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APOSYNDETIC PROPERTIES OF THE n—FOLD
SYMMETRIC PRODUCT SUSPENSION OF A CONTINUUM

FRANCO BARRAGAN

Universidad Tecnoldgica de la Mixteca, Mexico

ABSTRACT. In this paper the n—fold symmetric product suspension of
a continuum is investigated with respect to the properties of aposyndesis
such as: aposyndesis, finite aposyndesis, mutual aposyndesis and strictly
nonmutual aposyndesis.

1. INTRODUCTION

In 1941 F. B. Jones introduced the notion of aposyndesis ([8]). In [6,
Theorem 1], [11, Theorem 4], [12, Corollary 5.2], [13, Corollary 4.3], [15,
Corollary 2.36] and [7, Theorem 2.4] we can find some results of aposyndesis
in hyperspaces of continua. Given a continuum X and an integer n > 1, in
1931 K. Borsuk and S. Ulam ([4]) defined the n—fold symmetric product of
X, Fo(X) = {A C X : A has at most n points}. For each integer n > 2,
in the year 2009 we defined the n—fold symmetric product suspension of X
([1]), denoted by SF,(X), as the quotient space F,(X)/Fi(X). In [2] we
investigated the induced maps between these spaces.

In 1997 S. Macias showed in [11, Theorem 4], that F,,(X) is colocally
connected (in particular aposyndetic), for every n > 2. In [11, Theorem
8] he also proved that F,(X) is countable closed aposyndetic, for every
n > 2. In the present paper, we prove that SF,(X) is colocally connected
(in particular aposyndetic), for every n > 3. Also we prove that F,(X)
is finitely aposyndetic, for every m > 3. Furthermore, we show a class
of continua for which their second symmetric product suspensions are not
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aposyndetic. Moreover, we prove that if a continuum is aposyndetic, then its
second symmetric product suspension is aposyndetic.

On the other hand, in 1999 J. M. Martinez-Motejano showed in [16,
Theorem 1] that F,(X) is mutually aposyndetic, for every n > 3. In [11,
Theorem 15] S. Macias proved that if X is a chainable continuum such
that its second symmetric product is mutually aposyndetic, then X is the
arc. In this paper we prove that SF,(X) is mutually aposyndetic, for every
n > 3. Also we show that if a continuum is aposyndetic, then its second
symmetric product is mutually aposyndetic. Furthermore, we proved that
if a continuum is 2-aposyndetic and mutually aposyndetic, then its second
symmetric product suspension is mutually aposyndetic. Moreover, we verify
that if X is a chainable continuum such that its second symmetric product
suspension is mutually aposyndetic, then X is the arc.

In [11, Theorem 16] S. Macias proved that a chainable continuum
is indecomposable if and only if its second symmetric product is strictly
nonmutually aposyndetic. We show that a continuum with span zero is
indecomposable if and only if its second symmetric product suspension is
strictly nonmutually aposyndetic.

2. DEFINITIONS

The symbol N will denote the set of positive integers. A continuum is a
nonempty compact, connected metric space. A subcontinuum is a continuum
contained in a space X. If X is a continuum, then given A C X and € > 0,
the open ball around A of radius € is denoted by N (e, A), the closure of A in
X by Clx(A), the interior of A in X is denoted by intx (A) and the boundary
of A in X is denoted by Bd(A). If A = {a}, we let N(a,e€) denote the open
ball around a of radius €. An arc is any space which is homeomorphic to
the closed interval [0, 1]. A ray is a space homeomorphic to [0,00). An FElsa
continuum, denoted E-continuum, is a compactification of the ray with an
arc as the remainder. A map means a continuous function. An onto map
f X — Y between continua is said to be:

e monotone provided that f~1(y) is connected for each y € Y;
e open provided that if U is any open subset of X, then f(U) is an open
subset of Y.

A continuum X is said to be colocally connected, provided that each point
of it has a local base of open sets whose complements are connected. A
continuum X is said to be aposyndetic at x with respect to y, provided that
there exists a subcontinuum W of X such that x € intx (W) C W C X\ {y},
it is said to be aposyndetic at x, if it is aposyndetic at x with respect to
any point of X \ {z}, and it is said to be aposyndetic, if it is aposyndetic at
each of its points. A continuum X is 2-aposyndetic at x if for every pair of
points p and ¢ lying in X \ {z}, there exists a subcontinuum W of X such
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that © € intx(W) C W C X \ {p,q}. A continuum is 2-aposyndetic if it
is 2-aposyndetic at every one of its points. Let F be a collection of finite
subsets of a continuum X. Then X is said to be finitely aposyndetic if for
each x € X and each F' € F such that x ¢ F, there exists a subcontinuum
W of X such that z € intx (W) and WNF = 0. A continuum X is mutually
aposyndetic, provided that if x and y are two distinct points of X then there
exist two disjoint subcontinua W, and W, of X such that = € intx(W,) and
y € intx(Wy). A continuum X is said to be strictly nonmutually aposyndetic
if each pair of subcontinua of X which have nonempty interior intersect. A
point z of a continuum X is called a cut point of X, provided that X \ {z}
is not connected. A point x of a continuum X is called a not-cut point of X,
provided that X \ {z} is connected.

A chain in a continuum X is a finite collection {Uy, Us, ..., Uy} of open
subsets of X such that U; N U; # 0 if and only if |[i — j| < 1 for each i,j €
{1,2,...,m}. The elements of a chain are called links. For € > 0 an e-chain is
a chain in which each link has diameter less than €. A continuum is chainable
if for each € > 0, it can be covered by an e-chain. A continuum is decomposable
provided that it can be written as the union of two of its proper subcontinua.
A continuum is indecomposable if it is not decomposable.

Given a continuum X and n € N, the product of X with itself n times
will be denoted by X™. The symbol Ax2 will denote the diagonal of X?2,
that is, Ay = {(z,z) € X? : z € X}. If W is a subset of X2, we let
W* denote the subset {(y,z) € X? : (x,y) € W} of X2, Denote the first
and second projections of X2 onto X by 7 and my, respectively. The span
of a continuum (X,d) (respectively, the semispan of X), denote by o(X)
(respectively, o¢(X)), is the least upper bound of the set of all numbers € > 0
for which there exists a subcontinuum Z of X? such that m(2) = ma(Z)
(respectively, mo(Z) C m1(Z)) and d(z,y) > € for each (z,y) € Z.

Given a continuum X and n € N, the n-fold symmetric product of X,
denoted by F,,(X), is the hyperspace:

Fo.(X)={A C X : A has at most n points}
topologized with the Hausdorff metric, which is defined as follows:
H(A,B) =inf{e >0: AC N(¢,B) and B C N(e¢, A)}.

On the other hand, F,,(X) can be topologized with the topology defined as
follows: given a finite collection, Uy, ..., Uy, of open sets of X, (U1, ..., Upn)n,
denotes the following subset of F,(X):

{AEFn(X):AC UUk andAﬂUk%@foreachke{l,...,m}}.

k=1
It is known that the family of all subset of F,,(X) of the form (U, ...,Un)n,
as defined above, form a basis for a topology for F,,(X) (see [18, 0.11]) called
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the Vietoris topology, and that the Vietoris topology and the topology induced
by the Hausdorff metric coincide [18, 0.13].

Given a continuum X and n € N with n > 2, we defined (in [1]) the n-fold
symmetric product suspension of the continuum X, denoted by SF,(X), as
the quotient space:

SF,(X)=F,(X)/F1(X),
with the quotient topology.

Give a continuum X and an integer n > 2, ¢% : Fj,(X) — SF,(X) denotes
the quotient map. Also, let F'} denotes the point ¢% (F1(X)). We denote by
fa: X2 = F3(X) the map given by fao(x,y) = {z,y}, for each (z,y) € X2

REMARK 2.1. Let X be a continuum and let n > 2 be an integer. Then
SF,(X)\ {F%} is homeomorphic to F,,(X) \ F1(X).

3. APOSYNDESIS

THEOREM 3.1. Let X be a continuum and let n > 2 be an integer. Then
(1) and (2) below are true.
(1) SF,(X) is aposyndetic at F}.
(2) If A e SF,(X)\ {F%}, then SF,(X) is aposyndetic at A respect to
any point of SF,(X)\ {F%,A}.

PROOF. To prove (1), let B € SF,(X)\ {F%}. Let I' and A be open
subsets of SF,(X) such that F{ € I', B€ Aand 'NA = (. Let B €
F,(X)\Fi(X) be such that ¢% (B) = B. Hence, (¢%) "' (A) is an open subset of
F,(X) such that B € (¢%)~'(A) C F,(X)\ Fi(X). By [11, Theorem 4], there
exists an open subset U of F,,(X) such that B € U C (¢%)~*(A) and F,(X)\U
is connected. It follows that B € ¢% (U) C A and ¢% (F,,(X) \U) is connected.
Since U N F1(X) = 0, by Remark 2.1, we have that ¢% (i) is an open subset
of SF(X) and g (Fa(X) \U) = SFa(X) \ %), Then SF,(X) \ g% ()
is a subcontinuum of SF,(X). We note that F¢ € I' C SF,(X) \ ¢%U),
thus Fg € intgp,(x)(SF.(X) \ ¢%(U)). Therefore, SF,(X) \ ¢%(U) is a
subcontinuum of SF,(X) such that Fg € intgp,(x)(SF.(X) \ ¢%U)) C
SF,(X)\ ¢%(U) C SF,(X)\ {B}. Hence, SF,(X) is aposyndetic at F¥.

A similar argument can be used to verify (2). O

THEOREM 3.2. Let X be a continuum and let n > 3 be an integer. Then
SF,(X) is aposyndetic.

ProOOF. By Theorem 3.1, it is sufficient to prove that, for each element
A e SF,(X)\ {F%}, SF,(X) is aposyndetic at A with respect to F¥. Let
A e SF,(X)\ {Fg}. We take A € F,(X) \ Fi1(X) such that ¢%(A) =
A. Fix points p,q € A with p # ¢q. Let U and V be open subsets of X
such that p € U, q € V, Clx(U)NCix(V) = 0 and A Cc UUV. We
define C = <CZX(U)7 CZX(V)a X>nU<Bd(U)7 Bd(V), X>nU <Bd(U)a {p}a X>nU
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{{p},{q}, X)n. By [16, Lemma 2], C is a subcontinuum of F,(X). Since
A e (U, V), CC, we obtain that A € intp, (x)(C) C C. Moreover, we note
that CNFy(X) = (0. Hence, by Remark 2.1, ¢% (C) is a subcotinuum of SF,, (X)
such that A € intgp, (x)(q%(C)) C ¢%(C) C SF,(X)\ {F%}. Consequently,
SF,(X) is aposyndetic at A with respect to F. O

A continuum X is said to be unicoherent provided that whenever A and
B are proper subcontinua of X with X = AU B, then AN B is connected. We
proved in [1, Theorem 4.1] that for each integer n > 3, SF,,(X) is unicoherent.
Moreover, it is known that a unicoherent aposyndetic continuum is finitely
aposyndetic ([3]). Therefore, by Theorem 3.2 and [1, Theorem 4.1], we have
the following corollary.

COROLLARY 3.3. Let X be a continuum and let n > 3 be an integer. Then
SF,(X) is finitely aposyndetic.

LEMMA 3.4. Let X be a continuum and let n > 2 be an integer. Then
F.(X)\ Fi(X) is connected.

PrOOF. We consider two cases.
(1) First we consider n = 2. Respect to X, we have two possibilities.

(1.1) The continuum X is the arc. Then F5(X) \ F1(X) is connected.
(1.2) The continuum X is not the arc. Then, by [9, Theorem 2], it follows
that F5(X)\ F1(X) is connected.

(2) Now we consider n > 3. Let A, B € F,,(X)\ F1(X) be such that A # B.
Without loss of generality, suppose that there exists a point b € B\ A. Take
¢ € B\{b}. Fix points ,y € A with 2 # y. Let U and V be open subsets of X
such that x € U, y € V, b ¢ Clx(U), Clx(U)NClx(V)=0and ACUUV.
Let C = (Clx(U),Clx(V),X), U (Bd(U),Bd(V),X), U(Bd(U),{b}, X)n U
({b},{c}, X)n. By [16, Lemma 2], C is connected. Furthermore, C C F,,(X) \
Fi(X),Ae (Clx(U),Cix(V),X), and B € ({b},{c}, X)n. Therefore, C is a
connected subset of F,,(X) \ F1(X) such that A, B € C. O

THEOREM 3.5. Let X be a continuum and let n > 2 be an integer. Then
each point of SF,(X) is a not-cut point of SF,(X).

PRrROOF. Let A € SF,(X). We have the following cases.

(1) Suppose that A = F%. By Lemma 3.4, we have that F,,(X) \ Fi(X) is
a connected subset of F,,(X). Then, by Remark 2.1, ¢%% (F,,(X) \ Fi(X)) =
SF.(X)\ {F%} is a connected subset of SF,,(X). This implies that A is a
not-cut point of SF, (X).

(2) Suppose that A € SF,(X)\{F%}. We take A € F,,(X)\ F1(X) such that
q%(A) = A. By [11, Corollary 5], it follows that F,,(X)\ {A} is a connected
subset of F,(X). Hence, ¢%(F,(X)\ {4}) = SF,(X) \ {A} is a connected
subset of SF,,(X). Consequently, we conclude that A is a not-cut point of
SF,(X). O
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It is known that if each point of X is a not-cut point of X, then the
continuum X is colocally connected if and only if X is aposyndetic ([21, 4.14,
p. 50]). Hence, by Theorems 3.2 and 3.5, we have the following:

COROLLARY 3.6. Let X be a continuum and let n > 3 be an integer. Then
SF,(X) is colocally connected.

LEMMA 3.7. Let X be a continuum. Then the following are equivalent:

(1) for each point (x1,72) € X2\ Axz, there exists a subcontinuum C of
X? such that (z1,x2) € intx2(C) and C N Axz =10,

(2) for each element A € SFy(X) \ {F2}, SFy(X) is aposyndetic at A
with respect to F%.

PROOF. We prove that (1) implies (2). Let A € SF»(X)\{F%}. We take
A€ Fy(X) \ F1(X) such that ¢% (A) = A. Suppose that A = {ay,az2}. Since
(a1,a2) € X%\ Axz, by (1), there exists a subcontinuum C of X2 such that
(a1,az) € intx2(C) and C' N Ayz = (). Thus, since the map f2 : X% — F5(X)
given by fa((z1,22)) = {z1, 22} is an open map ([11, Lemma 9]), we obtain
that fo((a1,a2)) = A € intp,(x)(f2(C)). Furthermore, since C N Ax2 = 0,
it follows that fo(C) N F1(X) = (. Hence, by Remark 2.1, ¢%(f2(C)) is a
subcontinuum of SF5(X) such that A € intgp,(x)(¢% (f2(C))) C ¢k (f2(C)) C
SFy(X)\ {F%}. This proves that SF(X) is aposyndetic at A with respect
to Fx.

Next we prove that (2) implies (1). Let (a1,as) € X2\ Ax2. We define
A = {a1,az}. Then fa((ai,a2)) = A € Fp(X)\ Fi(X). Let A = ¢%(4).
Thus, A € SFy(X)\{F%}. By (2), there exists a subcontinuum © of SF»(X)
such that A € intgp,(x)(©) C © C SF(X)\ {F%}. Define C = (¢%)(0).
Since ¢% is a monotone map, and by [21, 2.2, p. 138], C is a subcontinuum of
F5(X), also A € intp,(x)(C). Since Fy ¢ ©, we obtain that C N Fy(X) = 0.
This implies that f5 '(C) N Ax2 = 0.

On the other hand, by [11, Lemma 12], f, *(C) has at most two
components. Let f{l(C) = (1 Uy, where Cy and (5 are the components of
f51(C). Hence, C1NAx2 =0 and CaNAx2 = (. Since (a1,a2) € f5 *(C), we
suppose without loss of generality, that (a1,az2) € C1. Since A € intp,x)(C),
we obtain that (ay,az) € intx2(f; '(C)). Consequently, by [14, Lemma 1.6.2],
we have that (a1,az2) € intx2(C1). Therefore, C; is a subcontinuum of X?
such that (a1,az2) € intx2(C1) and C1 N Axz = 0. O

THEOREM 3.8. If X is an E-continuum, then SF>(X) is not aposyndetic.

PROOF. Let X = JUS, where J is the remainder and S is homeomorphic
to [0,00). Let (a1, as) € J x J be such that (a1,a2) € X2\ Ax2. Suppose that
there exists a subcontinuum C of X? such that (a1,az) € intx2(C). Since the
map m : X2 — X, given by 7 (x1,22) = 71, is an open map, it follows that
ay € intx(m(C)). Hence, since 71 (C) is a subcontinuum of X, we have that
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J C m(C). With similar arguments, we obtain that J C m2(C'). Therefore,
we have that either m (C) C m2(C) or m2(C) C 1 (C).

On the other hand, by [17, Lemma 6, p. 126], X is a chainable continuum.
Thus, by [10, p. 210], it follows that X has zero span, and by [5, Theorem 6],
X has zero semispan. This implies that C N Axz2 # §). Then, by Lemma 3.7,
there exists A € SFy(X) \ {F%} such that SF»(X) is not aposyndetic at A
with respect to F' )2( Consequently, SF»(X) is not aposyndetic. O

LEMMA 3.9. Let X be a continuum, let x1,x2 € X with x1 # x2 and let Ay
and Ay be subcontinua of X such that x1 € intx (A1), x2 € intx(As), T2 &€ Ay
and 1 € Ay. Then, for each € > 0 with € < + min{d(z1, A2), d(x2, A1)},

C = (A1 x A3) \ (N (e, A2) x N(e, A1))
is a subcontinuum of X? such that (z1,72) € intx2(C) and C N Axe = 0.

PROOF. Let € > 0 be such that € < 1 min{d(z1, A3),d(z2, A1)}. Note
that C is a closed subset of X2, and thus, C is compact. To prove that C is
connected, let (p,q) and (r, s) be two distinct points in C, and we will check
that there exists a connected subset of C' containing the points (p,q) and
(r,s). Since (p,q), (r,s) € C, it follows that p,r € A; and ¢, s € Az. In order
to prove that C' is connected, we consider the following cases:

CASE (1). p & N(e,A2) and r € N (e, Az). For this case, it follows that
{p} x Az and {r} x Ay are connected subsets of C such that (p,q), (p,z2) €
{p} x Az and (r,s), (r,z2) € {r} x Ay. Furthermore, since x2 & N (¢, A1), we
obtain that A; x {x2} is a connected subset of C' such that (p,z2), (r,z3) €
Ay x {z2}. We define K = [{p} x A2] U[{r} x A2]U[A; x {z2}]. Then, K is
a connected subset of C' containing the points (p, ¢) and (r, s).

CASE (2). p &€ N(e,A2) and s € N(e, A1). We note that {p} x Ay and
A; x {s} are connected subsets of C' such that (p,q),(p,s) € {p} x Az and
(p,s),(r,s) € A1 x {s}. Let K = [{p} x A3]U[A; x {s}]. It follows that K is
a connected subset of C such that (p, q), (r,s) € K.

CASE (3). ¢ & N(e, A7) and r € N(e, Ag). Observe that A; x {¢} and
{r} x Ay are connected subsets of C' such that (p,q),(r,q) € A1 x {q} and
(r,8),(r,q) € {r} x Ay. We define K = [A; x {q}]U [{r} x A2]. Hence, K is
a connected subset of C' containing the points (p, ¢) and (r, s).

CASE (4). ¢ € N(e, A1) and s € N(e,A;). We obtain that A; x {q}
and A; x {s} are connected subsets of C' such that (p,q), (z1,q) € A1 x {q}
and (r,s),(x1,s) € A1 x {s}. Since z1 € N(e, A2), we have that {z1} x Az
is a connected subset of C such that (z1,q), (x1,5) € {1} X As. We define
K = [A1 x {q}]U[A1 x {s}]U[{z1} x Ag]. Tt follows that K is a connected
subset of C' containing the points (p, q) and (r, s).

By the Cases (1)—(4), we conclude that C is connected, and thus, C is a
subcontinuum of X2,
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On the other hand, we note that z1 € intx (A1) \ Clx(N(e, A2)) and
x2 € intx(As) \ Clx (N (e, A1)). Hence, (21, x2) € intx2(C). Furthermore, it
easy to see that C'N Axz = 0. 0

THEOREM 3.10. If X is an aposyndetic continuum, then SFy(X) is
aposyndetic.

PRrOOF. By Theorem 3.1 and Lemma 3.7, it is sufficient to show that for
each point (1,72) € X2\ Axe, there exists a subcontinuum C of X2 such
that (r1,72) € intx2(C) and C N Axz = 0. Let (z1,72) € X2\ Ax2. Since
X is an aposyndetic continuum, there exist two subcontinua A; and As of
X such that z1 € intx (A1), x2 € intx(Aa), xo & A1 and 1 & As. We take
e > 0 such that e < £ min{d(z1, A2),d(22, 41)}. Then, by Lemma 3.9, the
subset

C = (A1 x A3) \ (N(e, A2) x N (e, A1)
is a subcontinuum of X? such that (z1,22) € intx2(C) and CNAx2 =0. 0O

4. MUTUAL APOSYNDESIS

LEMMA 4.1. Let X be a continuum, let n > 2 be an integer, and let U
and V' be nonempty, proper, open subsets of X such that U C Clx(U) C V.
IfK = (Clx(V))n U(X \U)n, then K is a subcontinuum of F,(X) such that
Fl(X) C z‘ntFn(X)(lC).

PROOF. It is clear that K is a closed subset of F,,(X), and thus K is
compact. Furthermore, since X = VU (X \ Cix(U)), it follows that Fy(X) C
intpn(X)(lC).

Next we prove that K is connected. Since Fj(X) is a connected subset of
IC, it is sufficient to show that for each point A € IC, there exists a connected
subset £ of K such that A € £ and €N Fy(X) # 0.

Let A € K. Suppose that A € (Clix(V)),. We assume that A =
{a1,...,ar} with & < n. For each i € {1,...,k}, let C; be the component
of Clx (V) such that a; € C;. By [19, Theorem 5.4], for each i € {1,...,k},
it follows that C; N Bd(V) # (). Consequently, for each i € {1,...,k}, let
b, € C; N Bd(V) We define C = <Cl, Ceey Ck>n and B = {bl, .. .,bk}. Then,
by [16, Lemma 1], C is a connected set. Moreover, it is clear that C C K and
A,BeC.

Foreachi € {1,...,k—1}, we define D; = {{b1,...,0;JUK : K € F1(X)}.

Note that, for each i € {1,...,k — 1}, D; is a continuum. Furthermore, since
foreachi € {1,...,k}, b; € Clx(V)N(X\U) and X = Clx (V)U(X\U), we
obtain that Dy, ..., Di_1 are subcontinua of K. Moreover, we have that D; N

Diy1 # 0, {b1} € Dy and B € Dy_;. Hence, D = Ufz_lll)i is a subcontinuum
of K such that B,{b1} € D. We define &€ = CUD. It follows that £ is a
subcontinuum of K such that A € £ and €N F1(X) # 0.

Similiarly, we can show the case A € (X \ U)y. O
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THEOREM 4.2. Let X be a continuum and let n > 3 be an integer. Then
SF,(X) is mutually aposyndetic.

ProoF. Let A,B € SF,(X) be such that A # B. We assume, without
loss of generality, that A # F%. We take A € F,(X) \ F1(X) such that
¢%(A) = A, and let B € F,(X) such that ¢%(B) = B. Hence, we have the
following cases:

CASE (1). A ¢ B. For this case, let a € A\ B and let b € A with
a #b. We define By = BU{b}. Let U, V, Uy and V; be proper open
subsets of X such that B; C U C Cix(U) c Uy C Clx(U;) Cc V1 C X,
a € V and Clx (V1) N Clx(V) = . We define the subsets, H and K,
of F,(X) as follows: H = (Clx(V),Clx(U), X)n U (Bd(V), BA(U), X), U
(Bd(V),{b}, X)n U {{a},{b}, X)n and K = (Clx (V1))n U (X \ U1)n. By [16,
Lemma 2], # is a subcontinuum of F,(X). Furthermore, A € intp, x)(H)
and H N F1(X) = 0. Applying Remark 2.1, we obtain that ¢%(H) is a
subcontinuum of SF,(X) such that A € intgp, (x)(¢%(H)). On the other
hand, by Lemma 4.1, we have that K is a subcontinuum of F),(X) such that
Fi(X) Cintp,(x)(K). Also, B € intp, x)(K). By Remark 2.1, it follows that
q% (K) is a subcontinuum of SF,,(X) such that B, Fg € intgp, (x)(¢%(K)).
Since HN K = 0 and Fy(X) C K, we obtain that ¢% (H) N ¢'%(K) = 0. This
proves Case (1).

CASE (2). A C B. Since A € F,(X) \ Fi(X), it follows that B €
Fo.(X)\ Fi(X). Since A # B, we obtain that B ¢ A. Let b € B\ A. Since
B e F,(X)\ Fi(X), there exists a point @ € B\ {b}. Now, we proceed as in
Case (1).

Finally, by Cases (1) and (2), we conclude that SF,(X) is mutually
aposyndetic. O

THEOREM 4.3. Let X a chainable continuum. Then SF>(X) is mutually
aposyndetic if and only if X is the arc.

Proor. If X is the arc then, by [1, Example 3.1], SF»(X) is homeo-
morphic to [0,1]%, and hence, SFy(X) is mutually aposyndetic .

To prove the converse, by [20, Theorem 1] and [11, Theorem 15], it is
sufficient to show that given two different points of the form (z,q) and (y, q)
(or (¢,x) and (q,y)) in X2, there exist subcontinua A and B of F5(X) such
that fo((z,q)) € intp,x)(A), f2((y,q)) € intpx)(B) and ANB = (. To
this end, let (x,q) and (y,q) be two different points in X2. We denote A =
f2((z,q)) and B = f2((y, q)). Then ¢%(A) and g% (B) are two different points
in SF3(X). We take two subcontinua I' and A of SF5(X) such that ¢%(A) €
intsp,(x)(T), q%(B) € intsp,x)(A) and TNA =10. Let A= (¢%)~1(T) and
let B = (¢%)~1(A). Since g% is a monotone map, by [21, 2.2, p.138], we obtain
that A and B are subcontinua of F3(X). Furthermore, A € intp,(x)(A),
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B € intp,(x)(B) and ANB = (). Then, proceeding as in [11, Theorem 15] and
[20, Theorem 1], we can conclude that X is the arc. O

As an easy consequence of [11, Lemma 9], we have the following;:

LEMMA 4.4. Let X be a continuum and let (a1, a2) and (b1, bs) be points
in X2 If A and B are subcontinua of X? such that (a1,az) € intx2(A),
(b1,b2) € intx2(B) and (AU A*) N (B U B*) = 0, then f2(A) and fo(B)
are subcontinua of Fy(X) such that {a1,a2} € intp,(x)(f2(A)), {b1,b2} €

THEOREM 4.5. If X is an aposyndetic continuum, then F»(X) is mutaully
aposyndetic.

PROOF. Let A, B € F»(X) such that A # B. Without loss of generality,
suppose that there exists a point by € B\ A. Take a; € A. Then we have the
following cases:

CAseE (1). A € Fi(X). Let A; be a subcontinuum of X such that
a1 € intx(A;) and by € A;. Thus, there exists an open subset U of X
such that by € U C Clx(U) C X \ A;. We define C = A; x A; and K =
(Clx(U) x X)U (X x Clx(U)). It follows that C' and K are subcontinua of
X2 such that (a1, a1) € intx2(C), (b1,b2) € intx2(K) (with by € X such that
B = {b1,b2}) and (CUC*)N (K UK™*) = (). Therefore, by Lemma 4.4, f>(C)
and fo(K) are two subcontinua of F»(X) such that A € intp,(x)(f2(C)),
Be intF2(X)(f2(K)) and f2(C) N fo(C) = 0.

CASE (2). A € Fo(X)\ Fi(X). Let A = {a1,az2}. Since by ¢ A,
there exist subcontinua A; and As of X such that a1 € intx(A1), az €
intx(Asz), b1 € A1 and by & Ay. Let U be an open subset of X such that
by € U C Clx(U) € X\ (A1 U Ay). We define C = Ay x Ay and K =
(Clx(U) x X)U (X x Clx(U)). Then C and K are two subcontinua of X2
such that (a1,a2) € intx2(C), (b1,b2) € intx2(K) (with by € X such that
B = {b1,b2}) and (CUC*)N(KUK™) = (). Hence, by Lemma 4.4, we have that
f2(C) and fo(K) are subcontinua of F5(X) such that A € intp,(x)(f2(C)),
Be zntFQ(X)(fQ(K)) and fQ(C) N fQ(K) = 0. O

THEOREM 4.6. If a continuum X is 2-aposyndetic and mutually aposynde-
tic, then SF5(X) is mutually aposyndetic.

ProOF. Let A,B € SF5(X) be such that A # B. Without loss of
generality, we suppose that A # F%. Hence, there exists A € F»(X) \ F1(X)
such that ¢% (A) = A. We put A = {a1,a2}. We have the following cases:

CASE (1). B# F%. Let B € F5(X) \ Fi(X) be such that ¢%(B) = B.
We assume that B = {b1,b2}. Suppose that a; € A\ B. Then, since X is
2-aposyndetic, there exist two subcontinua W; and Wy of X such that b; €
intx (Wh), Wiy N {ba,a1} =0, ba € intx (Ws) and Wo N {by,a;} = 0. We fix a
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number € > 0 such that € < %min{d(bg7 Wh),d(ar, Wy),d(by, Wa),d(a1, Wa)}.
Applying Lemma 3.9, we obtain that

C = (W1 x W)\ (N(e, Wa) x N(e,Wr))

is a subcontinuum of X? such that (b1, bs) € intx=(C) and C N Axe = 0.
We define U = N (a1, €). We note that Clx (U)N(N(e, W1)UN (e, W3)) =
(. Hence, Clx(U) N (W1 UWs) = 0. We define

Z = (Clx(U) x X) U (X x Clx(U)).

It follows that Z is a subcontinuum of X? such that (a1, as) € intyx2(Z) and
Z = Z*. Since (a1,az) € intx2(Z) N (X?\ Axz), there exists an open subset
V of X2 with (a;,a2) € V. C Z and V C X2\ Axz. Moreover, it is easy to see
that (CUC*)N(ZUZ*) = (). By Lemma 4.4, we obtain that fo(C) and f2(Z)
are subcontinua of F5(X') such that A € intp,(x)(f2(2)), B € intp,(x)(f2(C))
and f2(C) N fo(Z) = 0. Furthermore, by [11, Lemma 9], f2(V) is an open
subset of Fy(X) with A € fo(V) C f2(Z) and fo(V) N F1(X) = 0. Applying
Remark 2.1, we conclude that ¢3% (f2(Z)) and ¢% (f2(C)) are two subcontinua
of SF5(X) such that A € intgp,(x) (0% (f2(2))), B € intsr,x)(a% (f2(C)))
and SF,(X)(q% (f2(C)) N SF(X) (g% (f2(2))) = 0.

CASE (2). B = F%. Since X is mutually aposyndetic, there exist two
subcontinua Wy and W of X such that a1 € intx (W), as € intx(Wa)
and W3 N Wy = (). Since X is 2-aposyndetic, for each z € X \ A, let W,
be a subcontinuum of X such that z € intx(W,) and W, N A = (. Then
{intx(Wy) : x € X\ AYU{intx (W), intx (W3)} is an open cover of X. Hence,
there exist x1,...,zm € X \ 4 such that X = U2 intx (W,) U (intx(W1) U
intX (Wg))

We define a subset, W, of X2 as follows:

W =uUr, W2 u(Wiuws).

Then W is a subcontinuum of X? with Ax2 C intx2(W).

Let J={ie{l,....om}: Wy, NW7 # 0} and let K ={i € {1,...,m}:
Wy, "W #£ 0}. We note J # () and K # 0.

Let ¢, > 0 and €2 > 0 be such that e; < min{d(W,,a1) : i €
{1,...,m}} and €, < 3 min{d(W,,,a2) : i € {1,...,m}}. Let € > 0 be such
that € < min{ey, e2}. We define a subset, Z, of X as Z = U™, W,,. We note
that a; € N(e, Z). To see that a; € N(e, Z), suppose that a; € N(e, Z). Then
there exists z € Z such that d(a1,2) < e. Thus, there exists j € {1,...,m}
such that z € W, so that e < d(a1,W,,) < d(ai,2) < €, which is a
contradiction. Therefore, a1 & N (¢, Z). Similarly, as € N(e, Z).

Let Uy = intx(W1)\ N (¢, Z), and let Uy = intx (W2)\ N(e, Z). It follows
that U; x Uy is an open subset of X2 such that (a1,az2) € Uy x Uy. We define

C = (W, x Wa) \ (N(e, Z) x N(e, Z)).
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Since Uy x Uy C C, we obtain that (a1,a2) € intx2(C). Moreover, we have
that C' is a closed subset of X, and thus, C' is compact.

Next, we prove that C is connected. Let (p,q) and (r, s) be two distinct
points in C. We are going to show that there is a connected subset in C'
containing (p, ¢) and (r, s). Since (p, q), (r, s) € C, it follows that (p, q), (r, s) €
W1 x Wa and (p,q), (r,s) € N(e,Z) x N(e,Z). Hence, p,r € Wy, q,s € W,
[pg€ N, Z)orqg N(e,Z)] and [r & N(e,Z) or s € N(e, Z)]. Consequently,
we have the following possibilities:

(a) pZ€ N(e,Z) and r € N(e, Z). In this case, it follows that {p} x Wa and
{r} x Wy are two connected subsets of C' such that (p, q), (p,az) € {p} x Wa
and (r,s), (r,a2) € {r} x Wa. Moreover, since ay € N(e¢,Z), we have that
W1 x {az2} is a connected subset of C' such that (p,as), (r,a2) € Wi x {az}.
We define D = [{p} x Wa]U[{r} x Wa]U[W; x {az}]. Then D is a connected
subset of C' containing (p, q) and (r, s).

(b)p & N(e,Z) and s € N(e, Z). It follows that {p} x Wy and Wy x{s} are
two connected subsets of C such that (p, q), (p, s) € {p} x W2 and (p, s), (r,s) €
W1 x {s}. We define D = [{p} x W5] U [W; x {s}]. Then D is a connected
subset of C' containing (p, q) and (r, s).

(¢c) ¢ € N(e, A1) and r € N(e, Ag). This case is similar to (b), with
D =Wy x {q}] U [{r} x Wa].

(d) ¢ € N(e, A1) and s € N(e, A1).

This case is similar to (a), with D = [W; x {¢}]U[W7 x {s}]U[{a1} x Wa].

By (a)—(d), we conclude that C is a connected subset of X2. Consequently,
C is a subcontinuum of X2 such that (a1, az2) € intx2(C).

Next we prove that C N W = ). Suppose that (¢1,c2) € C NW. This
implies that (c1, c2) € Wi x Wa, (¢1,¢2) € N(e,Z) x N(e, Z) and (¢1,c2) € W.
Since W = UL, W2 U (W2 U W3), we have that either (ci1,c2) € W? or
(c1,c2) € Wi or there exists i € {1,...,7} such that (c1,c2) € W2. If
(c1,c2) € W2, then ca € W1 N Wy, which is a contradiction. If (c1,co) € W3,
then ¢; € Wi N Wy, which is a contradiction. If there exists ¢ € {1,...,r}
such that (c1,c2) € ng, then c1,co € Wy, thus, c¢1,c2 € Z, this implies that
(c1,c2) € N(e,Z) x N(e, Z), which is a contradiction. Therefore, CNW = 0.

Similarly, we obtain that C* N W = (). Moreover, since W = W*, it
follows that (C'UC*) N (W UW*) = 0.

By Lemma 4.4, we have that f2(C) and fa(WW) are two subcontinua
of F5(X) such that A € intp,x)(f2(C)) C F(X) \ Fi(X), Fi(X) C
intp,(x)(f2(W)) and fo(C) N f2(W) = (. Hence, applying Remark 2.1, we
conclude that g% (f2(C)) and ¢% (f2(W)) are two subcontinua of SF»(X) such
that A € intsp,(x)(a% (f2(C))), B € intsp,x)(a% (f2(W))) and g% (f2(C)) N
0% (f2(W)) = 0.

Finally, by Cases (1) and (2), we conclude that SF(X) is mutually
aposyndetic. O
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THEOREM 4.7. If X is a decomposable continuum, then SF»(X) is not
strictly nonmutually aposyndetic.

PROOF. Let X be a decomposable continuum. Let A; and Ay be proper
subcontinua of X such that X = A; U As. Hence, there exist two points
x1 € X\ Ay and 2 € X\ A;. We note that 21 € intx (A1) and 2o € intx(As2).
Fix a number e > 0 such that e < 1 min{d(z1, A2), d(z2, A1)}. Consequently,
by Lemma 3.9, the set

C = (A1 x A2) \ (N(€, A2) X N(e, A1)

is a subcontinuum of X? such that (x1,22) € intx2(C) and C N Axe = 0.

We take y € N(A1,¢) N (X \ A1). Since N(A1,¢) N (X \ A1) is an open
subset of X, there exists an open subset U of X such that y € U C Clx(U) C
N(A1,e)N (X \ Ay). We define

K = (Clx(U) x A3) U (As x Clx (U)).

It follows that K is a subcontinuum of X? such that intx2(K) # 0.

Note that (C UC*)N (K UK*) = (. By Lemma 4.4, we have that
f2(C) and f>(K) are subcontinua of F»(X) such that intp,x)(f2(C)) # 0,
it ) (f2(K) # 0 and fo(C) 1 fo(K) = 0.

Since C' N Axz = 0, it follows that fo(C') C Fa(X) \ F1(X). Applying
Remark 2.1 we obtain that ¢% (f2(C)) is a subcontinuum of SF5(X) such that
intsp,x) (0% (f2(C))) # 0.

On the other hand, let z € U \ {y}. Since (y,2) e U xU C K, {y,z} €
f2(U x U) C f2(K). By [11, Lemma 9], we have that fo(U x U) is an open
subset of F5(X). Let U be an open subset of F»(X) such that {y,z} € U C
f2(UxU)N (Fo(X)\ Fi(X)). Using Remark 2.1 we obtain that ¢% (f2(U)) is
an open subset of SFy(X) with ¢% ({y,2}) € ¢%(f2(U) C ¢%(f2(K)). Thus,
0% (f2(K)) is a subcontinuum of SF5(X) such that intsp, x)(¢x (f2(K))) # 0.

Finally, since f2(C)N fo(K) =0 and f2(C) C F2(X) \ F1(X), by Remark
2.1, we conclude that ¢% (f2(C)) N ¢%(f2(K)) = 0. This prove that SFy(X)
is not strictly nonmutually aposyndetic. O

THEOREM 4.8. Let X a continuum with zero span. Then X is indecom-
posable if and only if SF>2(X) is strictly nonmutually aposyndetic.

PROOF. Suppose that X is indecomposable. Let 2 be a subcontinuum
of SF5(X) such that intgp,x)(A) # 0. We put B = (¢%) (). Since ¢% is
a monotone map, by [21, 2.2, p.138], we obtain that B is a subcontinuum of
F5(X), furthermore, we have that intp, x)(B) # . We take a component W
of (f2)7'(B). Applying [11, Lemma 14] it follows that intx2(W) # 0. Since
m1 and 72 are open maps, we have that w1 (W) and mo(W) are subcontinua
of X such that intx(m(W)) # 0 and intx(m(W)) # 0. Since X is
indecomposable, by [14, Corollary 1.7.21], it follows that 71 (W) = X and
m2(W) = X. Since X is a continuum with zero span, we conclude that
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W N Ax: # 0. This implies that BN F; (X) # 0. Consequently, F2 € 2(. This
prove that, SF(X) is strictly nonmutually aposyndetic.

Applying Theorem 4.7 we obtain that if SF5(X) is strictly nonmutually
aposyndetic, then X is indecomposable. O

It is known, for instance [10, p. 210], that if X is a chainable continuum
then X is a continuum with zero span. Hence, by Theorem 4.8, we have the
following corollary.

COROLLARY 4.9. Let X a chainable continuum. Then X is indecompo-
sable if and only if SF»(X) is strictly nonmutually aposyndetic.
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