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ABSTRACT 

Investigations of energy efficiency of 25 pumps showed wire-to-water efficiencies 

ranging from 30% to 60%, with an average of 47%. Raising the efficiency of just 7 

pumps to the realistic target of 60% would require an initial investment of 126 k€ and 

represent a net present value (profit) of 446 k€ over a 10-year pump lifetime, saving 

8.6 kt of CO2 emissions. The primary measures for raising efficiency are in order of 

priority: 1) improving pre-filtration of raw water to prevent rapid mechanical wear due to 

suspended particles during monsoon, 2) providing training, improved working 

conditions, and better tools and spare parts among pump operators and 3) replacing 

aging, oversized pumps with properly sized pumps operating close to peak efficiency. As 

of January 2014 the results have been confirmed by a Bureau of Energy 

Efficiency-certified energy auditor and the extent and funding of efficiency measures 

implementation is in planning. 
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INTRODUCTION 

Pumps make up 20% of the global electrical energy demand, and 60 to 95% of that of 

drinking water supply systems [1-3]. This use of energy represents 70 to 90% of the life 

cycle cost of a pump, depending on the required head and flow as well as cost of 

maintenance and personnel [4-6]. By comparison, the up-front purchase cost of a new 

pump tends to lie between 3 and 10% of its life cycle costs [7]. This underlines the 

importance of stressing high energy efficiency in the selection of a pump, which ought to 

be the second priority after meeting the drinking water demand. Pumping systems are 

known to have a significant potential for energy efficiency improvements [8-12]. This is 

primarily because it is rather easy to select and operate pumps at low efficiency through 

conservative over dimensioning, changing demand requirements, inefficient flow control 

(bypass or throttle rather than variable speed operation) [13, 14], inefficient pump 

scheduling [15] and negligent or poor maintenance [16]. The energy and cost savings that 

stand to be gained through modification or replacement pumping systems are estimated 

to be as high as 30% [8]. 
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Although according to the literature cited, this topic is well known and well 

researched in Europe and North America, in India this appears not to be the case, despite 

what is likely a large potential. Attention has been given to irrigation pumping systems 

and their energy efficiency [17, 18], but scientific studies specifically on drinking water 

pumping systems are scarce. Past experiences in India [19] and elsewhere have also 

shown that many projects fail to succeed due to problems with an agreeable funding 

solution and effective execution by a team composed of private consultants and public 

water supply company engineers. This paper will analyse the example of the drinking 

water supply pump systems of the hill cities of Srinagar/Pauri and Mussoorie in 

Uttarakhand, India. The goal is to illustrate 1) the current state of energy efficiency, 2) 

the reasons for low efficiency and the corresponding approaches to improving it and 

3) the potential for energy and cost savings and thoughts on how to best achieve them.  

DRINKING WATER SUPPLY IN UTTARAKHAND, INDIA 

In the hill regions of the small North-Indian state of Uttarakhand (Lower and Middle 

Himalaya), drinking water supply is almost exclusively based on surface water. Most 

schemes for small villages are gravity-fed, but approximately 30 large towns (> 5,000 

inhabitants) require additional input of energy via electric motor-driven pumps to lift the 

water to the point of consumption. At the two study areas Srinagar/Pauri and Mussoorie 

horizontal multistage centrifugal pumps are used to lift water as much as 1,700 m from 

rivers and streams to storage tanks, requiring multiple boosting stations and working 

heads up to 600 m for moderate flows up to 120 m
3
/h. As individual pump-motor sets 

have real power demands as high as 200 kW, pumping is very energy intensive and 

comprises > 90% of the electricity demand. The partner water supply organization 

Uttarakhand Jal Sansthan (UJS) pays app. 1 million €/year in electrical energy bills for 

pumping at these two areas alone. 

Figures 1 and 2 show the central raw water extraction station for the hill city Srinagar, 

through which 70,000 people are supplied with approximately 10,000 m
3
/day of drinking 

water. The existing pump sets are exposed to the damaging effects of nature, chief among 

them the annually recurring monsoon with high-turbidity floods of varying intensities. 

The potential for improvement is evident.  

 

    
 

   Figure 1. Single-stage raw water pumps Figure 2. Suction pipes with non-return valves    

  installed on an open platform in Srinagar  in the River Alaknanda 

 

At the second study area in the hill city of Mussoorie, staff and students of the 

University of Applied Sciences Dresden, supported by the contracted Indian certified 

energy auditor, inspected 45 multistage pumps, of which 25 were in operating condition. 

Measurements of flow, pressure rise across the pump (difference between discharge and 
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suction pressures) and electrical power input yielded a mean “wire-to-water” energy 

efficiency of 47%, with values ranging from 30 to 60%. Of the 22 pumps, 10 were over 

dimensioned by a margin greater than 15%, meaning the rated head (as on the nameplate) 

was 15% greater than the actual working head measured during operation using an analog 

pressure gauge. The appearance of the pump and pump house was often an unreliable 

indicator of efficiency (Figure 3), such that examples of relatively efficient pumps were 

also found in unexpected places (Figure 4).  

 

   
 
Figure 3. Pump set 1 at Jinsy II Pump Station, Figure 4. Pump set 6 at Murray Pump 

wire-to-water efficiency of 47%, Mussoorie Station, with an efficiency of nearly 60% 

 

MEASURES FOR AND CHALLENGES AGAINST RAISING EFFICIENCY 

Experience gained during measurements has revealed three primary measures 

necessary for raising the efficiency and the salient challenges that must be overcome to 

implement these measures. 

Pre-treatment 

In many cases there is inefficient or non-existent raw water pre-treatment through 

physical filtration to remove suspended particles (silt and sand). This problem is 

especially severe during monsoon. The internal components of the pumps, which due to 

high head requirements operate predominantly at rotational speeds of 3,000 min
-1

, are 

heavily eroded and rapidly lose efficiency. For example, the raw water pumps in Figure 1 

are normally replaced or completely overhauled every year after monsoon. After 

replacement, they have a total efficiency of 60%, but after one year drop to an average of 

about 30%. This fact is well known among UJS engineers and explains the ubiquitous 

over dimensioning, since the pumps would otherwise be unable to meet their operating 

requirements after just a few years, as has been the case several times in the past. Many 

“clear water” pumps at sites in Mussoorie are also likely affected, which due to their high 

energy consumption compared to the raw water pumps is even more costly. This problem 

can be addressed by superior intake structures (Srinagar) or improved filtration and 

sedimentation (Mussoorie) before the pump inlets as well as erosion-resistant impeller 

materials and surface coatings. 

The main challenge against improving this pre-filtration is designing for the extreme 

flow and high shear stress conditions that develop during monsoon, which require 

structures with well-anchored foundations and a robust superstructure. This requires a 

complex engineering solution and large initial investments, which according to UJS 

engineers are very difficult to obtain. This is due to a culture of short-term planning and 

brought about to a large extent by the difficult climatic conditions, which cause extensive 
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damage to water supply schemes each year and keep the focus on the many recurring 

repairs, rather than allowing for carefully planned schemes with longer lifetimes and 

higher initial investment requirements. 

Training and equipment of pump operators 

Most pump operators possess a low level of training and rely solely on practical 

experiences gained on the job. Their operation and maintenance methods often achieve 

baseline effectiveness, but far from the technical standards common for example in 

Europe. The working conditions with respect to safety (risk of falls, noise level, room 

lighting) are generally in need of improvement. Special tools are rarely available, such 

that complex tasks such as exact alignment of the pump and motor cannot be correctly 

executed. High-quality spare parts such as pump bearings and impellers are more 

expensive and difficult to obtain, such that lower-quality and less-expensive local options 

offer the only feasible solutions to urgent repair needs. These problems can best be 

addressed through intensive and regular training programs for the pump operating staff 

with focus on pump installation and maintenance. This must be accompanied by an 

improvement in the pump station working conditions and availability of appropriate tools 

and selected spare replacement parts. In this way, higher energy efficiency would be a 

positive side-effect.  

Challenges to this include the general opinion that investments in the training of 

low-level workers are not very beneficial, and difficulty in overcoming the institutional 

inertia to change the status quo. In some cases, such as in Srinagar, the pump staff are 

outsourced from other companies and employed on short-term contracts, a fact which 

speaks against investing in their education. In India it is common for lower-level 

employees to display limited loyalty to their companies and to seek and pursue the best 

economic opportunity available. 

Systematic pump replacement 

Once the first measures have been implemented, the pumps should be systematically 

replaced, beginning with the oldest, least efficient pumps with the highest electric power 

consumption and operating hours. The selection of new pumps must be done properly to 

avoid unnecessary over dimensioning. Similarly, the operating regime must be taken into 

account in the pump controls, for example such that in the case of widely varying pump 

duty requirements the efficiency is kept at a maximum. This can be accomplished for 

example by a variable frequency drive in place of a typical throttle valve, or an effective 

parallel operation of one high-flow and one low-flow pump in place of two identical 

pumps. 

Other technical measures identified by the certified energy auditor [20] also show 

promise, such as compensating for low power factors using capacitor banks, adjusting the 

contracted maximum electrical load (in kW), and drawing power at higher voltage. These 

proposed measures will be included in the planning for the implementation of energy 

efficiency improvement measures in 2014. 

POTENTIAL FOR COST SAVINGS AND CO2 EMISSION REDUCTION 

Pump replacement vs. continued operation of existing pumps 

To illustrate the savings potential for all 25 pumps measured in Mussoorie, a 

conservative cost-benefit analysis was conducted using a dynamic cost comparison. In 

the improved case, it was assumed that all pumps were replaced with new pumps from 

the German manufacturer KSB (also widely available in India), which were chosen using 
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their proprietary internet-based tool “KSB EasySelect” according to the operating 

requirements measured with open throttle valve. The pump lifetime (running time 

without complete replacement or major repair) was set to a maximum of 20 years and a 

specific price per capacity (€/[m×l/min]) for purchase, installation and of the new pump, 

which varied as a falling power function. The means that the specific price decreases 

according to the following function: 

 

                                                             (1) 

 

This was based on recent price quotes for 7 pumps received from UJS. As an example, 

a pump with a required flow of 1,200 l/min and a head of 315 m would have a specific 

investment cost of 0.0522 €/(m×l/min) and incur a total investment cost of 19,750 €. It 

was assumed that the efficiency of the new pumps would linearly degrade throughout 

their lifetime, such that in the final year of operation they reach the current efficiency of 

the pump to be replaced. The initial electricity price was 5.4 ct €/kWh with a rapid price 

increase of 13.3%/year (based on pump station electricity bills from 2010 to 2013). A 

nominal interest rate of 7.75% was used (based on World Bank data). In the base case, it 

was assumed that the all pumps would continue to be operated with an unchanging 

efficiency. These two cases were compared based on their net present values. 

Figure 5 shows the progression of the net present values for each pump with respect 

to pump lifetime, calculated by subtracting the net present value of the base case from 

that of the improved case. The exponentially rising curves show the influence of the very 

high electricity price increase and make it clear that a long lifetime (for example through 

improved maintenance) can yield especially large cost savings. The replacement of 7 

pumps (black solid lines) leads to particularly good economic viability owing to their 

high operating hours and electrical power consumption, and results in payback periods 

(intersection of the net present value lines with the x-axis) from 4.5 years to 1 year. Only 

4 of 25 the replacements do not pay for themselves within the simulated maximum 

20-year pump lifetime. 

 

 
Figure 5. Economic viability of the replacement of the existing 22 pumps in Mussoorie with new 

pumps, as shown by the difference in net present value between pump replacement (improved 

case) and continued operation of existing pumps (base case). k€ = thousand Euro 
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Emission reduction 

Improvements in pumping energy efficiency can yield not only large cost savings, but 

also substantial CO2 emissions reduction from imported electricity from outside the state 

of Uttarakhand, of which 67% is generated using fossil fuels (Figure 6). Based on figures 

from the Central Electricity Authority [24] for tons of CO2 output per MWh of coal (1.08 

t/MWh) and gas (0.46 t/MWh) burned in North Indian power plants, and the mixture of 

imported fossil-based electricity into Uttarakhand (55% coal, 12% gas), the conversion 

factor is 0.968 t/MWh. This assumes that only fossil-based electricity is replaced by 

energy efficiency improvements, as per a federal policy that favours the generation from 

other sources such as hydropower.  

 

 
 

Figure 6. Electrical energy quantities generated in Uttarakhand, 2010-11, broken down according 

to fuel type and source of supply, whether in-state or from neighboring states (central sector). MU 

(Million Units) = GWh [21-23] 

Total savings  

 
Figure 7. Net present values and total investment costs for pump replacement under various 

assumptions of the lifetime for 7 pumps and all pumps, respectively, for Mussoorie. k€ = 

thousand Euro, kt = thousand tons 
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The cost savings and CO2 emission reduction possible through the replacement of just 

7 pumps are shown in Figure 7 for three different pump lifetimes. The investment of 

funds should always be made for those pumps, which yield the greatest returns. For 

example, the investment of 126 k€ (k€ = thousand Euro) for the replacement of 7 pumps 

leads to a savings (profit) of 446 k€ after a 10-year lifetime versus continued operation 

(base case), a rate of return of 353%. This results in a CO2 emission reduction of 8.6 kt 

(kt = thousand tons). By contrast, a nearly twofold investment of 241 k€ for the 

replacement of 17 pumps after a 10-year lifetime yields a savings of 507 k€ and a rate of 

return of (only) 210%.   

CONCLUSION AND THOUGHTS ON FINANCING THE IMPLEMENTATION 

The authors recommend that UJS undertake a pilot energy efficiency project to 

replace some or all of the 7 pumps in Mussoorie showing the greatest potential savings. 

The number to be replaced depends on the amount of funding that can be acquired 

externally or freed up internally by UJS to cover initial investment costs. Based on 

discussions and experiences thus far, external funding will be necessary, and is in the 

process of being applied for with the aid of a state-level funding agency (Uttarakhand 

Renewable Energy Development Agency, UREDA), once these first measurements of 

energy efficiency are confirmed by an accredited energy auditor. As UJS has limited 

additional engineering capacity to oversee the technical implementation of this project, 

which is of secondary importance compared to effective water supply, continued support 

from a third-party will be required. 

In the best case this would be done by an energy service company (ESCO) that 

provides investment funding and engineering services and later receives payment on the 

basis of performance contracting. This means that the ESCO receives its payment as a 

percentage of the cost savings achieved each year for a contractually agreed-upon period 

following the implementation of the efficiency measures. While such companies are 

active in North India, they are more hesitant to enter into such contracts with municipal 

organizations, which face various challenges that could affect regular payments. For this, 

a second third-party company or bank may be required to broker the payments via a 

special account. 

UREDA itself could act as a kind of non-profit ESCO by providing a small amount of 

funding as an interest-free loan, which could suffice for the replacement of 2 or 3 pumps. 

Alternatively, although less desirable in the eyes of the authors, is the possibility of 

receiving a low-interest loan from the Indian Renewable Energy Development Agency 

(IREDA), which carries a grace period up to 3 years before repayment begins. This 

should allow for sufficient time to reap the benefits of the improved efficiency and enable 

timely repayment without additional financial burden on the UJS budget. However, in 

both cases an external engineering firm in India will need to be separately arranged to 

supervise the implementation. These options will be explored in the coming months such 

that implementation of at least pilot-scale measures can be achieved by the end of 2014. 
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