand, by [11, Lemma 12], f−1
2 (C) has at most two

components. Let f−1
2 (C) = C1 ∪C2, where C1 and C2 are the components of

f−1
2 (C). Hence, C1∩△X2 = ∅ and C2∩△X2 = ∅. Since (a1, a2) ∈ f−1

2 (C), we
suppose without loss of generality, that (a1, a2) ∈ C1. Since A ∈ intF2(X)(C),

we obtain that (a1, a2) ∈ intX2(f−1
2 (C)). Consequently, by [14, Lemma 1.6.2],

we have that (a1, a2) ∈ intX2(C1). Therefore, C1 is a subcontinuum of X2

such that (a1, a2) ∈ intX2(C1) and C1 ∩△X2 = ∅.

Theorem 3.8. If X is an E-continuum, then SF2(X) is not aposyndetic.

Proof. Let X = J∪S, where J is the remainder and S is homeomorphic
to [0,∞). Let (a1, a2) ∈ J×J be such that (a1, a2) ∈ X2\△X2 . Suppose that
there exists a subcontinuum C of X2 such that (a1, a2) ∈ intX2(C). Since the
map π1 : X2 → X , given by π1(x1, x2) = x1, is an open map, it follows that
a1 ∈ intX(π1(C)). Hence, since π1(C) is a subcontinuum of X , we have that
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J ⊂ π1(C). With similar arguments, we obtain that J ⊂ π2(C). Therefore,
we have that either π1(C) ⊂ π2(C) or π2(C) ⊂ π1(C).

On the other hand, by [17, Lemma 6, p. 126], X is a chainable continuum.
Thus, by [10, p. 210], it follows that X has zero span, and by [5, Theorem 6],
X has zero semispan. This implies that C ∩△X2 6= ∅. Then, by Lemma 3.7,
there exists A ∈ SF2(X) \ {F 2

X} such that SF2(X) is not aposyndetic at A
with respect to F 2

X . Consequently, SF2(X) is not aposyndetic.

Lemma 3.9. Let X be a continuum, let x1, x2 ∈ X with x1 6= x2 and let A1

and A2 be subcontinua of X such that x1 ∈ intX(A1), x2 ∈ intX(A2), x2 6∈ A1

and x1 6∈ A2. Then, for each ǫ > 0 with ǫ < 1
2 min{d(x1, A2), d(x2, A1)},

C = (A1 ×A2) \ (N(ǫ, A2)×N(ǫ, A1))

is a subcontinuum of X2 such that (x1, x2) ∈ intX2(C) and C ∩△X2 = ∅.

Proof. Let ǫ > 0 be such that ǫ < 1
2 min{d(x1, A2), d(x2, A1)}. Note

that C is a closed subset of X2, and thus, C is compact. To prove that C is
connected, let (p, q) and (r, s) be two distinct points in C, and we will check
that there exists a connected subset of C containing the points (p, q) and
(r, s). Since (p, q), (r, s) ∈ C, it follows that p, r ∈ A1 and q, s ∈ A2. In order
to prove that C is connected, we consider the following cases:

Case (1). p 6∈ N(ǫ, A2) and r 6∈ N(ǫ, A2). For this case, it follows that
{p} × A2 and {r} × A2 are connected subsets of C such that (p, q), (p, x2) ∈
{p} × A2 and (r, s), (r, x2) ∈ {r} ×A2. Furthermore, since x2 6∈ N(ǫ, A1), we
obtain that A1 × {x2} is a connected subset of C such that (p, x2), (r, x2) ∈
A1 × {x2}. We define K = [{p} ×A2] ∪ [{r} ×A2] ∪ [A1 × {x2}]. Then, K is
a connected subset of C containing the points (p, q) and (r, s).

Case (2). p 6∈ N(ǫ, A2) and s 6∈ N(ǫ, A1). We note that {p} × A2 and
A1 × {s} are connected subsets of C such that (p, q), (p, s) ∈ {p} × A2 and
(p, s), (r, s) ∈ A1 × {s}. Let K = [{p}×A2]∪ [A1 × {s}]. It follows that K is
a connected subset of C such that (p, q), (r, s) ∈ K.

Case (3). q 6∈ N(ǫ, A1) and r 6∈ N(ǫ, A2). Observe that A1 × {q} and
{r} × A2 are connected subsets of C such that (p, q), (r, q) ∈ A1 × {q} and
(r, s), (r, q) ∈ {r} ×A2. We define K = [A1 × {q}] ∪ [{r} × A2]. Hence, K is
a connected subset of C containing the points (p, q) and (r, s).

Case (4). q 6∈ N(ǫ, A1) and s 6∈ N(ǫ, A1). We obtain that A1 × {q}
and A1 × {s} are connected subsets of C such that (p, q), (x1, q) ∈ A1 × {q}
and (r, s), (x1, s) ∈ A1 × {s}. Since x1 6∈ N(ǫ, A2), we have that {x1} × A2

is a connected subset of C such that (x1, q), (x1, s) ∈ {x1} × A2. We define
K = [A1 × {q}] ∪ [A1 × {s}] ∪ [{x1} × A2]. It follows that K is a connected
subset of C containing the points (p, q) and (r, s).

By the Cases (1)–(4), we conclude that C is connected, and thus, C is a
subcontinuum of X2.
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On the other hand, we note that x1 ∈ intX(A1) \ ClX(N(ǫ, A2)) and
x2 ∈ intX(A2) \ ClX(N(ǫ, A1)). Hence, (x1, x2) ∈ intX2(C). Furthermore, it
easy to see that C ∩△X2 = ∅.

Theorem 3.10. If X is an aposyndetic continuum, then SF2(X) is
aposyndetic.

Proof. By Theorem 3.1 and Lemma 3.7, it is sufficient to show that for
each point (x1, x2) ∈ X2 \ △X2 , there exists a subcontinuum C of X2 such
that (x1, x2) ∈ intX2(C) and C ∩ △X2 = ∅. Let (x1, x2) ∈ X2 \ △X2 . Since
X is an aposyndetic continuum, there exist two subcontinua A1 and A2 of
X such that x1 ∈ intX(A1), x2 ∈ intX(A2), x2 6∈ A1 and x1 6∈ A2. We take
ǫ > 0 such that ǫ < 1

2 min{d(x1, A2), d(x2, A1)}. Then, by Lemma 3.9, the
subset

C = (A1 ×A2) \ (N(ǫ, A2)×N(ǫ, A1))

is a subcontinuum of X2 such that (x1, x2) ∈ intX2(C) and C ∩△X2 = ∅.

4. Mutual Aposyndesis

Lemma 4.1. Let X be a continuum, let n ≥ 2 be an integer, and let U
and V be nonempty, proper, open subsets of X such that U ⊂ ClX(U) ⊂ V .
If K = 〈ClX(V )〉n ∪ 〈X \ U〉n, then K is a subcontinuum of Fn(X) such that
F1(X) ⊂ intFn(X)(K).

Proof. It is clear that K is a closed subset of Fn(X), and thus K is
compact. Furthermore, since X = V ∪ (X \ClX(U)), it follows that F1(X) ⊂
intFn(X)(K).

Next we prove that K is connected. Since F1(X) is a connected subset of
K, it is sufficient to show that for each point A ∈ K, there exists a connected
subset E of K such that A ∈ E and E ∩ F1(X) 6= ∅.

Let A ∈ K. Suppose that A ∈ 〈ClX(V )〉n. We assume that A =
{a1, . . . , ak} with k ≤ n. For each i ∈ {1, . . . , k}, let Ci be the component
of ClX(V ) such that ai ∈ Ci. By [19, Theorem 5.4], for each i ∈ {1, . . . , k},
it follows that Ci ∩ Bd(V ) 6= ∅. Consequently, for each i ∈ {1, . . . , k}, let
bi ∈ Ci ∩ Bd(V ). We define C = 〈C1, . . . , Ck〉n and B = {b1, . . . , bk}. Then,
by [16, Lemma 1], C is a connected set. Moreover, it is clear that C ⊂ K and
A,B ∈ C.

For each i ∈ {1, . . . , k−1}, we define Di = {{b1, . . . , bi}∪K : K ∈ F1(X)}.
Note that, for each i ∈ {1, . . . , k − 1}, Di is a continuum. Furthermore, since
for each i ∈ {1, . . . , k}, bi ∈ ClX(V )∩ (X \U) and X = ClX(V )∪ (X \U), we
obtain that D1, . . . ,Dk−1 are subcontinua of K. Moreover, we have that Di ∩
Di+1 6= ∅, {b1} ∈ D1 and B ∈ Dk−1. Hence, D = ∪k−1

i=1 Di is a subcontinuum
of K such that B, {b1} ∈ D. We define E = C ∪ D. It follows that E is a
subcontinuum of K such that A ∈ E and E ∩ F1(X) 6= ∅.

Similiarly, we can show the case A ∈ 〈X \ U〉n.
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Theorem 4.2. Let X be a continuum and let n ≥ 3 be an integer. Then
SFn(X) is mutually aposyndetic.

Proof. Let A,B ∈ SFn(X) be such that A 6= B. We assume, without
loss of generality, that A 6= Fn

X . We take A ∈ Fn(X) \ F1(X) such that
qnX(A) = A, and let B ∈ Fn(X) such that qnX(B) = B. Hence, we have the
following cases:

Case (1). A 6⊂ B. For this case, let a ∈ A \ B and let b ∈ A with
a 6= b. We define B1 = B ∪ {b}. Let U , V , U1 and V1 be proper open
subsets of X such that B1 ⊂ U ⊂ ClX(U) ⊂ U1 ⊂ ClX(U1) ⊂ V1 ⊂ X ,
a ∈ V and ClX(V1) ∩ ClX(V ) = ∅. We define the subsets, H and K,
of Fn(X) as follows: H = 〈ClX(V ), ClX(U), X〉n ∪ 〈Bd(V ), Bd(U), X〉n ∪
〈Bd(V ), {b}, X〉n ∪ 〈{a}, {b}, X〉n and K = 〈ClX(V1)〉n ∪ 〈X \ U1〉n. By [16,
Lemma 2], H is a subcontinuum of Fn(X). Furthermore, A ∈ intFn(X)(H)
and H ∩ F1(X) = ∅. Applying Remark 2.1, we obtain that qnX(H) is a
subcontinuum of SFn(X) such that A ∈ intSFn(X)(q

n
X(H)). On the other

hand, by Lemma 4.1, we have that K is a subcontinuum of Fn(X) such that
F1(X) ⊂ intFn(X)(K). Also, B ∈ intFn(X)(K). By Remark 2.1, it follows that
qnX(K) is a subcontinuum of SFn(X) such that B, Fn

X ∈ intSFn(X)(q
n
X(K)).

Since H ∩ K = ∅ and F1(X) ⊂ K, we obtain that qnX(H) ∩ qnX(K) = ∅. This
proves Case (1).

Case (2). A ⊂ B. Since A ∈ Fn(X) \ F1(X), it follows that B ∈
Fn(X) \ F1(X). Since A 6= B, we obtain that B 6⊂ A. Let b ∈ B \ A. Since
B ∈ Fn(X) \ F1(X), there exists a point a ∈ B \ {b}. Now, we proceed as in
Case (1).

Finally, by Cases (1) and (2), we conclude that SFn(X) is mutually
aposyndetic.

Theorem 4.3. Let X a chainable continuum. Then SF2(X) is mutually
aposyndetic if and only if X is the arc.

Proof. If X is the arc then, by [1, Example 3.1], SF2(X) is homeo-
morphic to [0, 1]2, and hence, SF2(X) is mutually aposyndetic .

To prove the converse, by [20, Theorem 1] and [11, Theorem 15], it is
sufficient to show that given two different points of the form (x, q) and (y, q)
(or (q, x) and (q, y)) in X2, there exist subcontinua A and B of F2(X) such
that f2((x, q)) ∈ intF2(X)(A), f2((y, q)) ∈ intF2(X)(B) and A ∩ B = ∅. To

this end, let (x, q) and (y, q) be two different points in X2. We denote A =
f2((x, q)) and B = f2((y, q)). Then q2X(A) and q2X(B) are two different points
in SF2(X). We take two subcontinua Γ and Λ of SF2(X) such that q2X(A) ∈
intSF2(X)(Γ), q

2
X(B) ∈ intSF2(X)(Λ) and Γ ∩ Λ = ∅. Let A = (q2X)−1(Γ) and

let B = (q2X)−1(Λ). Since q2X is a monotone map, by [21, 2.2, p.138], we obtain
that A and B are subcontinua of F2(X). Furthermore, A ∈ intF2(X)(A),
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B ∈ intF2(X)(B) and A∩B = ∅. Then, proceeding as in [11, Theorem 15] and
[20, Theorem 1], we can conclude that X is the arc.

As an easy consequence of [11, Lemma 9], we have the following:

Lemma 4.4. Let X be a continuum and let (a1, a2) and (b1, b2) be points
in X2. If A and B are subcontinua of X2 such that (a1, a2) ∈ intX2(A),
(b1, b2) ∈ intX2(B) and (A ∪ A∗) ∩ (B ∪ B∗) = ∅, then f2(A) and f2(B)
are subcontinua of F2(X) such that {a1, a2} ∈ intF2(X)(f2(A)), {b1, b2} ∈
intF2(X)(f2(B)) and f2(A) ∩ f2(B) = ∅.

Theorem 4.5. If X is an aposyndetic continuum, then F2(X) is mutaully
aposyndetic.

Proof. Let A,B ∈ F2(X) such that A 6= B. Without loss of generality,
suppose that there exists a point b1 ∈ B \A. Take a1 ∈ A. Then we have the
following cases:

Case (1). A ∈ F1(X). Let A1 be a subcontinuum of X such that
a1 ∈ intX(A1) and b1 6∈ A1. Thus, there exists an open subset U of X
such that b1 ∈ U ⊂ ClX(U) ⊂ X \ A1. We define C = A1 × A1 and K =
(ClX(U) ×X) ∪ (X × ClX(U)). It follows that C and K are subcontinua of
X2 such that (a1, a1) ∈ intX2(C), (b1, b2) ∈ intX2(K) (with b2 ∈ X such that
B = {b1, b2}) and (C ∪C∗)∩ (K ∪K∗) = ∅. Therefore, by Lemma 4.4, f2(C)
and f2(K) are two subcontinua of F2(X) such that A ∈ intF2(X)(f2(C)),
B ∈ intF2(X)(f2(K)) and f2(C) ∩ f2(C) = ∅.

Case (2). A ∈ F2(X) \ F1(X). Let A = {a1, a2}. Since b1 6∈ A,
there exist subcontinua A1 and A2 of X such that a1 ∈ intX(A1), a2 ∈
intX(A2), b1 6∈ A1 and b1 6∈ A2. Let U be an open subset of X such that
b1 ∈ U ⊂ ClX(U) ⊂ X \ (A1 ∪ A2). We define C = A1 × A2 and K =
(ClX(U) ×X) ∪ (X × ClX(U)). Then C and K are two subcontinua of X2

such that (a1, a2) ∈ intX2(C), (b1, b2) ∈ intX2(K) (with b2 ∈ X such that
B = {b1, b2}) and (C∪C∗)∩(K∪K∗) = ∅. Hence, by Lemma 4.4, we have that
f2(C) and f2(K) are subcontinua of F2(X) such that A ∈ intF2(X)(f2(C)),
B ∈ intF2(X)(f2(K)) and f2(C) ∩ f2(K) = ∅.

Theorem 4.6. If a continuumX is 2-aposyndetic and mutually aposynde-
tic, then SF2(X) is mutually aposyndetic.

Proof. Let A,B ∈ SF2(X) be such that A 6= B. Without loss of
generality, we suppose that A 6= F 2

X . Hence, there exists A ∈ F2(X) \ F1(X)
such that q2X(A) = A. We put A = {a1, a2}. We have the following cases:

Case (1). B 6= F 2
X . Let B ∈ F2(X) \ F1(X) be such that q2X(B) = B.

We assume that B = {b1, b2}. Suppose that a1 ∈ A \ B. Then, since X is
2-aposyndetic, there exist two subcontinua W1 and W2 of X such that b1 ∈
intX(W1), W1 ∩ {b2, a1} = ∅, b2 ∈ intX(W2) and W2 ∩ {b1, a1} = ∅. We fix a
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number ǫ > 0 such that ǫ < 1
2 min{d(b2,W1), d(a1,W1), d(b1,W2), d(a1,W2)}.

Applying Lemma 3.9, we obtain that

C = (W1 ×W2) \ (N(ǫ,W2)×N(ǫ,W1))

is a subcontinuum of X2 such that (b1, b2) ∈ intX2(C) and C ∩△X2 = ∅.
We define U = N(a1, ǫ). We note that ClX(U)∩ (N(ǫ,W1)∪N(ǫ,W2)) =

∅. Hence, ClX(U) ∩ (W1 ∪W2) = ∅. We define

Z = (ClX(U)×X) ∪ (X × ClX(U)).

It follows that Z is a subcontinuum of X2 such that (a1, a2) ∈ intX2(Z) and
Z = Z∗. Since (a1, a2) ∈ intX2(Z) ∩ (X2 \ △X2), there exists an open subset
V of X2 with (a1, a2) ∈ V ⊂ Z and V ⊂ X2 \△X2 . Moreover, it is easy to see
that (C∪C∗)∩ (Z ∪Z∗) = ∅. By Lemma 4.4, we obtain that f2(C) and f2(Z)
are subcontinua of F2(X) such that A ∈ intF2(X)(f2(Z)), B ∈ intF2(X)(f2(C))
and f2(C) ∩ f2(Z) = ∅. Furthermore, by [11, Lemma 9], f2(V ) is an open
subset of F2(X) with A ∈ f2(V ) ⊂ f2(Z) and f2(V ) ∩ F1(X) = ∅. Applying
Remark 2.1, we conclude that q2X(f2(Z)) and q2X(f2(C)) are two subcontinua
of SF2(X) such that A ∈ intSF2(X)(q

2
X(f2(Z))), B ∈ intSF2(X)(q

n
X(f2(C)))

and SF2(X)(q2X(f2(C)) ∩ SF2(X)(qnX(f2(Z))) = ∅.
Case (2). B = F 2

X . Since X is mutually aposyndetic, there exist two
subcontinua W1 and W2 of X such that a1 ∈ intX(W1), a2 ∈ intX(W2)
and W1 ∩ W2 = ∅. Since X is 2-aposyndetic, for each x ∈ X \ A, let Wx

be a subcontinuum of X such that x ∈ intX(Wx) and Wx ∩ A = ∅. Then
{intX(Wx) : x ∈ X\A}∪{intX(W1), intX(W2)} is an open cover ofX . Hence,
there exist x1, . . . , xm ∈ X \A such that X = ∪m

i=1intX(Wxi
) ∪ (intX(W1) ∪

intX(W2)).
We define a subset, W , of X2 as follows:

W = ∪m
i=1W

2
xi

∪ (W 2
1 ∪W 2

2 ).

Then W is a subcontinuum of X2 with △X2 ⊂ intX2(W ).
Let J = {i ∈ {1, . . . ,m} : Wxi

∩W1 6= ∅} and let K = {i ∈ {1, . . . ,m} :
Wxi

∩W2 6= ∅}. We note J 6= ∅ and K 6= ∅.
Let ǫ1 > 0 and ǫ2 > 0 be such that ǫ1 < 1

2 min{d(Wxi
, a1) : i ∈

{1, . . . ,m}} and ǫ2 < 1
2 min{d(Wxi

, a2) : i ∈ {1, . . . ,m}}. Let ǫ > 0 be such
that ǫ < min{ǫ1, ǫ2}. We define a subset, Z, of X as Z = ∪m

i=1Wxi
. We note

that a1 6∈ N(ǫ, Z). To see that a1 6∈ N(ǫ, Z), suppose that a1 ∈ N(ǫ, Z). Then
there exists z ∈ Z such that d(a1, z) < ǫ. Thus, there exists j ∈ {1, . . . ,m}
such that z ∈ Wxj

, so that ǫ < d(a1,Wxj
) ≤ d(a1, z) < ǫ, which is a

contradiction. Therefore, a1 6∈ N(ǫ, Z). Similarly, a2 6∈ N(ǫ, Z).
Let U1 = intX(W1)\N(ǫ, Z), and let U2 = intX(W2)\N(ǫ, Z). It follows

that U1 ×U2 is an open subset of X2 such that (a1, a2) ∈ U1 ×U2. We define

C = (W1 ×W2) \ (N(ǫ, Z)×N(ǫ, Z)).
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Since U1 × U2 ⊂ C, we obtain that (a1, a2) ∈ intX2(C). Moreover, we have
that C is a closed subset of X , and thus, C is compact.

Next, we prove that C is connected. Let (p, q) and (r, s) be two distinct
points in C. We are going to show that there is a connected subset in C
containing (p, q) and (r, s). Since (p, q), (r, s) ∈ C, it follows that (p, q), (r, s) ∈
W1 ×W2 and (p, q), (r, s) 6∈ N(ǫ, Z)× N(ǫ, Z). Hence, p, r ∈ W1, q, s ∈ W2,
[p 6∈ N(ǫ, Z) or q 6∈ N(ǫ, Z)] and [r 6∈ N(ǫ, Z) or s 6∈ N(ǫ, Z)]. Consequently,
we have the following possibilities:

(a) p 6∈ N(ǫ, Z) and r 6∈ N(ǫ, Z). In this case, it follows that {p}×W2 and
{r} ×W2 are two connected subsets of C such that (p, q), (p, a2) ∈ {p} ×W2

and (r, s), (r, a2) ∈ {r} × W2. Moreover, since a2 6∈ N(ǫ, Z), we have that
W1 × {a2} is a connected subset of C such that (p, a2), (r, a2) ∈ W1 × {a2}.
We define D = [{p}×W2]∪ [{r}×W2]∪ [W1 ×{a2}]. Then D is a connected
subset of C containing (p, q) and (r, s).

(b) p 6∈ N(ǫ, Z) and s 6∈ N(ǫ, Z). It follows that {p}×W2 andW1×{s} are
two connected subsets of C such that (p, q), (p, s) ∈ {p}×W2 and (p, s), (r, s) ∈
W1 × {s}. We define D = [{p} ×W2] ∪ [W1 × {s}]. Then D is a connected
subset of C containing (p, q) and (r, s).

(c) q 6∈ N(ǫ, A1) and r 6∈ N(ǫ, A2). This case is similar to (b), with
D = [W1 × {q}] ∪ [{r} ×W2].

(d) q 6∈ N(ǫ, A1) and s 6∈ N(ǫ, A1).
This case is similar to (a), with D = [W1×{q}]∪ [W1×{s}]∪ [{a1}×W2].
By (a)–(d), we conclude that C is a connected subset ofX2. Consequently,

C is a subcontinuum of X2 such that (a1, a2) ∈ intX2(C).
Next we prove that C ∩ W = ∅. Suppose that (c1, c2) ∈ C ∩ W . This

implies that (c1, c2) ∈ W1×W2, (c1, c2) 6∈ N(ǫ, Z)×N(ǫ, Z) and (c1, c2) ∈ W .
Since W = ∪m

i=1W
2
xi

∪ (W 2
1 ∪ W 2

2 ), we have that either (c1, c2) ∈ W 2
1 or

(c1, c2) ∈ W 2
2 or there exists i ∈ {1, . . . , r} such that (c1, c2) ∈ W 2

xi
. If

(c1, c2) ∈ W 2
1 , then c2 ∈ W1 ∩W2, which is a contradiction. If (c1, c2) ∈ W 2

2 ,
then c1 ∈ W1 ∩ W2, which is a contradiction. If there exists i ∈ {1, . . . , r}
such that (c1, c2) ∈ W 2

xi
, then c1, c2 ∈ Wxi

, thus, c1, c2 ∈ Z, this implies that
(c1, c2) ∈ N(ǫ, Z)×N(ǫ, Z), which is a contradiction. Therefore, C ∩W = ∅.

Similarly, we obtain that C∗ ∩ W = ∅. Moreover, since W = W ∗, it
follows that (C ∪ C∗) ∩ (W ∪W ∗) = ∅.

By Lemma 4.4, we have that f2(C) and f2(W ) are two subcontinua
of F2(X) such that A ∈ intF2(X)(f2(C)) ⊂ F2(X) \ F1(X), F1(X) ⊂
intF2(X)(f2(W )) and f2(C) ∩ f2(W ) = ∅. Hence, applying Remark 2.1, we

conclude that q2X(f2(C)) and q2X(f2(W )) are two subcontinua of SF2(X) such
that A ∈ intSF2(X)(q

2
X(f2(C))), B ∈ intSF2(X)(q

2
X(f2(W ))) and q2X(f2(C)) ∩

q2X(f2(W )) = ∅.
Finally, by Cases (1) and (2), we conclude that SF2(X) is mutually

aposyndetic.
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Theorem 4.7. If X is a decomposable continuum, then SF2(X) is not
strictly nonmutually aposyndetic.

Proof. Let X be a decomposable continuum. Let A1 and A2 be proper
subcontinua of X such that X = A1 ∪ A2. Hence, there exist two points
x1 ∈ X\A2 and x2 ∈ X\A1. We note that x1 ∈ intX(A1) and x2 ∈ intX(A2).
Fix a number ǫ > 0 such that ǫ < 1

2 min{d(x1, A2), d(x2, A1)}. Consequently,
by Lemma 3.9, the set

C = (A1 ×A2) \ (N(ǫ, A2)×N(ǫ, A1))

is a subcontinuum of X2 such that (x1, x2) ∈ intX2(C) and C ∩△X2 = ∅.
We take y ∈ N(A1, ǫ) ∩ (X \ A1). Since N(A1, ǫ) ∩ (X \ A1) is an open

subset of X , there exists an open subset U of X such that y ∈ U ⊂ ClX(U) ⊂
N(A1, ǫ) ∩ (X \A1). We define

K = (ClX(U)×A2) ∪ (A2 × ClX(U)).

It follows that K is a subcontinuum of X2 such that intX2(K) 6= ∅.
Note that (C ∪ C∗) ∩ (K ∪ K∗) = ∅. By Lemma 4.4, we have that

f2(C) and f2(K) are subcontinua of F2(X) such that intF2(X)(f2(C)) 6= ∅,
intF2(X)(f2(K)) 6= ∅ and f2(C) ∩ f2(K) = ∅.

Since C ∩ △X2 = ∅, it follows that f2(C) ⊂ F2(X) \ F1(X). Applying
Remark 2.1 we obtain that q2X(f2(C)) is a subcontinuum of SF2(X) such that
intSF2(X)(q

2
X(f2(C))) 6= ∅.

On the other hand, let z ∈ U \ {y}. Since (y, z) ∈ U × U ⊂ K, {y, z} ∈
f2(U × U) ⊂ f2(K). By [11, Lemma 9], we have that f2(U × U) is an open
subset of F2(X). Let U be an open subset of F2(X) such that {y, z} ∈ U ⊂
f2(U ×U)∩ (F2(X) \F1(X)). Using Remark 2.1 we obtain that q2X(f2(U)) is
an open subset of SF2(X) with q2X({y, z}) ∈ q2X(f2(U) ⊂ q2X(f2(K)). Thus,
q2X(f2(K)) is a subcontinuum of SF2(X) such that intSF2(X)(q

2
X(f2(K))) 6= ∅.

Finally, since f2(C)∩ f2(K) = ∅ and f2(C) ⊂ F2(X) \F1(X), by Remark
2.1, we conclude that q2X(f2(C)) ∩ q2X(f2(K)) = ∅. This prove that SF2(X)
is not strictly nonmutually aposyndetic.

Theorem 4.8. Let X a continuum with zero span. Then X is indecom-
posable if and only if SF2(X) is strictly nonmutually aposyndetic.

Proof. Suppose that X is indecomposable. Let A be a subcontinuum
of SF2(X) such that intSF2(X)(A) 6= ∅. We put B = (q2X)−1(A). Since q2X is
a monotone map, by [21, 2.2, p.138], we obtain that B is a subcontinuum of
F2(X), furthermore, we have that intF2(X)(B) 6= ∅. We take a component W

of (f2)
−1(B). Applying [11, Lemma 14] it follows that intX2(W ) 6= ∅. Since

π1 and π2 are open maps, we have that π1(W ) and π2(W ) are subcontinua
of X such that intX(π1(W )) 6= ∅ and intX(π2(W )) 6= ∅. Since X is
indecomposable, by [14, Corollary 1.7.21], it follows that π1(W ) = X and
π2(W ) = X . Since X is a continuum with zero span, we conclude that
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W ∩△X2 6= ∅. This implies that B∩F1(X) 6= ∅. Consequently, F 2
X ∈ A. This

prove that, SF2(X) is strictly nonmutually aposyndetic.
Applying Theorem 4.7 we obtain that if SF2(X) is strictly nonmutually

aposyndetic, then X is indecomposable.

It is known, for instance [10, p. 210], that if X is a chainable continuum
then X is a continuum with zero span. Hence, by Theorem 4.8, we have the
following corollary.

Corollary 4.9. Let X a chainable continuum. Then X is indecompo-
sable if and only if SF2(X) is strictly nonmutually aposyndetic.
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[13] S. Maćıas, On the n-fold hyperspace suspension of continua, Topology Appl. 138

(2004), 125–138.
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