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STRONG CONVERGENCE FOR WEIGHTED SUMS OF

ρ∗-MIXING RANDOM VARIABLES

Yongfeng Wu and JiangYan Peng

Tongling University and Soochow University, China

Abstract. The authors discuss the strong convergence for weighted
sums of sequences of ρ

∗-mixing random variables. The obtained results
extend and improve the corresponding theorem of Bai and Cheng [Bai,
Z. D., Cheng, P. E., 2000. Marcinkiewicz strong laws for linear statistics.
Statist. Probab. Lett., 46, 105-112]. The method used in this article differs
from that of Bai and Cheng (2000).

1. Introduction

Let {X,Xn, n ≥ 1} be a sequence of random variables and {ani, 1 ≤
i ≤ n, n ≥ 1} be an array of constants. The weighted sums

∑n
i=1 aniXi

are used widely in some linear statistics, such as least squares estimators,
nonparametric regression function estimators and jackknife estimates. There-
fore, the strong convergence for the weighted sums has been a attractive
research topic in the recent literature. We refer the reader to [2, 7, 9, 10, 13,
19, 20, 22, 24, 25, 28].

Bai and Cheng ([2]) studied the following Marcinkiewicz-Zygmund strong
law.

Theorem 1.1. Suppose 1/p = 1/α+1/β for 1 < α, β < ∞ and 1 < p < 2.
Let {X,Xn, n ≥ 1} be a sequence of i.i.d. random variables with mean 0, and

let {ani, 1 ≤ i ≤ n, n ≥ 1} be an array of constants satisfying

(1.1) Aα = lim
n→∞

supAα,n < ∞, Aα
α,n =

n
∑

i=1

|ani|
α/n.
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If E|X |β < ∞, then

(1.2) n−1/p
n
∑

i=1

aniXi → 0 a.s.

Hsu and Robbins ([12]) introduced the following concept of the complete
convergence. A sequence of random variables {Un, n ≥ 1} is said to converge
completely to a constant θ if

∞
∑

n=1

P (|Un − θ| > ε) < ∞ for all ε > 0.

By the Borel-Cantelli lemma, it is easily seen that the above result implies
that Un → θ almost surely. Therefore, the complete convergence is a
very important tool in establishing almost sure convergence of summation
of random variables as well as weighted sums of random variables.

Let {Xi, i ≥ 1} be a sequence of random variables defined on a fixed
probability space (Ω,F , P ). Write FS = σ(Xi, i ∈ S ⊂ N). Given σ-
subalgebras B, R of F , let

ρ(B,R) = sup
X∈L2(B),Y ∈L2(R)

|E[XY ]− EX ·EY |

(VarX ·VarY )1/2
.

Define the ρ∗-mixing coefficients by

ρ∗(k) = sup{ρ(FS ,FT ) : finite subsets S, T ⊂ N, such that dist (S, T ) ≥ k},

k ≥ 0.

Definition 1.2. A sequence of random variables {Xi, i ≥ 1} is said to

be a ρ∗-mixing sequence if there exists k ∈ N such that ρ∗(k) < 1.

The concept of coefficient ρ∗ was introduced by Moore ([15]) and Bradley
([3]) was the first who introduced the concept of ρ∗-mixing random variables
to limit theorems. Since the article of Bradley ([3]) appeared, many authors
studied the convergence properties for sequences or arrays of ρ∗-mixing
random variables, such as Peligrad and Gut ([16]), Utev and Peligrad ([21]),
Gan ([10]), Cai ([5, 6]), Kuczmaszewska ([14]), An and Yuan ([1]), Wu and
Jiang ([23]), Qiu ([17]), Wu et al. ([26]), Budsaba et al. ([4]), Wang et al.
([22]), Guo and Zhu ([11]).

In this work, we study the complete convergence and Marcinkiewicz-
Zygmund strong law for weighted sums of ρ∗-mixng random variables. We
extend and improve Theorem 1.1 in three directions.

(i) We consider ρ∗-mixng instead of i.i.d.
(ii) Under the same conditions of Theorem 1.1 for α < β, we get (3.1)

which is much stronger than (1.2).
(iii) Under the same conditions of Theorem 1.1 for α ≥ β, we get (3.7)

which is also much stronger than (1.2).
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In addition, under some similar conditions of Theorem 1.1 for α ≥ β, we prove
that (3.1) remains true.

Throughout this paper, the symbol C represents positive constants whose
values may change from one place to another. For a finite set A the symbol
♯(A) denotes the number of elements in the set A.

2. Preliminaries

We present a concept of stochastic domination, which is a slight generali-
zation of identical distribution. A sequence of random variables {Xn, n ≥ 1} is
said to be stochastically dominated by a random variableX (write {Xn} ≺ X)
if there exists a constant C > 0 such that

sup
n≥1

P (|Xn| > x) ≤ CP (|X | > x), ∀x > 0.

Stochastic dominance of {Xn, n ≥ 1} by the random variable X implies
E|Xn|

p ≤ CE|X |p if the p-moment of |X | exists, i. e., if E|X |p < ∞.
To prove our main results, we need the following two lemmas.

Lemma 2.1 ([21]). Suppose N is a positive integer, 0 ≤ r < 1, and

q ≥ 2. Then there exists a positive constant C = C(N, r, q) such that for a

sequence {Xi, i ≥ 1} of random variables satisfying ρ∗(N) ≤ r, EXi = 0 and

E|Xi|
q < ∞ for every i ≥ 1, the following holds

E max
1≤j≤n

∣

∣

∣

j
∑

k=1

Xk

∣

∣

∣

q

≤ C

{ n
∑

k=1

E|Xk|
q +

(

n
∑

k=1

EX2
k

)q/2
}

for all n ≥ 1.

Lemma 2.2. Let {Xn, n ≥ 1} be a sequence of random variables with

{Xn} ≺ X. Then there exists a constant C such that, for all q > 0 and

x > 0,

(i) E|Xk|
qI(|Xk| ≤ x) ≤ C{E|X |qI(|X | ≤ x) + xqP (|X | > x)},

(ii) E|Xk|
qI(|Xk| > x) ≤ CE|X |qI(|X | > x).

This lemma can be easily proved by using integration by parts. We omit
the details.

3. Main results and proofs

In this section, we state our main results and their proofs.

Theorem 3.1. Suppose 1/p = 1/α+1/β for 1 < α, β < ∞ and 1 < p < 2.
Let {Xn, n ≥ 1} be a sequence of ρ∗-mixing random variables with EXn = 0
and {Xn} ≺ X, and let {ani, 1 ≤ i ≤ n, n ≥ 1} be an array of constants

satisfying (1.1). Then the following statements hold:
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(i) if α < β, then E|X |β < ∞ implies

(3.1)

∞
∑

n=1

P

(

max
1≤j≤n

∣

∣

∣

∣

j
∑

i=1

aniXi

∣

∣

∣

∣

> n1/pε

)

< ∞ for all ε > 0,

(ii) if α = β, then E|X |β log+ |X | < ∞ implies (3.1),
(iii) if α > β, then E|X |α < ∞ implies (3.1).

Proof. We first present two inequalities which will be very useful in the
following proofs. From (1.1), without loss of generality, we may assume that
∑n

i=1 |ani|
α ≤ n. Then by the Hölder inequality, for any 1 ≤ γ < α,

(3.2)

n
∑

i=1

|ani|
γ ≤

( n
∑

i=1

|ani|
γ α

γ

)

γ
α
( n
∑

i=1

1

)

α−γ
α

≤ n.

By
∑n

i=1 |ani|
α ≤ n, for any γ ≥ α,

(3.3)

n
∑

i=1

|ani|
γ =

n
∑

i=1

|ani|
α|ani|

γ−α ≤

n
∑

i=1

|ani|
α

( n
∑

i=1

|ani|
α

)

γ−α
α

≤ n
γ
α .

Note that ani = a+ni − a−ni, where a+ni = max{ani, 0} and a−ni =
max{−ani, 0}. To prove (3.1), it suffices to show that for every ε > 0

∞
∑

n=1

P

(

max
1≤j≤n

∣

∣

∣

∣

j
∑

i=1

a+niXi

∣

∣

∣

∣

> n1/pε

)

< ∞

and

∞
∑

n=1

P

(

max
1≤j≤n

∣

∣

∣

∣

j
∑

i=1

a−niXi

∣

∣

∣

∣

> n1/pε

)

< ∞.

Therefore, without loss of generality, we may assume that ani ≥ 0. For fixed
n ≥ 1, define Yni = aniXiI(ani|Xi| ≤ n1/p), Zni = aniXi − Yni. Then

∞
∑

n=1

P

(

max
1≤j≤n

∣

∣

∣

∣

j
∑

i=1

aniXi

∣

∣

∣

∣

> n1/pε

)

≤

∞
∑

n=1

P
(

max
1≤i≤n

ani|Xi| > n1/p
)

+

∞
∑

n=1

P

(

max
1≤j≤n

∣

∣

∣

∣

j
∑

i=1

Yni

∣

∣

∣

∣

> n1/pε

)

= : I1 + I2.
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Let An =
∑n

i=1 |ani|
α, then

I1 ≤

∞
∑

n=1

n
∑

i=1

P
(

ani|Xi| > n1/p
)

≤ C

∞
∑

n=1

n
∑

i=1

P
(

ani|X | > n1/p
)

≤ C

∞
∑

n=1

n−α/p
n
∑

i=1

aαniE|X |αI
(

ani|X | > n1/p
)

= C

∞
∑

n=1

n−α/p
n
∑

i=1

aαniE|X |αI
(

|X |α > nα/pa−α
ni

)

≤ C

∞
∑

n=1

n−α/p
n
∑

i=1

aαniE|X |αI
(

|X |α > nα/pA−1
n

)

( since An ≤ n )

≤ C
∞
∑

n=1

n−α/βE|X |αI
(

|X | > n1/β
)

( since 1/p = 1/α+ 1/β )

= C

∞
∑

n=1

n−α/β
∞
∑

m=n

E|X |αI
(

m < |X |β ≤ m+ 1
)

= C
∞
∑

m=1

E|X |αI
(

m < |X |β ≤ m+ 1
)

m
∑

n=1

n−α/β.

Note that

m
∑

n=1

n−α/β ≤

{

Cm1−α/β for α < β,
C logm for α = β,
C for α > β.

Hence we get

I1 ≤

{ C E|X |β for α < β,
C E|X |β log+ |X | for α = β,
C E|X |α for α > β.

Taking into account the conditions of Theorem 3.1 we obtain I1 < ∞.
Next we prove I2 < ∞. We first prove that

(3.4) n−1/p max
1≤j≤n

∣

∣

∣

∣

j
∑

i=1

EYni

∣

∣

∣

∣

→ 0 as n → ∞.

Note that we always have E|X |α < ∞ and E|X |β < ∞ under the assumptions
of Theorem 3.1 By EXn = 0, Lemma 2.2, 1/p = 1/α+ 1/β and E|X |β < ∞,
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we get

n−1/p max
1≤j≤n

∣

∣

∣

∣

j
∑

i=1

EYni

∣

∣

∣

∣

= n−1/p max
1≤j≤n

∣

∣

∣

∣

j
∑

i=1

EZni

∣

∣

∣

∣

≤ n−1/p
n
∑

i=1

aniE|Xi|I(ani|Xi| > n1/p)

= C n−1/p
n
∑

i=1

aniE|X |I(ani|X | > n1/p) ( similar to I1 < ∞ )

≤ C n−1/p
n
∑

i=1

aniE|X |I(|X | > n1/β) ( by (3.2) and β > 1 )

≤ C n−1/p+1/βE|X |βI(|X | > n1/β)

= C n−1/αE|X |βI(|X | > n1/β) → 0 as n → ∞.

Then it follows by (3.4) that for n large enough

max
1≤j≤n

∣

∣

j
∑

i=1

EYni

∣

∣ < n1/pε/2.

Let q > max{α, β, 2p/(2− p)}. Then the Markov inequality and Lemma 2.1
yield

I2 ≤ C

∞
∑

n=1

P

(

max
1≤j≤n

∣

∣

∣

∣

j
∑

i=1

(Yni − EYni)

∣

∣

∣

∣

> n1/pε/2

)

≤ C

∞
∑

n=1

n−q/pE max
1≤j≤n

∣

∣

∣

∣

j
∑

i=1

(Yni − EYni)

∣

∣

∣

∣

q

≤ C

∞
∑

n=1

n−q/p
n
∑

i=1

E|Yni|
q + C

∞
∑

n=1

n−q/p

( n
∑

i=1

EY 2
ni

)q/2

= : I3 + I4.

By Lemma 2.2, we have

I3 ≤ C

∞
∑

n=1

n−q/p
n
∑

i=1

aqniE|X |qI(ani|X | ≤ n1/p)

+ C

∞
∑

n=1

n
∑

i=1

P (ani|X | > n1/p)

= : I5 + I6.
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By a similar argument as in the proof of I1 < ∞, we can get I6 < ∞.
Then we prove I5 < ∞. For j ≥ 1 and n ≥ 1, let

Inj =
{

1 ≤ i ≤ n : n1/α(j + 1)−1/α < ani ≤ n1/αj−1/α
}

.

Then {Inj , j ≥ 1} are disjoint,
⋃

j≥1 Inj ⊆ {1, 2, · · · , n} for all n ≥ 1 from
∑n

i=1 a
α
ni ≤ n. Note that for all k ≥ 1, we have

n ≥
n
∑

i=1

aαni =
∞
∑

j=1

∑

i∈Inj

aαni ≥
∞
∑

j=1

♯(Inj)n (j + 1)−1

≥

∞
∑

j=k

♯(Inj)n (j + 1)−1 =

∞
∑

j=k

♯(Inj)n (j + 1)−q/α(j + 1)q/α−1

≥
∞
∑

j=k

♯(Inj)n (j + 1)−q/α(k + 1)q/α−1.

Hence for all k ≥ 1, we have

(3.5)

∞
∑

j=k

♯(Inj) j
−q/α ≤ C (k + 1)1−q/α.

Then

I5 = C

∞
∑

n=1

n−q/p
∞
∑

j=1

∑

i∈Inj

aqniE|X |qI(ani|X | ≤ n1/p)

≤ C
∞
∑

n=1

n−q/p
∞
∑

j=1

♯(Inj)n
q/αj−q/αE|X |qI(|X | ≤ n1/p−1/α(j + 1)1/α)

= C

∞
∑

n=1

n−q/β
∞
∑

j=1

♯(Inj)j
−q/αE|X |qI(|X | ≤ n1/β(j + 1)1/α)

= C

∞
∑

n=1

n−q/β
∞
∑

j=1

♯(Inj)j
−q/αE|X |qI(|X | ≤ n1/β)

+ C

∞
∑

n=1

n−q/β
∞
∑

j=1

♯(Inj)j
−q/α

·

j
∑

k=1

E|X |qI(n1/βk1/α < |X | ≤ n1/β(k + 1)1/α)

= : I∗5 + I∗∗5 .
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By (3.5) and q > β we have

I∗5 ≤ C

∞
∑

n=1

n−q/βE|X |qI(|X | ≤ n1/β)

= C

∞
∑

n=1

n−q/β
n
∑

m=1

E|X |qI(m− 1 < |X |β ≤ m)

= C

∞
∑

m=1

E|X |qI(m− 1 < |X |β ≤ m)

∞
∑

n=m

n−q/β

≤ C

∞
∑

m=1

m1−q/βE|X |qI(m− 1 < |X |β ≤ m)

≤ CE|X |β < ∞.

By (3.5) and q > α we obtain

I∗∗5 = C

∞
∑

n=1

n−q/β
∞
∑

k=1

E|X |qI(n1/βk1/α < |X | ≤ n1/β(k + 1)1/α)

·
∞
∑

j=k

♯(Inj)j
−q/α

≤ C

∞
∑

n=1

n−q/β
∞
∑

k=1

(k + 1)1−q/αE|X |qI(n1/βk1/α < |X | ≤ n1/β(k + 1)1/α)

≤ C

∞
∑

n=1

n−α/β
∞
∑

k=1

E|X |αI(n1/βk1/α < |X | ≤ n1/β(k + 1)1/α)

= C

∞
∑

n=1

n−α/βE|X |αI(|X | > n1/β) ( similar to I1 < ∞ )

≤

{ C E|X |β < ∞ for α < β,
C E|X |β log+ |X | < ∞ for α = β,
C E|X |α < ∞ for α > β.

Next we prove I4 < ∞. By Lemma 2.2 and q > 2p/(2− p) > 2, we have

I4 ≤ C

∞
∑

n=1

n−q/p

( n
∑

i=1

a2niEX2I(ani|X | ≤ n1/p)

+ n2/p
n
∑

i=1

P (ani|X | > n1/p)

)q/2

≤ C

∞
∑

n=1

n−q/p

( n
∑

i=1

a2niEX2I(ani|X | ≤ n1/p)

)q/2



STRONG CONVERGENCE FOR WEIGHTED SUMS 229

+ C
∞
∑

n=1

( n
∑

i=1

P (ani|X | > n1/p)

)q/2

= : I7 + I8.

By a similar argument as in the proof of I1 < ∞ and E|X |β < ∞, we have

n
∑

i=1

P (ani|X | > n1/p) ≤ C

n
∑

i=1

P (|X | > n1/p−1/α)

≤ CE|X |βI(|X | > n1/β) → 0 as n → ∞.

Hence, for n large enough
∑n

i=1 P (ani|X | > n1/p) < 1 holds. Therefore,
similarly to the proof of I1 < ∞, we can get

I8 ≤ C

∞
∑

n=1

n
∑

i=1

P (ani|X | > n1/p) < ∞.

Finally, we prove I7 < ∞. From 1/p = 1/α + 1/β and 1 < p < 2, we
know that α ≤ 2 and β ≤ 2 can not hold simultaneously. Hence we need only
to consider the following three cases.

Case 1: α < 2 < β
By (3.3), q > β, E|X |β < ∞ and 1/p = 1/α+ 1/β, we have

I7 ≤ C

∞
∑

n=1

n−q/p+q/α
(

EX2
)q/2

= C

∞
∑

n=1

n−q/β
(

EX2
)q/2

< ∞.

Case 2: β < 2 < α
By (3.2), E|X |α < ∞ and q > 2p/(2− p), we have

I7 ≤ C

∞
∑

n=1

n−q/p+q/2
(

EX2
)q/2

< ∞.

Case 3: α ≥ 2 and β ≥ 2
By (3.2), E|X |α < ∞ and q > 2p/(2− p), we have

I7 ≤ C

∞
∑

n=1

n−q/p+q/2
(

EX2
)q/2

< ∞.

The proof is completed.

By the Borel-Cantelli lemma, we get directly the following corollary.

Corollary 3.2. Under the conditions of Theorem 3.1,

(3.6) n−1/p max
1≤j≤n

∣

∣

∣

∣

j
∑

i=1

aniXi

∣

∣

∣

∣

→ 0 a.s.
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Remark 3.3. Since (3.1) implies (3.6) and (3.6) is much stronger than
(1.2), Theorem 3.1 and Corollary 3.2 extend and improve Theorem 1.1 for the
case α < β.

Theorem 3.4. Suppose 1/p = 1/α + 1/β for 1 < β ≤ α < ∞ and

1 < p < 2. Let {Xn, n ≥ 1} be a sequence of ρ∗-mixing random variables with

EXn = 0 and {Xn} ≺ X, and let {ani, 1 ≤ i ≤ n, n ≥ 1} be an array of

constants satisfying (1.1). If E|X |β < ∞, then

(3.7)

∞
∑

n=1

n−1P

(

max
1≤j≤n

∣

∣

∣

∣

j
∑

i=1

aniXi

∣

∣

∣

∣

> n1/pε

)

< ∞ for all ε > 0.

Proof. Following the notations of Yni and Zni we have

∞
∑

n=1

n−1P

(

max
1≤j≤n

∣

∣

∣

∣

j
∑

i=1

aniXi

∣

∣

∣

∣

> n1/pε

)

≤

∞
∑

n=1

n−1P
(

max
1≤i≤n

ani|Xi| > n1/p
)

+
∞
∑

n=1

n−1P

(

max
1≤j≤n

∣

∣

∣

∣

j
∑

i=1

Yni

∣

∣

∣

∣

> n1/pε

)

= : I9 + I10.

Note that E|X |β < ∞ implies
∑∞

n=1 P (|X | > n1/β) < ∞. Then by a
similar argument as in the proof of I1 < ∞, we have

I9 ≤ C

∞
∑

n=1

n−1
n
∑

i=1

P
(

ani|X | > n1/p
)

≤ C

∞
∑

n=1

n−1
n
∑

i=1

P
(

|X | > n1/p−1/α
)

= C
∞
∑

n=1

P
(

|X | > n1/β
)

< ∞.

Let q > max{β, 2}. Note that (3.4) still holds. Then by the Markov
inequality and Lemma 2.1, it follows that

I10 ≤
∞
∑

n=1

n−1P

(

max
1≤j≤n

∣

∣

∣

∣

j
∑

i=1

(Yni − EYni)

∣

∣

∣

∣

> n1/pε/2

)

≤ C

∞
∑

n=1

n−1−q/pE max
1≤j≤n

∣

∣

∣

∣

j
∑

i=1

(Yni − EYni)

∣

∣

∣

∣

q

≤ C

∞
∑

n=1

n−1−q/p
n
∑

i=1

E|Yni|
q + C

∞
∑

n=1

n−1−q/p

( n
∑

i=1

EY 2
ni

)q/2

= : I11 + I12.
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By q > β > p, β ≤ α and (3.2), we have

I10 = C
∞
∑

n=1

n−1−q/p
n
∑

i=1

aqniE|Xi|
qI(ani|Xi| ≤ n1/p)

≤ C

∞
∑

n=1

n−1−β/p
n
∑

i=1

aβniE|Xi|
βI(ani|Xi| ≤ n1/p)

≤ C

∞
∑

n=1

n−β/pE|X |β < ∞.

Finally, we prove I12 < ∞. As mentioned in the proof of I7 < ∞, we
know that α ≤ 2 and β ≤ 2 can not hold simultaneously. Hence we need only
consider the following two cases. If 2 ≤ β < α, by (3.2) and p < 2, we have

I12 ≤ C

∞
∑

n=1

n−1−q/p+q/2
(

EX2
)q/2

< ∞.

If β < 2 < α, by (3.2) and β > p, we have

I12 = C

∞
∑

n=1

n−1−q/p

( n
∑

i=1

a2niE|Xi|
2I(ani|Xi| ≤ n1/p)

)q/2

≤ C

∞
∑

n=1

n−1−(β−p)q/(2p)
(

E|X |β
)q/2

< ∞.

The proof is completed.

Corollary 3.5. Under the conditions of Theroem 3.4, (1.2) holds.

Proof. Let Sj =
∑j

i=1 aniXi. From (3.7) we have

∞ >

∞
∑

n=1

n−1P
(

max
1≤j≤n

∣

∣Sj

∣

∣ > n
1
p ε

)

=

∞
∑

k=0

2k+1−1
∑

n=2k

n−1P
(

max
1≤j≤n

∣

∣Sj

∣

∣ > n
1
p ε

)

≥
1

2

∞
∑

k=1

P
(

max
1≤j≤2k

∣

∣Sj

∣

∣ > 2
k+1
p ε

)

.

Then by the Borel-Cantelli Lemma,

lim
k→∞

2−
k+1
p max

1≤j≤2k

∣

∣Sj

∣

∣ = 0 a.s.
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For every positive integers n, there exists a positive integer k0 such that
2k0−1 ≤ n < 2k0 . Then

n− 1
p

∣

∣Sn

∣

∣ ≤ max
2k0−1≤n<2k0

n− 1
p

∣

∣Sn

∣

∣

≤ 2
2
p 2−

(k0+1)
p max

1≤j<2k0

∣

∣Sj

∣

∣ → 0 a.s. as k0 → ∞,

which implies (1.2). The proof is completed.

Remark 3.6. Since (3.7) implies (1.2) which is shown in the proof of
Corollary 3.5, Theroem 3.4 and Corollary 3.5 extend and improve Theorem
1.1 for the case α ≥ β.

Conjecture 3.7. The author conjectures that (3.7) in Theroem 3.4 can

be replaced into (3.1). Despite our efforts to prove this conjecture, it is still

an open problem.

Remark 3.8. Compared with the results of Cai ([6, Theorem 2.1]) and
Budsaba et al. ([4, Theorem 1 and 2]), our main results and those of Cai ([6])
and Budsaba et al. ([4]) do not completely overlap with each other, though
the conditions of our results have some similarities to those of Cai ([6]) and
Budsaba et al. ([4]).

Remark 3.9. The crucial tool used in this paper is the Rosenthal-type
inequality (Lemma 2.1) for maximum partial sums of ρ∗-mixing sequence. As
we know, for NA random variables and ϕ-mixing random variables, the above
inequality also holds (see [18, 27] respectively). Therefore, the results in this
paper also remain true for them.
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