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A SHAPE THEORETIC APPROACH TO GENERALIZED
COHOMOLOGICAL DIMENSION WITH RESPECT TO
TOPOLOGICAL SPACES
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ABSTRACT. A. N. Dranishnikov introduced the notion of generalized
cohomological dimension of compact metric spaces with respect to CW
spectra. In this paper, taking an inverse system approach, we generalize
this definition and obtain two types of generalized comological dimension
with respect to general topological spaces, which are objects in the
stable shape category. We characterize those two types of generalized
cohomological dimension in terms of maps and obtain their fundamental
properties.  In particular, we obtain their relations to the integral
cohomological dimension and the covering dimension. Moreover, we study
the generalized cohomological dimensions of compact Hausdorff spaces with
respect to the Kahn continuum and the Hawaiian earing.

1. INTRODUCTION

The theory of cohomological dimension originates in the work of P. S.
Alexandroff in the late 1920’s ([3]). J. Dydak ([8]) outlines the development
of the cohomological dimension theory from the beginning to mid 1990’s. For
every finite-dimensional compact metric space X, the integral cohomological
dimension c-dimz X equals the covering dimension dim X ([4]), but there
exists an infinite dimensional compact metric space with finite integral
cohomological dimension ([5]). To distinguish the class of infinite dimensional
spaces, Dranishnikov ([6]) introduced the notion of generalized cohomological
dimension c-dimg with respect to CW spectra E. If K(G) is the Eilenberg-
MacLane spectrum {K(G,n)(n > 0), a singleton (n < 0)}, where G is an
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abelian group, then the generalized cohomological dimension c-dimg gy X
coincides with the ordinary cohomological dimension c-dimg X. If S is the
sphere spectrum {S™ (n > 0), a singleton (n < 0)}, then c-dimg X coincides
with the cohomotopical dimension.

If Eis a CW spectrum with some additional condition, then c-dimz X <
c-dimg X < dim X for every compact metric space X ([5, Theorems 1,
2]). There exists a compact metric space X such that c-dimz X = 3 and
c-dimg X = oo ([5, Theorem 4]). In 1986, S. Nowak raised the following
question: does the cohomotopical dimension coincide with its covering
dimension for compact metric spaces? It is still an open problem ([20]).

For given spaces X and Y, for a closed subset A of X, and amap f: A —
Y, the extension problem is to determine whether the map f extends to a map
f: X — Y. Here the codomain Y is usually assumed to be a nice space such
as a CW complex, a polyhedron, or an ANR, so that the homotopy extension
property holds for maps into Y. Recently, generalizing the extension property,
the author introduced the notion of approximate extension property to allow
more general spaces for codomains ([15]). Roughly, the idea is based on the
extendability of maps from closed subsets of spaces to inverse systems, which
are parts of expansions in the sense of [13].

This paper is to unify the idea of approximate extension property and
the idea of generalized cohomological dimension with respect to CW spectra
and obtain generalized cohomological dimension with respect to topological
spaces, which represents the right bottom box in the following diagram.

- Generalized cohomological
Extension property . . .
with respect to CW complexes — |dimension with respect  to
P P CW-spectra
Approximate extension : -
Generalized cohomological
property . . .
. . — |dimension with respect to
with respect to topological .
topological spaces
spaces

From another point of view, homotopy equivalent CW complexes and
shape equivalent shapes have the same extension type and approximate
extension type, respectively; homotopy equivalent CW spectra have the same
generalized cohomology type. In our new theory, stable shape equivalent
spaces have the same generalized cohomology type. For convenience, the
generalized stable shape category in the sense of [17], which is an extended
version of the stable shape category and whose objects include all topological
spaces together with CW spectra, is considered.

Stable shape originates in the work of E. Lima [12] in the study of the
Spanier-Whitehead duality for compact subsets of the n-th sphere, and its
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theory has been developed by various mathematicians. More recently, stable
cohomotopy groups are studied in this framework ([20-22]). Another aspect
is that duality between compact and CW spectra holds in the (generalized)
stable shape category ([14, 18]). We are interested in seeing how our
generalized cohomological dimension theory will fit this framework.

In this paper we define generalized cohomological dimension theory with
respect to stable shape object and study its fundamental properties. In order
to do so, we define generalized comological dimension with respect to inverse
systems of CW spectra. Allowing more objects for dimension coefficients, we
have more dimension types and structures for the theory.

For every inverse system E of CW spectra we introduce two definitions
for generalized cohomological dimension with respect to E: small dimension
g-dimg (see Section 3) and large dimension G-dimpg (see Section 4). The
two types of generalized cohomological dimension coincide if the inverse
system comnsists of a single CW spectrum and g-dimp < G-dimg holds
in general. Using the notion of shape theoretical expansion we define the
corresponding types of generalized cohomological dimension g-dim, and
G-dimz with respect to topological spaces Z. We show that thus defined types
of generalized cohomological dimension are invariant in the generalized stable
shape category. We obtain their characterizations in terms of maps between
CW spectra or between CW complexes. We will see that the large generalized
cohomological dimension has a better characterization if the coefficient inverse
system of CW spectra satisfies some additional condition.

We consider variable coefficient spaces for the generalized cohomological
dimensions (Section 5). In particular, we obtain relations between large
generalized cohomological dimensions G-dimz,, G-dimz, and G-dimz, with
respect to spaces in a cofibre sequence Z; — Z; — Z3. We apply the
notion of duality between compact metric spaces and CW spectra ([14]) to
our generalized cohomological dimension.

Generalizing the case for generalized cohomological dimension with
respect to CW spectra ([5, Theorems 1, 2]), we introduce the notion of
approximately perfectly connected space (Section 6). We show that if Z
is an approximately perfectly connected space, then g-dim, X = dim X for
every finite dimensional compact Hausdorff space X and if Z satisfies some
additional condition, then c-dimz X < g-dim, X for every compact metric
space X.

As an example, we discuss generalized cohomological dimension with
respect to Kahn continuum and Hawaiian earing (Sections 5, 6). In particular,
we show that if Z is the Kahn continuum, then g-dim, X = 0 for every finite
dimensional compact Hausdorff space X.

Throughout the paper, unless otherwise stated, space means topological
space and map means continuous map. All spaces are assumed to have base
points, and maps and homotopies preserve base points. For spaces X and Y,
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let [X, Y] denote the set of homotopy classes of maps from X to Y. Similarly,
for CW spectra G and H, let [G, H] denote the set of homotopy classes of maps
from G to H. For every category C, if X is an object of C, let 1x : X — X
denote the identity morphism. Let Z denote the set of integers.

2. PRELIMINARIES

In this section, we recall terminology of CW spectrum, shape theory,
generalized cohomology and generalized cohomological dimension.

CW spectra. For more details on CW spectra, the reader is referred to
[25] and [2].

Let X be a space. Let ©X = S' A X and ¥FX = S(ZF1X) for k > 1,
where 20X = X,

A CW spectrum F is a sequence {E, : n € Z} of CW complexes with
embeddings ¢, : XE, — FE,;11. Every CW spectrum consists of cells e =
{ed Sed %2ed ...}, where el is a d-cell in the CW complex E,, and is not
a suspension of any cell in F,,_;. The dimension of e, in notation, dime, is
defined as d — n. The dimension of a CW spectrum F, in notation, dim F, is
defined as sup{dime : e is a cell of E}.

A map f : E — F between CW spectra is represented by a function
f'=A{f, :neZ}: E — F, where F’ is a cofinal subspectrum of E. By a
function f' = {f, :n € Z} : E' — F, we mean a collection {f] : n € Z} of
cellular maps f, : E;, — F, such that f;  [XE, = Xf;.

The suspension spectrum FE(X) of a CW complex X is the spectrum
defined by

"X n>0,
woo, = { T )

For every map f: X — Y between CW complexes, let E(f) : E(X) — E(Y)
denote the map represented by the function {f, : n € Z} such that f, =
Xnf oYX = XY for n > 0 and f, is the constant for n < 0.

Let SPEC also denote the category of CW spectra and maps, and let
HSPEC denote the homotopy category of SPEC. Let % denote the suspension
functor on SPEC, and let ! be its inverse. Iteratively, we define the m-th
suspension functor ¥™ by ¥™ = X o ™! for m > 2, where ¥! = ¥ and
mo=3"1lo Y™t for m < —2.

Shape theory and stable shape theory. Let Top denote the category
of spaces and maps, and let CW denote the full subcategory of Top whose
objects are CW complexes. Let HTop denote the homotopy category of Top,
and HCW denote the full subcategory of HTop whose objects are the spaces
which are homotopy equivalent to a CW complex.

We briefly recall the constructions of the shape category, the stable shape
category, and the generalized stable shape theory. For more details, the reader
is referred to [13], [9], and [17].
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Let C be a category. The pro-category pro-C is defined as follows. The
objects of pro-C are inverse systems in C, and the set of morphisms from
X = (X, pav,A) to Y = (Y, quu, M) is defined as

pro-C(X,Y) = hmcogimC(X)\, Y,).
"

Here for any objects A and B in C, C(A, B) denotes the set of morphisms
from A to B.

If X is a space, then there exists an HCW - expansion p = ([p»]) : X —
X = (X, [pax], A) in the sense of [13]. The shape category Sh is defined as
follows. The objects of Sh are spaces. If X and Y are spaces, a morphism
X — Y in Sh is represented by an element of pro-HCW(X,Y"), where q :
Y — Y is an HCW - expansion of Y.

The stable shape category ShStab is defined as follows. The objects of
ShStab are compact Hausdorff spaces. If X and Y are compact Hausdorff
spaces, a morphism X — Y in ShStab is represented by an element of
pro-HSPEC(E(X),E(Y)), where p : X — X and ¢ : Y — Y are
HCW - expansions of X and Y, respectively. Here, for every inverse system
X = (Xu, [pan],A) in HCW, let E(X) = (E(X\), [E(pax)], A) be the induced
inverse system in HSPEC.

The generalized stable shape category Shgpe. is defined as follows.
The objects of Shgp.. are spaces and CW spectra. If X and Y are
spaces, a morphism X — Y in Shg,e. is represented by an element of
pro-HSPEC(E, F'), where a : E(X) — FE and 8 = E(Y) — F are
generalized HSPEC-expansions of X and Y, respectively. Here, p : X — X
and g : Y — Y are HCW - expansions of X and Y, respectively. Recall that a
morphism « : E(X) — E in pro-HSPEC is a generalized HSPEC-expansion
provided whenever o’ : E(X) — E’ is a morphism in pro- HSPEC, then there
exists a unique morphism ~ : E — E’ in pro- HSPEC such that o/ = yo «
[16]. For every HCW -expansion p = ([pa]) : X — X = (X}, [pan]; A) such
that X are CW complexex and pyys are cellular maps, the identity induced
morphism F(X) — E(X) is a generalized HSPEC-expansion of X. If X = F
or Y = Fis a CW spectrum, a morphism X — Y in Shg. is represented by
an element of pro- HSPEC((E), F') or pro-HSPEC(E, (F')). Here (E) is the
rudimentary system of F.

Note that there is an embedding of Shgpe. into pro-HSPEC up to
isomorphisms and that ShStab is a full subcategory of Shgpe.. For any spaces
X and Y, if ¥¥X and X*Y are equivalent in Sh for some positive integer k,
then X and Y are equivalent in Shg,e.. For any compact Hausdorff spaces X
and Y with finite shape dimension ([13, II, §1]), the converse holds.

Spanier-Whitehead duality in the category ShStab was studied by Lima
([12]), Henn ([9]) and Nowak ([18], [19]). The following duality holds in the
category Shgpec ([14, Theorem 4.1]): given a compact metric space X, there



200 T. MIYATA

exist a CW-spectrum X* and a natural isomorphism 7 : Shgpec (Y A X, E) —
Shgpec (Y, X* A E) for every compact Hausdorff space Y and CW-spectrum E.

Generalized cohomology theories. For every CW-spectrum E, let
E* denote the generalized cohomology theory on HCW,,. associated with F,
which is defined by

EYG) =[G, Z1E] for every CW-spectrum G.

For every CW complex X, let E9(X) = FE?(FE(X)). We take the Cech
extension of EY over Shgpe., where the Cech extension is based on all

normal open coverings of X. Equivalently, for every space X, E9(X) =
colim BY(Xy) = (B9(Xy), B4(pax), A), where the map p = ([pa]) = X =

X = (X, [pan], A) is an HCW - expansion of X.

Let QX be the loop space, and let Q¥X = Q(Q*~1X) for k > 1, where
QX = X. Let Q®E,, 1o = colim{Q*E,,, 1, & : k € Z}, where &, : B}, —
QFE}1 is the adjoint map of ¢y.

If X is a compact Hausdorff space, then we can take X so that each X
is a finite CW complex. Then we have

(2.1) PEYX)= co}\im EYX,) = co}\im [Xx, QFEgtoo] = [X, Q% Egtoo)-

A CW spectrum FE is an 2-spectrum provided every &, is a weak homotopy
equivalence. If F is an (-spectrum, then there exists a weak homotopy
equivalence wy : By — Q% E4 o, which induces an equivalence [X, E;] —
[X,Q%°E;1o0]. Thus,

(2.2) EYX) ~ [X, E,).

For every map f : E — F between CW spectra, there exists an induced map
QY (f) : QB0 = Q% Fyi00 between ANR’s. Let Q°(E) = Q™ Eg4o0.
Then Q7° defines a functor from SPEC to HCW. If E and F' are {)-spectra,
then there exists a unique (up to homotopy) map Cy(f) : E, — F, which
makes the following diagram commute:

Eq L QOOEquoo

lQ;’“(f)

/

cml
’LUq
Fy——=Q®F,

Here the horizontal maps are weak homotopy equivalences.

Various dimensions. Given a normal space X, one assigns the covering
dimension (Cech—Lebesgue dimension) dim X which is an integer greater than
or equal to —1 or co by the following conditions:

(LD;) dim X < n, where n = —1,0,1,..., if every finite open cover of X has
a finite open refinement of order at most n.
(LD3) dim X = n if dim X < n holds and dim X <n — 1 does not hold.
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(LD3) dim X = oo if dim X < n does not hold for any n = —1,0,1, ...

Given a paracompact space X and an abelian group G, one assigns the
cohomological dimension c-dimg X, which is defined as the smallest integer
n such that H™(X, A;G) = 0 for every closed subset A of X and for every
m > n. Let c-dimg X = oo if there is no such n. It is known that c-dimg X <
n if and only if for every closed subset A of X, the inclusion map A — X
induces an epimorphism H™(X;G) — H™(A; G) for every m > n (see [23]).
Moreover, c-dimg X < n if and only if for every closed subset A of X and
for every map f : A — K(G,n), there exits a continuous extension f X =
K(G,n) (see [10] and [24]).

Given a compact metric space X and a CW spectrum F, one assigns
the generalized cohomological dimension c-dimg X, which is defined as the
smallest integer n such that for every closed subset A of X and for every
m > n, the inclusion map A — X induces an epimorphism of E™(X) —
E™(A). Let c-dimg X = oo if there is no such n. Then, c-dimg X < n if and
only if for every closed subset A of X, for every m > n and for every map
fi+A— Q®FE, 1, there exits a continuous extension f X = Q®Fhtco-
Moreover, if FE is an 2-spectrum, then c-dimg X < n if and only if for every
closed subset A of X and for every map f: A — E,, there exits a continuous
extension f X = B,

3. SMALL GENERALIZED COHOMOLOGICAL DIMENSION

Every map ¢ : E — F between CW spectra induces a natural
transformation ¢, : E? — F? between cohomology functors. If E =
(Eu, oy, M) is an inverse system of CW spectra, for every space X we define
E™(X) as the inverse system (E7(X), (cur)q(X), M).

If f: X — Y is a map between spaces, then there is an induced morphism
Ef): EY(Y) —» E%X) in pro- Ab. Here Ab denotes the category of abelian
groups and homomorphisms. Indeed, for p < u/, there exists a commutative
diagram

(@upr)a(X)

EI(X) 0 B (X)
BI(f) TE %)
(@ )a(Y)

E(Y) B(Y)

and hence there is a level map (Ei(f)) : E4(Y) — E?(X), which defines a
morphism EY(f) : EY(Y) — E%(X). More generally, every morphism X — Y
in Shgpee induces a morphism E4(Y) — E(X).

Every morphism ¢ : E — F = (F,,B,,/,N) in pro-SPEC induces a
natural transformation ¢, : E? — F?. Indeed, if (¢,,¢) : E — F is a system
map which represents ¢, then for v < v/, there exists u > p(v), o(v') such
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that
Pu 0 Q) = Buvr © Pur 0 Q-
QAp(v)p

E

’ < E
P (v )a%,(,/m H

%J{ Oy
B

’
Fus = Fl/’

This implies the equality

(00)q(X) 0 (ap)u)q(X) = (Bur)q(X) 0 (0)q(X) © (ap(ur))q(X)-
This means that there exists a system map ((¢.)q(X), @) : EY(X) — F(X),
which represents a morphism ¢, (X) : E/(X) — F?(X). Moreover, if f :
X — Y is a map, then, for every v, there exists the following commutative
diagram:

(pu)q(Y)
B9, (V) FY(Y)
EZ,@)(f)l lFﬁ(f)
(pv)q(X)
B, (X) 2 R

Thus, the following diagram is commutative:

Y
miy) 2 pay
E"(f)l lF"(f)
X
mi(x) 2 pax)

This shows that thus defined ¢, is a natural transformation. Moreover, every
isomorphism ¢ : E' — F in pro-SPEC induces a natural equivalence ¢, :
E?— F1.

Since homotopic maps ¢,¢’ : E — F between CW spectra induces
the same natural transformation ¢, = gag : B1 — F9, then every object
E = (E,, [ayu], M) in pro- HSPEC induces a unique inverse system E?(X) =
(EL(X), (apu )q(X), M) for every space X. Moreover, every morphism
¢ : E — F in pro-HSPEC induces a natural transformation ¢, : EY — F.

Let E = (E,,ouuw, M) be an object in SPEC. For every space X,
the small generalized cohomological dimension g-dimg X with respect to E
is defined as the smallest integer n such that whenever A of X is a closed
subset A of X, then the inclusion induced morphism E™(X) — E™(A) in
pro-groups is an epimorphism for every m > n. Let g-dimp X = oo if there
is no such n. Simlilarly, for every object E in HSPEC, the cohomological
dimension with respect to E is well-defined.
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PROPOSITION 3.1. Let E and F' be inverse systems in HSPEC.

1) If E is dominated by F in HSPEC, then g-dimg X < g-dimgp X for
every space X .

2) If E is isomorphic to F in HSPEC, then g-dimg X = g-dimp X for
every space X .

PRrROOF. It suffices to show the first assertion. Let ¢ : E — F and
¢ : F — FE be morphisms in pro-HSPEC such that 1) o ¢ = 1g. Suppose
that g-dimp X < n. Let m > n, let A be a closed subset of X, and let
i: A — X be the inclusion map. Then the following diagram commutes:

1En(x)
E™(X)——= F™(X) —— E™(X)
Pm(X) Y (X)
o (i)l Fm(i)l lE 0
A A
Em(A) 2 g gy PO g
— A=
lE"L(A)

To show that E™(i) is an epimorphism, let v;,v4 : E™(A) — P be
morphisms in pro-groups such that v, o E™ (i) = 75 o E™(i). Then
Y1 0%, (A) o F(i) = v, 0 E™ (i) 0 9,,,(X) = 75 0 E™(i) 0 4,,(X)
= Y20, (A) 0 F™(0).

Since F™ (i) is an epimorphism,

Y10 wm(A) =72° wm(A)
Since wm(A) © Som(A) = 1E’“’(A)a then

Y1 ="1°%,(4) 0@, (A) =73 09,,(4) 0 p,,(A) =75
This shows that E™ (i) is an epimorphism, and hence g-dimp X < n. O

If Z is a space, for every space X, the small generalized cohomological
dimension g-dim, X with respect to Z is defined as g-dimg X, where o« =
([an]) - E(Z) — E is a generalized HSPEC-expansion of X. Note that the
definition does not depend on the choice of genralized HSPEC-expansion of Z
by Proposition 3.1.

Proposition 3.1 implies the following corollary.

COROLLARY 3.2. Let Z1 and Zs be spaces.

1) If Zy is dominated by Zs in Shpee, then g-dimy X < g-dimy,, X for
every space X .

2) If Zy is isomorphic to Z in Shgpec, then g-dimy X = g-dimy, X for
every space X .
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Since every CW spectrum is weak homotopy equivalent to an Q2-spectrum,
small generalized cohomological dimension can be defined in terms of an
inverse system consisting of (2-spectra. However, we sometimes need to work
on the inverse systems of CW spectra which are chosen in advance. Thus, we
wish to have characterizations of small generalized cohomological dimension
under a general setting.

For every object E = (E,,, ayyr, M) in pro-SPEC or E = (E,, [, M)
in pro-HSPEC and for each nonnegative integer m, consider the following
conditions:

(S1)m If Ais a closed subset of X and if i : A — X is the inclusion map, then
every p € M admits ' > p such that

() (4)) € (B} (1),
B} (X)
Eff”(i)l

«@ /-,,LA
Em(A) (et )m (A)

B (4)

(S2)m If Aisaclosed subset of X, andif p = ([px]) : X = X = (X, [pax], A)
is an HCW - expansion of X such that the induced morphism p|A =
([palA]) : A = A = (Ax, [pan]Ax], A) is an HCW - expansion of A,
then every p admits p’ > p such that for every A € A and for every
map f : E(Ay) — Y™ E,,, there exist X' > X\ and a map f : BE(Xx) —
EmEu with fOE(i)\/) = Ema#“/ofoE(pA/\/|A)\/), where i)\/ : A,\/ — X)\/
is the inclusion map.

m

b)) "Ozuul
SmE, < smp,
E(paxs|Axr) E(A)\/)
E(iyr)

(S3)m For every closed subset A of X, every p admits g/ > p such that
for every map f : A = Q%(E,/ )mtoo, there exists a map f : X —

Q%°(E,)mtoo With f]A = Q5 (auu)o f.

Q7 (ayur)
Q= (EM)eroo -~ QOO(E,U/)eroo
A
|

7 Tf

| .
X ! A
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(S4)m For every closed subset A of X, every p admits p > p such that for
every map f : A — (E, )m, there exists a map f : X — (E,)n, with

f|A = Cm (o) o f.

Cm(a‘m/)
(Eu)m <~ (EM' )m
A
fl Tf
[
X ! A

THEOREM 3.3. Let E be an object (E,, o, M) in pro-SPEC or
(B, [apu], M) in pro- HSPEC.

1) g-dimg X < n iff (S1)m holds for m > n.

2) g-dimg X < n iff (S2)m holds for m > n.

3) If X is a compact Hausdorff space, then g-dimg X < n iff (S3)., holds
for m >n.

4) If X is a compact Hausdorff space and if each E, is an Q-spectrum,
then g-dimg X < n iff (S4)m holds for m > n.

ProOF. The first assertion follows from the definition of g-dimg X and
[13, Theorem 3, p. 109]. To show the second assertion, first, suppose that
g-dimp X <n. Let m >n,let A € A, and let f: E(Ay) - X™E,, be a map.
Since f represents an element of EZ}(A), then, by (S1)m, there exists a map
f': E(Xy) — X™E, for some X' > A which represents an element of E(X)
and safisfies

f'o E(ix) = (auu)m © f o E(pax|Ax).
By the homotopy extension therem for CW spectra ([25, 8.20]) there exists a
map f: E(Xy) — Y™E, such that
fo E(ix) = (appw)m o f o E(pax|Ax),
as required. Reversing the argument, we can show the converse.
Similarly, we can also show the third and the fourth assertions, using the
natural equivalences (2.1) and (2.2) (see Section 2). O

Theorem 3.3 immediately implies

COROLLARY 3.4. Let Z be a space, and let o = ([av,]) : E(Z) - E =
(B, [apw], M) be a generalized HSPEC-expansion of Z. Then we have the
following:

1) g-dimy, X < n iff (S1)m holds for m > n.

2) g-dim, X <n iff (S2)m holds for m > n.

3) If X is a compact Hausdorff space, then g-dim, X < n iff (S3).m holds

for m >n.

4) If X is a compact Hausdorff space and if each E,, is an Q-spectrum,

then g-dimy, X < n iff (S4)m holds for m > n.
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4. LARGE GENERALIZED COHOMOLOGICAL DIMENSION

In condition (S1)m, note that the index p' depends on the choice of
the closed subset A of X. In this section, we consider a stronger version
of the condition so that x' does not depend on A. This stronger condition
gives another version of generalized cohomological dimension, which is shown
to possess better properties. We call it large generalized cohomological
dimension. Consider the following condition:

(L1)m For each p € M, there exists p’ > p such that for every closed subset
Aof X,
Im((a)m(A)) € Im(E (i),
where i : A — X is the inclusion map.

Let E = (E,, auu, M) be an object in SPEC. For every space X, the large
generalized cohomological dimension G-dimg X with respect to E is defined as
the smallest integer n such that (Lj),, holds for m > n. Let G-dimp X = oo
if there is no such n. Simlilarly, for every object E in pro-HSPEC, the large
generalized cohomological dimension with respect to E is well-defined. Note
that for every CW spectrum E, if (E) denotes the rudimentary system, then
g-dim gy X = G-dim(g) X for every space X, and it equals c-dimp X for every
compact metric space X.

Consider the following conditions which are analogous to (S2)m, (S3)m
and (S4)m:

(L2)m every p admits g/ > p such that whenever A is a closed subset of X and
p=([pr]) : X = X = (X, [pan],A) is an HCW - expansion of X with
the induced morphism p|A = ([pal4]) : A = A = (Ax, [pax|Ax], A)
being an HCW -expansion of A, then for every A\ € A and for every
map f : E(Ay) — Y™ E,,, there exist X' > X\ and a map f : B(Xx) —
EmEM with fTOE(’L')\/) = Emauu/ofoE(pM/|A)\/), where ’L')\/ : Ax — X)\/
is the inclusion map.

(Lg)m every p admits u’ > p such that for every closed subset A of X and
for every map f : A = Q%°(E,/)m4oo, there exists a map f:X -
Q% (Ep)mtoo with fl[A = QX (ayu) o f.

(Ly)m every p admits ' > p such that for every closed subset A of X and for
every map f : A — (E,/)m, there exists a map f:X = (E.)m with
fIA = Cnlayw) o f.

By (Li1)m, (2.1) and (2.2) (see Section 2), we have

THEOREM 4.1. Let E be an object (E,,au,, M) in pro-SPEC or an
object (Ey, o], M) in pro-HSPEC.

1) G-dimg X <n iff (La)m holds for m > n.
2) If X is a compact Hausdor(f space, then G-dimg X < n iff (L3)., holds
for m >n.
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3) If X is a compact Hausdorff space and if each E, is an Q-spectrum,
then G-dimg X < n iff (Ly)m holds for m > n.

An object (E,,au,, M) in pro-SPEC or an object (Ey, (o], M) in
pro- HSPEC is said to be finite dimensional if there exists a nonnegative integer
N such that dim E,, < N for every u € M.

THEOREM 4.2. Let E = (E,,[ayw], M) be an object in pro-SPEC
such that every E, is an §-spectrum and E is finite dimensional. For
every compact Hausdorff space X and for every monnegative integer m, the
implication (Ly)m = (La)m41 holds.

Proor. We follow the idea by S. Ferry for proving the implication
c-dimz X <n = c-dimz X <n+1 (see J. Walsh [26, Appendix A]).

Suppose that condition (L4),, holds, and let © € M. Without loss of
generality, we can assume that each CW spectrum E,, consists of locally finite
simplicial complexes (E,, )k, k € Z, and that every induced map Cy (o) is
a simplicial map. For each pu € M, let P((E.)m+1,e€f,,41) be the path
space consisting of all paths w : I = [0,1] = (E.)m+1 with w(0) = eff 1,
a base point of (E,)m41, and let ((Eu)m+1,€( 1) DPOssess the compact-
open topology. The map ¢} 1 : P(Eu)m+1,€0m11) — (Eu)mtr defined
by ¢h (W) = w(l) is a Hurewicz fibration with fibres being (E,,),, since
(hi1) M€ my1) = QUEW)mi1 is weak homotopy equivalent and hence
homotopy equivalent to (E, ).

To verify (Lg)m+1, let u € M. Since FE is finite dimensional, there exists
a nonnegative integer d such that dim F,, < d for u € M. Let n = d+m, and
choose g = < py < -++ < p, = ' in M such that for every closed subset
B of X, every map f : B — (E,,,,)m admits a map f : X — (E,)m such
that f|B = Crm(p,pir) © f- Let A be a closed subset of a space X, and let
f:A— (Eu)m+1 be amap. We wish to show that there exists a map f:X—
(E,.)m+1 such that f|[A = Cy,11(ay,) o f. For that, it suffices to construct a
map g : A — P((Eu)m+1, €4 my 1) such that ¢ 0g = Cppi(au.)o f. For,
since P((E)m+1,€(,,41) 18 contractible, then there will exist an extension
g: X = P((Ey)m+1,€0.my1) of g, and hence f = ¢} 1107 : X = (Eu)mm
satisfies f|A = Cpi1 () o f.

Let | = dim(E, )m+1 (S d+m). For ¢=0,1,...,1, let

My ={f""(0): ois an g-simplex of (E,)m+1}-
We inductively define maps g; : L<J_Mq = P((Bup_)m+1, €0 miq) for i =
q<t ’
0,...,1 such that

Prmr1 ©9i = Cnga(Qpp,) o f] q% M.
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For each 0-simplex o of (E, )m+1, choose a point p, € (ga“mlﬂ)*l(a). Then

we define a map go : Mo = P((Eu)m+1,€4m41) bY 90lf 7' () = po.
Suppose that we have defined a map g; : Lé_Mq = P((Epp_ )mt1,€0ms1)
q<i ’

for i < [ such that

Hi

Pm+1°©9i = Cm+1(aum’) o f] qL<Ji M,.

We define a map g;41 : <U+1Mq — P(Ep,_i_y )mt15 €4 i1 ) as follows. Let
q<i ’

o be an (i + 1)-simplex of (Ew)m+1. Since Cpyq1(oy, ) is a simplicial
map, it follows that Cp,i1(au, , .)(0) is a simplex of (E,,_,)m+1. So,

() M (Crmsa (o, ) (0) is homotopy equivalent to (E,, ., )m, and there

n—i

exists the following commutative diagram:

Con (i qp—;)

(E/J"nfifl)m (Eﬂn—i)m

~ ~

(‘qun-;f_l )_1 (aﬂn—i—l ,u’)m+1 (0) <——— (‘qun-;f )_1 (O‘unfi7;t’)m+1 (o)

c c
il (Cm+1(au i1k —i))w n—i
P((Elinfifl)erlﬂ eg,erll) — — P((Eﬂnfi)mJFl’ egmerl)
Pt e’
Comg1(Quy i qpy_i)
(Eﬂnfi—l)m"‘l (Eltn—ﬂ,)m""l
So, the map

G0 M) 01 740) (U M) 0 5740) = (ehed) ™ (@ ()
admits a map
girtlf 7o)+ 7o) = (D) T O (@ _iy r)(0))
such that
gi+1l( E.Mq) N f_l(o') = (Cm+1(a/tn—7,—lltn—7,))* o gil( L%J,Mq) N f_l(o')-
q= q<1
Then,
Pt 0 gin1 (f71(0)) € Copr(p, ;1 p)(0)-

Since Cpyy1(p, ;1) is a simplicial map, maps g;+1|f~'(o) induce a map
g;-{-l : q<LiJ+1Mq - P((E#nfifl)m“rl’ eg:ln;jrill) SuCh that

Hn—i—1

Pm+1 © 9£+1 ~ Crp1(p, ) © f|(q§LZ.JHMq)-
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Hn—i—1

Hence, we obtain a map g;y1 : <u+1Mq — P((Eu,_ i )m+1,€0my1 ) such
q<i ’
that

i 7 0 gig1 = Conge1 (A ) © f|(q§LZJ+1Mq)7 and

gi+1 = 9§+1-
The map g = (Coy1(oppu, ))og + A = qL<Jqu - P((Eu)erlaeg,erl)
satisfies ) 1 0 g = Cpy1(oyu) o f as required. O

THEOREM 4.3. Let E = (E,, [ayuw], M) be an object in pro-SPEC such
that every E, is an Q-spectrum and E is finite dimensional, and let X be a
compact Hausdorff space. Then the following are equivalent.

1) G-dimg X < n,

2) (Ly)y, holds, and

3) E"™H(X UCA) =0 for every closed subset A of X.

PRrROOF. 1) < 2) follows from Theorems 4.1 3) and 4.2. 3) = 2) follows
from the following long exact sequence in pro-Ab:

.- > E"(XUCA) - E"(X) = E"(A) = E""' (X UCA) — ---
It remains to show that 2) = 3). Let A be a closed subset of X, and let d
be an integer such that dim £, < d for u € M. Following the process in the
proof of Theorem 4.2, for p € M, choose pg = p < p1 < -+ < fgyn = ¢’ in
M such that for every closed subset B of X, every map f : B — (Eu,, )n
admits a map f : X — (E,,), such that f|A = Cp(p;p.,,) 0 f. Suppose that
f: XUCA — (Ey)nyt1 is a map. This defines a map f' : X — (Ey)nt1
such that f|A ~ *. As in the proof of Theorem 4.2, there exists a map
f': X = (E,), such that ohiio f'=Chii(au)o f. Since @hyq O [ o %,
then Cy41() o f ~ *. This shows that E"T'(X U CA) = 0. O

PRrROPOSITION 4.4. Let E and F' be objects in pro- HSPEC.

1) If E is dominated by F' in pro-HSPEC, then G-dimg X < G-dimp X
for every space X.

2) If E is isomorphic to F in pro- HSPEC, then G-dimg X = G-dimp X
for every space X.

PRrROOF. It suffices to show the first assertion. Suppose that E =
(B, [ap], M) is dominated by F = (F,, [Buw], M) in pro-HSPEC. Then
there exist system maps ([f.],f) : E — F and ([g,.],9) : F — E which
respectively induce morphisms F and G in pro- HSPEC such that Go F' = 1.
Let p € M. Then there exists p’ > p such that

9u © Jg(u) © Qg(uyn = Qpprr-

Suppose that G-dimp X < n, and let m > n. Then there exists v > g(u)
such that

Im((B(uyr Jm (A)) € Im(EGe,, (2))
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for every closed subset A of X, where i : A — X is the inclusion map. For
the ' and f(v) in M, there exists "/ > u/, f(v) such that
Fotwy © pguyn = By(uyw © fv o agpuyum

To show G-dimg X < n, we verify the condition in (Lg),, with u’ replaced
by p”. For that, let A is a closed subset of X, let p = ([p)]) : X — X =
(X, [pax], A) be an HCW - expansion of X with the induced morphism p|A =
([palA]) : A = A = (Ay, [pax|Ax], A) being an HCW - expansion of A, and
let f: E(A)) — ¥™E,» be a map, where A € A. Then there exists a map
' Eyv — XM Fy(y) for some X > A such that

f/ o E(’L)\’) = zmﬁg(u)u o Emfl/ o EWLO‘f(I/)p,” o f © E(p)\k’ |A)
Here iy : Ax» — X is the inclusion map. So,
S"guo flo E(ix) ~ ™oy o f o E(pax|A).

By the homotopy extension theorem for CW spectra, there exists a map f :
E(X»x) — ¥™E, such that

fo E(ix) =X"auum o f o E(pax|A).
This shows that G-dimg X < n.

):7'1'@““/ DU

>"E E 'E EmE S"E < Y™E

M fa(w) sm e F o) / Fv) STyt wn!!

o™ Fa(w)
gu

m ZMfV

o 2 ﬂg(mv mp ;

Fau

T - E(iys) E(py\r1457)
f T T — — —E(X,) <— E(A,)) /> E(A))

O

If Z is a space, for every space X, the large generalized cohomological
dimension g-dim, X with respect to Z is defined as G-dimg X, where o =
([an]) : E(Z) — E is a generalized HSPEC-expansion of X. Note that the
definition does not depend on the choice of the genralized HSPEC-expansion
of X by Proposition 4.4.

Proposition 4.4 immediately implies

COROLLARY 4.5. Let Z1 and Zs be spaces.

1) If Z1 is dominated by Zs in Shgpec, then G-dimz, X < G-dimg, X for
every space X .

2) If Zy is isomorphic to Zy in Shgpec, then G-dimz, X = G-dimg, X for
every space X .
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The following is obvious from the definition.

PROPOSITION 4.6.

1) If E is an object in pro-HSPEC, then g-dimgp X < G-dimg X for
every space X .

2) If Z is a space, then g-dim, X < G-dimyz X for every space X.

Theorem 4.3 immediately implies

COROLLARY 4.7. Let Z be a space. Then the following are equivalent.

1) G-dimz X < mn,

2) (La)pn holds for any generalized HSPEC-ezpansion o : E(Z) — E of
Z, and

3) E"™Y(XUCA) = 0 for every closed subset A of X and for every (some)
generalized HSPEC-expansion o : E(Z) — E of Z.

5. PROPERTIES OF GENERALIZED COHOMOLOGICAL DIMENSIONS

Let E = (E,, apuy, M) and F = (Fy,, B/, M) be objects in pro-SPEC.
Let (fu.) : E — F be a level mapping. Levelwise special cofibre sequences

E, Iy F, 9 F, Uy, CE, induce the sequence E U g 9 p =

(Fu Uy, CEuy vy, M), where v,/ = F Us, CEw — F, Uys, CEy, is the
map determined by «, and B,,/. The sequence G - H — K in pro-SPEC
is called a cofibre sequence if there is the following commutative diagram in
pro-HSPEC:

G—H —K

L

EFE——F——>D
Here the bottom row is the sequence represented by some levelwise special
cofibre sequences, and the vertical arrows are isomorphisms in pro- HSPEC.

THEOREM 5.1. Let G — H — K be a cofibre sequence in pro- HSPEC
such that G, H, and K are finite dimensional. Then, for every compact
Hausdorff space X, the following inequalities hold:

1) G-dimpg X < max{G-dimg X, G-dimg X},

2) G-dimg X < max{G-dimg X, G-dimg X + 1},

3) G-dimg X < max{G-dimg X — 1, G-dimpy X}.

PROOF. For every closed subset A of X, there is an exact sequence in
pro-Ab:

G"(XUCA) - H" (X UCA) - K"(X UCA)
- G"T(XUCA) - H""H (X UCA) — K" (X UCA).

The inequalities in 1), 2) and 3) follow from the exactness of this sequence
and Theorem 4.3. O
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PROPOSITION 5.2. Let Z be a space.

1) If G-dimz X > k, then G-dimswx; X = G-dimz X — k for every space
X.
2) Ifg-dimy, X > k, then g-dimy. , X = g-dim, X —k for every space X .

PRrROOF. The two equalities follow from the fact that if a = (o)) :
E(Z) - E = (E,, o], M) is a generalized HSPEC-expansion of Z, then
SPa = ([Fa,)) : BE(X%Z) —» SFE = (SFE,, [Z*a,], M) is a generalized
HSPEC-expansion of ¥¥Z, where r : Z — Z is an HCW - expansion of Z. Here
note (X¥E,)m—r = (E,)m for m € Z and k € Z. O

PROPOSITION 5.3. Let Z be a space, X a compact Hausdorff space, and
Y a compact metric space. Then we have

1) g-dimy.,z; X < g-dim, X AY,
2) G-dimy«prz X < G-dimz X AY.

Here Y* is the CW spectrum dual to Y in Shgpec.

PROOF. Let A be a closed subset of X. Let a = ([ov,]) : E(Z) —
E = (E,,[auy], M) is a generalized HSPEC-expansion of Z, and let p =
([pa]) + X = X = (X, [pax],A) be an HSPEC-expansion of X such that
plA = ([pal4]) : A = A = (Ax, [pax|Ax], A) is an HSPEC-expansion of A.
Alsolet ¢ = ([¢;]) : Y = Y = (Y3, [¢ii+1]) be an HSPEC-expansion of Y.

For each positive integer ¢ and p € M, there exist a finite CW spectrum

Y;* and the following commutative diagram for each A € A:

ENNXANY;) == [E(XA AY3),S"E,] —= [E(A\ A Y;), 5" E,] == El"(Ay A Y))

[E(X2), X" Eu NY/'] — [E(A), " By A Y]

The horizontal maps are induced by the inclusion map iy : Ay — X, and the
vertical maps are isomorphisms. All those maps are natural with repect to
maps pax Ao - X AYy — X AY)y and oy - By — B, For each p € M,
there exists a CW spectrum Y™, which is the union of increasing sequence of
finite CW spectra which are homotopy equivalent to Y;* (see [14, Theorem
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4.1]), and there exists the following commutative diagram:

"X AY) EMANY)

c(ohr)nEm (XA NY)) c(o)\lignEL”(AA/\Y;)

colim [E(X2), (5" E,.) A Y] ——= colim [E(4,). (E"E,) A Y,

K

cog\im[E(X)\) (XmE )/\Y*]—>co£im[ (Ax), E™E,) NY™]

(Bu NY*)™(X) (E, NY*)™(A)

Moreover, for p < p’, there exists the following commutative diagram:

B (inly)
EZ“,’(X/\Y) EZ“,’(A/\Y)
- B (inly)
EM(X AY) E(ANY) ~
(BT AY )™ (i)
~ (B, AY™)™(X) (B, AY*)™(A
QMV k /
(a Aly % )m (A)
(B AY )™ () pp! Y

(Ep A Y ™)™ (X) (Ep AY™)™(A)

Here i : A — X is the inclusion map. By tracing the diagram, we see that

(5.1) Im((oup )m(ANY)) C Im(EL”(i Aly))
implies
(5.2) (et A Ly=)m(A)) € Im((E AY*)™(3)).

213

Now suppose that g-dim, X AY < n. Let A be a closed subset of X, and

m > n. Also let € M. Then, there exists p' > p satisfying (5.1). So, (5.

holds for the same p’. Hence g-dimy.,, X < n.

2)

Suppose that G-dimz X AY < n. Let m > n, and let u € M. Then there
exists p' > p satisfying (5.1) for every closed subset A of X, which implies
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that (5.2) holds with the same p and p’ for every closed subset A of X. Hence
G—dimy*/\z X S n. |

Generalized cohomological dimensions g-dimp and G-dimg have the
continuity property with respect to their coefficients.

THEOREM 5.4. Let E = (E,, o], M) be an object in pro- HSPEC. If
for every p € M, there exists ' > p such that G-dimpg,, X(= g—dimE“/ X) <
n, then g-dimg X < G-dimg X < n.

PRrROOF. It suffices to show G-dimg X < n. Let u € M. Suppose that
w > p and g—dimEM, < n. If Ais a closed subset of X and if m > n, then

EW (i)« EJ}N(X) — EJ}(A) is surjective. Since the diagram

o (@)
B (X) =" B (X)

1%

E;’L(i)l lE;'ﬁ (4)
(et )m (A)

E(A) < E(A)

commutes, then
Im (e )m(A)) S Im(E] ().

Since i/ does not depend of the choice of A, we have G-dimg < n. O

For inverse systems of CW spectra with some additional condition, the
converse of Theorem 5.4 holds.

THEOREM 5.5. Let E = (E,,, [auw], M) be an object in pro- HSPEC with
the following property:

M) For every u € M, there exists 1 > u such that for each p' > p1, there
Iz B> B v
exists a map v : B, — E,v with ay or ~1,.

Then G-dimg, X = g-dimp X < g-dimp X < G-dimg X for every u € M
and for every compact metric space X.

PROOF. Let u € M, and choose 1 > p as in (M). It suffices to show
that g-dimg X < n implies g—dimEu X < n. Suppose g-dimg X < n. Let
A be a closed subset of X, and let m > n. There exist u’ > p1 and a map
r: F, — E, such that

aye or ~1g,, and Im((au)™(A)) € Im((E,)™(i)).
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Then (ay,s)™(A) or™(A) = 1(g,,)m (), and hence (E,)™ (i) : (Eu)™(X) =
(Ey)™(A) is an epimorphism. This shows that g-dimy X < n as required.

(B () < gy x)

(Eu)’”(i)l l(E”l)m(i)
m %W) m
(Bp)™(A) ————= (Bw)™(A)
(ot )m (A)

O

Here we note that property (M) is not invariant under isomorphisms in
pro-HSPEC. Tt is easily seen that property (M) in Theorem 5.5 implies the
stably movability in the sense of [17].

A space Z is said to have property (M) if it admits a generalized HSPEC-
expansion a : F(Z) — E such that E satisfies (M).

EXAMPLE 5.6. The Hawaiian earing Z has property (M). Let ¢ = (¢;) :
Z — Z = (Z;,qi,i+1) be the limit of Z, where Z; is defined as

Z;=Cy V-V (i

where

1\? 1\?
C’j{(:ﬂbm)GRQ : <9313> +5E§<3> } (J=12,...,9),

and @; i+1 : Zi+1 — Z; is defined as
qi,i+1|01 V.-V = idcl\/...vci and,

@i i+1|Cit1 is a homeomorphism of C;11 onto C;.

Then, E(Z) = (E(Z;),[E(gi,i+1)]) has property (M). Indeed, if r : Z; — Z;41
is the inclusion map, then ¢; ;41 or = 1z,. This also implies that the induced
inverse sequence E(Z) satisfies property (M). Here note that this implies that
Z is movable.

LEMMA 5.7. Let K and L be finite simplicial complezes, and let X be a
compact Hausdorff space. Suppose that h : K — L is a simplicial map such
that for every simplex o of L, g-dimp,-1(,)) X < n. Then, if g-dimp ) X <
n, then g-dimpg ) X < n.

Proor. Note that g-dimp ) < n iff for each m > n, every map f :
Yk A — $FMK from a suspension of any closed subset A of X admits a map
f okt X o $kHEM K for some nonnegative integer | such that f|XFtA =
Y!f. Then we can modify the proof of [7, Proposition 1.2] to prove our
assertion. O
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LEMMA 58. Let {K; : i € J} be an arbitrary family of finite CW
complexes. Then, for every compact Hausdorff space X, g-dim \, B(k)X <N
i€J )

if and only if g-dimpxy X <n fori € J.

PROOF. We can prove the assertion similarly to [7, Corollary 1.11], using
Lemma 5.7. O

THEOREM 5.9. Let Z be the Hawaiian earing, and let S = E(SY), the
sphere spectrum. Then G-dimg X = g-dimg X = g-dim, X+1 = G-dimz X+
1 for every compact metric space X .

PRrROOF. Suppose that g-dim, X < n. Then, by Thereom 5.5 we obtain
that g-dimp,) X < n for some i. This together with Proposition 5.8
implies g-dimpgc,) X < n. Since E(C;) = %5, g-dimgg X < n. Thus
G-dimyps X = g-dimyg X < g-dim, X < G-dimyz X. Conversely, suppose
that G-dimps X' < n. Then, G-dimg,;) X < n for every j. By Lemma
5.8, G-dimpz,) X < n for every i. This together with Theorem 5.4
implies G-dimz X < n. Thus G-dimgg X = g-dimyg X = g-dim, X =
G-dimz X. Since g-dimg X —1 = g-dimy,g X and G-dimg X —1 = G-dimgg X
(Proposition 5.2), we have the equalities in the assertion. O

6. GENERALIZED COHOMOLOGICAL DIMENSION WITH RESPECT TO
APPROXIMATELY PERFECTLY CONNECTED SPACES

A CW spectrum FE is said to be connected provided for every n € Z,
klim itk (Enyr) = 0 for ¢ < n. A connected CW spectrum is perfectly
—00

connected provided for every n > 0, the (n + 1)-skeleton E,(Inﬂ) of the CW
complex F, is an n-dimensional sphere and for every n < 0, E,, is a singleton
[6].

A space X is said to be approximately perfectly connected provided
X admits a generalized HSPEC-expansion o = ([ay]) : E(X) — E =
(Ex, [pan], A) such that every E) is a perfectly connected CW spectrum.

EXAMPLE 6.1. Every compact metric space which admits an inverse limit
p=(py): X = X = (Xy,pan,\) with Xy = S is approximately perfectly
connected.

Generalizing the result that the generalized cohomological dimension with
respect to a perfectly connected CW spectrum is bounded above by the
covering dimension [6, Lemma 1], we show that this holds for the generalized
cohomological dimension with respect to approximately perfectly connected
spaces.

PRrROPOSITION 6.2. If Z is an approximately perfectly connected space,
then
g-dim, X < G-dimz X < dim X.
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PRrROOF. It suffices to show G-dimyz X < dim X. Z admits a generalized
HSPEC-expansion o = ([a,]) : E(Z) = E = (Ey, [ouu], M) such that each
E, is a perfectly connected CW spectrum. By [5, Lemma 1], G-dimg, X <
dim X. By Theorem 5.4, we have G-dimz X < dim X. O

The generalized cohomological dimension with respect to a perfectly
connected CW spectrum coincides with the covering dimension if the space
has finite covering dimension ([6, Theorem 1]). We show in the following
that this holds for the generalized cohomological dimension with respect to
approximately perfectly connected spaces.

THEOREM 6.3. If Z is approximately perfectly connected, then for every
finite-dimensional compact Hausdorff space X,

g-dim, X = G-dimz X = dim X.

We can generalize the technique used for [6, Theorem 1], which is based
on the following lemma ([6, Lemma 2]).

LEMMA 6.4. Leti: S™ — QFXFS™ be the natural embedding, i.e., i is the
map induced by the map j : S™ — C(S*, S* AS™) defined by j(z)(t) = [(t, )],
the equivalence class represented by (t,z) € S* x S™. For every map f : X —
QFSFS™ from a compact metric space X with dim X = n + 1, there exists a
homotopy H : X x I — QFX*S™ such that

Ho=f — ImH; Ci(S"),  fIf7I6(S™) = Half 7' (i(S™)).

PrOOF OF THEOREM 6.3. Suppose that dim X =n+1 and g-dim, X <
n. Fix p € M, and let A be a closed subset of X. Then, there exists
p' > p such that every map f: A = Q°(E, )ntoc admits a map f:X -
Q% (E, ) ioo With f]lA = Q2 (a,) o f. Now let f: A — S = (B, )™ be
a map. Then f representes a map A — Q®°(Ey )ntoo. S0, there exists a map
X = Q°(Eu)nyoo such that flA = Q% (au,)o f and f(X) C Q¥ (E,)nix
for some k > 0. Then there is an associated map ¢ : X x Sk — (E.)ntk- But,

since dim X = n+ 1, there exists a map ¥ : X x S*¥ — (EM)SITH) = Stk =
Y¥S™ such that ¢ ~ v as maps (X x Sk, A x S¥) — (£*8™ S™). Then 1
induces amap £ : X — Q¥Y¥S" guch that £ ~ f as maps into QF(E,)n+k, and
£|A >~ flA = Q°(ayuy) o f. By Lemma 6.4, there exists a map 7 : X — S™
such that n ~ & rel. A. The map 7 : X — S™ satisfies n|A = f. This shows
dim X < n, contradicting to the assumption that dim X = n + 1. O

The generalized cohomological dimension with respect to a perfectly
connected -spectrum is bounded below by the integral cohomological
covering dimension ([6, Theorem 2]). We show in the following theorem that
an analogous result holds for the generalized cohomological dimension with
respect to approximately perfectly connected spaces with some additional
condition.



218 T. MIYATA

THEOREM 6.5. If Z is an approzimately perfectly connected space with
property (M) (see Theorem 5.5), then c-dimz X < g-dimy, X for every
compact metric space X .

PRrROOF. By Theorem 5.5, there exists a perfectly connected CW spectrum

E such that g-dimp X < g-dim, X. By [5, Theorem 2], c-dimz X <
g-dimg X. The two inequalities imply that c-dimz X < g-dim, X as required.
O

Recall the construction of Kahn continuum ([11], see also [13, Example
1, p. 153]). J. F. Adams ([1]) constructed a finite polyhedron P and a map
v : X"P — P for some positive integer r such that for every positive integer
m, the composition

Yo (2™y) o (82 ) o0 (R HTy) . P 4 P
is essential. The Kahn continuum Z is the limit of the inverse sequence
r 2r
PyrpEinrpi ..
Then Z is not stable shape equivalent to a point.

The following shows that the condition in Theorem 6.5 that Z is
approximately perfectly connected is essential.

THEOREM 6.6. Let Z be the Kahn continuum. Then, for every finite
dimensional compact Hausdorff space X, g-dim, X = 0.

PROOF. Indeed, let n = dim X, and let m be a positive integer. Take
m’ > m such that m'r > n. Let A be a closed subset of X. Then there
exists an HCW -expansion p = ([py]) : X = X = (X, [pan],A) of X such
that each X, is a finite polyhedron with dim X, < n, and the restriction
plA = ([pal4]) : A - A = (A : [pax|Ax], A) is an HCW - expansion of A,
where every Ay is a finite polyhedron. Let A € A, and let f : E(4)) —
E(Eml’“P) be a map between CW spectra. Since A) is a finite polyhedron, f
is represented by a map f’: A\ — L™ TR P for some nonnegative integer
k. Since dim¥X*A) < n+k < m/r + k, f’ is inessential, and there exists a
map f': SF X\ — 7R P such that f/|SFAy = f. Then the composition

zmrJrk

(m+1)r+k,y 0---0 z(mlfl)rJrk,y o f/

>
represents a map f : E(Xy) — E(X"" P) such that

foE(ix) = BE(E™HEy o (mtUrthy oo im0tk o f,
where iy : Ay — X is the inclusion map. This shows that g-dim, X =0. 0O

REMARK 6.7. Note that each coordinate CW spectrum E(X""P) is
connected, i.e., klim Tk (ZTRTP) = 0 for each i < n, but not perfectly
— 00

connected.
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The Kahn continuum Z is weak stable shape equivalent to a point, i.e.,

pro-m,(Z) = 0 for every n. In general, any space that is weak stable shape
equivalent to a point satisfies the assertion of Theorem 6.6.

(1]
(2]
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