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ABSTRACT

	 In this article we will address some questions about a mathematical problem that 
Patrizio Frederic, a researcher in statistics at the University of Modena, proposed to the 
author.  Given some parallel line segments, is there at least one straight line that passes 
through all of them?  If there were many lines that solve the  problem,  can we choose a 
“best  one”  among all of them? We will fully address the first question.  As for the second 
question,  we will  illustrate  it with  some “experimental”  examples and suggest an out-
line for future explorations.

Keywords: Line segment, straight line, parallel, centroid, linear function, operator, point, 
Cartesian coordinate system, determinant, slope.
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INTRODUCTION

	 When the problem has been formulated for the first time to us, the question was 
exactly this: “Do you know if there exists a quick way to determine whether we can inter-
sect a series of parallel line segments with a straight line?”.  In this article, that we have di-
vided into five sections, we have collected everything we have found on this subject.  The 
first section includes this introduction.  The second and the third are sections of technical 
nature in which we define the tools that we use, the real functional Φ and the space of real 
affine functions L (R2 ), and we prove their main properties.  The fourth is the section in 
which we prove the main theorem, and we give a comprehensive answer to the question 
above. In the  last  chapter  we studied  some practical  examples,  applying the  results 
obtained and also trying to give some hints to answer a question that has arisen in the 
meantime in our mind: “If the straight lines that solve the problem are many, with what 
criteria can we choose one of them saying that it is better than the others?”.

A PARTICULAR OPERATOR

	 We begin by defining a tool that allows us to determine which are the respective 
positions of three points A(xA , yA ), B(xB , yB ) and C(xC , yC ) on the Cartesian coordinate 
system.  In particular we want to know if the three points are colinear or, alternatively, 
on what half-plane is one of the three points with respect to the straight line through the 
other two.  This tool will be a functional defined by the determinant of a special square 
matrix of order 3.
	 For every given  three  points  A(xA , yA ), B(xB , yB ) and C (xC , yC ) on the Carte-
sian coordinate system, the functional Φ : (R2 )3 → R is defined as follows:

	 We use the multilinearity of the determinant to prove some properties of the 
functional Φ.
	 Proposition 1.  Φ is invariant for translations.
	 Proof. Let T  : R2 → R2 be a translation given by a vector v = (a, b).  We have that
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	 Proposition 2.  Φ is invariant for rotations.
	 Proof. Let R : R2 → R2 be a rotation with rotation angle α. We have that

	 Proposition 3.  Three points A, B and C on the Cartesian coordinate system are colinear 
iff Φ(A, B, C ) = 0.
	 Proof. If two of the three points coincide then the proposition is obvious, there- fore 
we can assume that the three points are distinct.  By the Proposition 2 is not  restrictive  to  as-
sume also  that  the  points  A and B  are  colinear  with  the x-axis, i.e.  yA = yB. We have that

	 By the  assumption  that  the  points  are  distinct  we have that  xA   xB ,  then
Φ(A, B, C ) = 0 if yA = yC , i.e.  if the points A, B and C are colinear.
	 Proposition 4. Let A, B and C be three points on the Cartesian plane, distinct and not 
colinear, and let C be the circle circumscribed to the triangle ABC , then Φ(A, B, C ) > 0 if, along 
C , the points A, B and C are ordered counterclockwise. Conversely  Φ(A, B, C ) < 0 if along C  the  
points  A,  B  and C  are  ordered clockwise.
	 Proof. By the Proposition 1 it is not restrictive to assume that the circumcenter of the  
triangle  ABC  coincides  with  the  origin of the  Cartesian  plane  and by the Proposition 2 it is 
not restrictive to assume that the points A and B are aligned with the y-axis, so that xA= xB and 
yA < yB . Let R be the radius of the circle circumscribed to the triangle ABC , then by the above 
assumptions, there  are  two  angles  α, γ satisfying  0 < α < π,  0 ≤  γ < 2π,  γ  ±α  and such that  
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A(R cos α, −R sin α),  B(R cos α, R sin α)  and C (R cos γ, R sin γ) are the Cartesian coordinates of 
the points A, B and C.

In Figures  1 and 2 we highlight  the  fact  that  if the  points  A, B and C are ordered counter-
clockwise, then cos α > cos γ, while if the points A, B and C are ordered clockwise, then cos α 
< cos γ.  But by calculating Φ(A, B, C ) we have that

and since 2R2 sin α > 0, we conclude that:

	 Φ(A, B, C ) > 0 ⇔  cos α > cos γ  ⇔  the orientation is counterclockwise,
	 Φ(A, B, C ) < 0 ⇔ cos α < cos γ ⇔  the orientation is clockwise.

	 To conclude this section,  always regarding the functional Φ, we make one final point 
that will be useful below.
	 Proposition  5.  Let  A, B, C and D be  four points  given  on the  Cartesian plane, po-
sitioned so that x

B
  < x

C
    and x

A
  = x

D
  . The following conditions are equivalent:

i.	 y
A

 ≥ y
D

 ,
ii.	 Φ(A, B, C ) ≥ Φ(D, B, C )
iii.	 Φ(B, A, C ) ≤ Φ(B, D, C )
iv.	 Φ(B, C, A ) ≥ Φ(B, C, D )

	 Moreover in all four cases equality holds iff A ≡ D.
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	 Proof. (i ⇔ ii) We compute:

by assumption x
C

  − x
B

 > 0, thus Φ(A, B, C ) ≥  Φ(D, B, C ) ⇔ y
A

 ≥  y
D

 , and moreover 
Φ(A, B, C ) = Φ(D, B, C ) ⇔ y

A
 = y

D
 ⇔ A ≡ D.

(ii ⇔ iii ⇔ iv) These equivalences follow from the fact that the determinant is alternating 
(or skew-symmetric) as well as multilinear.

THE SPACE OF AFFINE  FUNCTIONS

	 Another tool we use is the space L (R2 ), wherein we represent the real affine 
functions,  i.e.   the  functions  f : R → R such that  f (x)  = mx + b  for some (m, b) ∈ R2.
	 The elements of L (R2 ) are in one-to-one correspondence with the straight lines  
on the  Cartesian  plane  that  are  not  parallel  to  the  y-axis,  these  are  in one-to-one 
correspondence with the equations of the form y = mx + b and then, by the pair (m, b), 
they are in one-to-one correspondence with the pairs of R2. This one-to-one correspond-
ence has some interesting properties as shown in the next propositions.
	 In this section we use also the concept of “sheaf of straight lines”,  that is the set of 
straight lines all passing through the same point (except almost that parallel to the y-axis) 
or all parallel to each other.
	 Proposition 6.  The set of all sheaves of straight lines on the Cartesian plane is in 
one-to-one correspondence with the set of straight lines of L (R2 ) and, in particular,  a 
straight  line  in L (R2 ) is  parallel  to the  y-axis  if and only if its associated sheaf is com-
posed by parallel straight lines.
	 Proof. Let P (xP , yP ) ∈ R2  be a generic point, then the sheaf of straight lines 
passing through P has explicit equation y = m(x − xP ) + yP  and for all different m ∈ R, in 
L (R2 ) the sheaf is represented by the locus of points whose coordinates are (m, −xP m 
+ yP). This locus is a straight line whose explicit equation is y = −xP x + yP , then it is not 
parallel to the y-axis.  However,  if we have a sheaf of parallel straight lines in R2 , we can 
express its equation in the form y = kx + b, where b is a parameter and k is constant. For 
all b ∈ R this sheaf is represented in L (R2 ) by the locus of points whose coordinates are 
(k, b).  Such a locus is a straight line, parallel to the y-axis, whose equation is x = k.
	 Proposition 7. The set of straight lines passing through a line segment parallel 
to the y-axis is convex in L (R2 ) and, in particular, it consists of the points of the plane 
between two parallel straight lines.
	 Proof. Let AB  be a line segment parallel to the y-axis whose end-points are
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A(a, b) and B(a, c) (Figure 3). A generic point Pt of this segment has coordinates of type  

Pt (a, b + t(c − b))  for some t ∈  [0, 1].  As  seen in the  Proposition  6, the sheaf of straight 
lines passing through Pt  is represented in L (R2 ) by the straight lines with equation y = 
−ax + b + t(c − b), for all t ∈ [0, 1] this straight lines represent the set of all parallel lines 
between the lines y = −ax + b and y = −ax + c and then they form a convex set in L (R2 ).
	 Proposition 8. The set of straight lines passing through the points of two line seg-
ments  parallel  to the  y-axis,  but  with  distinct  x-coordinate,  is  limited  and convex  in 
L (R2 )  and, in particular,  it is  a parallelogram  whose  centroid  is associated  with  the  
straight  line  passing  through  the  midpoints  of the  two line segments.
	 Proof. By the Proposition 7 it is clear that the set considered is a parallelogram. 
Then let A(a, b), B(a, c), C (d, e) and D(d, f ) be the end-points of the two line segments 
and let and  be the midpoints of AB  and CD, respectively.  The equa-
tion of the straight line EF will be

The equations of the straight lines AC , AD, BC and BD are:

	 These four straight lines, in L (R2 ), represent the vertices of the parallelogram 
corresponding to all straight lines passing through AB  and C D.  The centroid of this 
parallelogram is the midpoint of one of its diagonals, which is the point
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whose coordinates, as we can see in (1), are exactly the slope and the y-intercept of the 
straight line EF.

THE PROBLEM

	 The  problem  we want  to  solve  is  the  following:  given  a finite  number,  n ≥ 2, 
of line  segments  which are  closed,  parallel,  but  mutually  non-aligned,  find equivalent  
conditions  for having at  least  one straight  line  that  intersects  all segments.

Notations (Figure 4).

•	 Let the line segments be on a Cartesian coordinate system, so that they are parallel 
to the y-axis, and let’s call them L1 , L2 , . . . , Ln in ascending order according to the 
x-axis.

•	 Let Ai(xi , ai) and Bi(xi , bi) be the  end-points  of the  i-th  line  segment, with ai  ≤ bi  
for all i ∈ {1, 2, . . . , n} and x1  < x2  < . . . < xn.

•	 Among all the  straight  lines  passing  through  the  end-points  of the  line segments 
we fix two particular ones:  the straight line AsBt  whose slope mst is  the  minimum  
between  the  slopes  of all the  straight  lines  AiBj such that 1 ≤ i < j ≤ n and the 
straight line BuAv whose slope m’uv is the maximum between the slopes of all the 
straight lines BiAj  such that 1 ≤ i < j ≤ n.

	



13

Metodički obzori 9 (2014)1, No. 19 Parallel line segments

	 Theorem  9  (Main).  With  the  previous  notations  and considering  the  non- 
trivial case n ≥ 3, we have that the following statements are equivalent.

i.	 At least one straight line intersects all line segments L1 , L2 , . . . , Ln .
ii.	 Φ(Ai , Bj , Ak ) ≤ 0 ≤ Φ(Bi , Aj , Bk ) for all i, j, k such that 1 ≤ i < j < k ≤ n.
iii.	 Φ(As , Bt , Aj ) ≤  0 ≤  Φ(Bi , As , Bt ) for all i, j such that 1 ≤  i < s and t < j ≤ n.
iv.	 Φ(Ai , Bu , Av ) ≤  0 ≤  Φ(Bu , Av , Bj ) for all i, j such that 1 ≤  i < u and v < j ≤ n.
v.	 The straight line AsBt  intersects all line segments L1 , L2 , . . . , Ln .
vi.	 The straight line BuAv  intersects all line segments L1 , L2 , . . . , Ln .
	
	 Proof. (i ⇒ ii) We fix three integers i, j, k such that 1 ≤ i < j < k ≤ n, then for 
assumption there exist three colinear points Pi(xi , yi ) ∈ Li , Pj (xj , yj ) ∈ Lj and Pk (xk , yk) ∈ 
Lk   such that ap  ≤ yp  ≤ bp  for all p ∈  {i, j, k}.  Then by the Propositions 3 and 5 we have 
that

	 (ii ⇒ iii), (ii ⇒ iv) Obvious.
	 (iii ⇒ v) For all i ∈ {1, 2, . . . , n} let Pi(xi , yi) be the intersection point between 
the straight lines AsBt  and x = xi . We analyze four cases.
	 1st  case: 1 ≤ i < s. For assumption Φ(Bi , As , Bt ) ≥ 0 and by the Proposition 3 
Φ(Pi , As , Bt ) = 0, then by the Proposition 5 we have that bi  ≥ yi.
	 2nd  case: 1 ≤ i < t. We know that mst  ≤ mit  and that the point Pi  belongs to the 
straight line AsBt , then we have that

	 3rd  case: s < i ≤ n. We know that mst  ≤ mit and that the point P  belongs to the 
straight line AsBt , then we have that

	 4th  case: t < i ≤ n. By the assumption Φ(As , Bt , Ai ) ≤ 0 and by the Proposition 3 Φ(As , Bt , Pi 
) = 0, then by the Proposition 5 we have that ai  ≤ yi .
	 Adding the two trivial inequalities bs  ≥ ys  = as  and at  ≤ yt  = bt , in the four cases are proved the 
inequalities ai  ≤  yi  ≤  bi  for all i ∈ {1, 2, . . . n}, then the stright line AsBt  intersects all n line segments.
	 (iv ⇒ vi) Quite similar to the previous proof.
	 (v ⇒ i), (vi ⇒ i) Obvious.
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	 Corollary 10.  The following statements are equivalent.

i.	 There is one and only one straight line that intersects all the line segments L1 , L2 , . . . , 
Ln .

ii.	 The two straight lines AsBt  and BuAv   coincide and intersect all the line segments L1 , L2 
, . . . , Ln .

iii.	 Φ(Ai , Bj , Ak ) ≤ 0 ≤ Φ(Bi , Aj , Bk ) for all i, j, k such that 1 ≤ i < j < k ≤ n and, if we are 
not in presence of the limit case in which two of the segments degenerate into a point, 
then at least in one case there is the equality

Φ(Ai , Bj , Ak ) = 0 or Φ(Bi , Aj , Bk ) = 0 .

	 Proof. (i ⇒ ii) Obvious by the equivalence i ⇔ iii ⇔ iv in the Theorem 9. 
	 (ii ⇔ iii) By the Theorem 9 we are sure that Φ(Ai , Bj , Ak ) ≤ 0 ≤ Φ(Bi , Aj , Bk )
for all i, j, k such that 1 ≤ i < j < k ≤ n. The four points As , Bt , Bu  and Av are,  for assump-
tion,  colinear;  assuming that there are not two segments that degenerate to a point, 
then it can not happen simultaneously that As  ≡ Bu  and Bt  ≡ Av , then we are sure that 
in addition with the already known inequalities xs  < xt and xu  < xv , also at least one of 
these occurs:

xs < xu,       xu < xs,       xt < xv,       xv < xt .

	 So, in each of the four cases we have that

xs < xu	 and	 xu < xv	 ⇒	 Φ(As , Bu , Av ) = 0 ,
xu < xs	 and	 xs < xt	 ⇒	 Φ(Bu , As , Bt ) = 0 ,
xt < xv	 and	 xs < xt	 ⇒	 Φ(As , Bt , Av ) = 0 ,
xv < xt	 and	 xu < xv	 ⇒	 Φ(Bu , Av , Bt ) = 0 .

	 (iii ⇒  i) By the  Theorem  9 at  least  one straight  line  exists,  the  unique-
ness would be obvious if two of the line segments were pointlike, so we assume that  
Φ(Ai , Bj , Ak ) = 0 for some i, j, k such that 1 ≤  i < j < k ≤  n (the proof is similar if we 
assume that Φ(Bi , Aj , Bk ) = 0).  A straight line that crosses the segments  Li , Lj and Lk 
will  pass through  the  three  colinear  points  Pi  ∈  Li , Pj  ∈ Lj  and Pk ∈ Lk , then by the 
Proposition 5 we have that

0 = Φ(Ai , Bj , Ak ) ≤ Φ(Pi , Bi , Ak ) ≤ Φ(Pi , Pj , Ak ) ≤ Φ(Pi , Pj , Pk ) = 0 .

	 Since all inequalities are equalities then,  once again by the Proposition 5, we 
have that Pi  ≡  Ai , Pj   ≡  Bj   and Pk  ≡  Ak   and the straight line can only be unique.
	 Corollary 11. Among all the straight lines that pass through the line segments 
L1 , L2 , . . . , Ln  (assuming  that there  exists  any),  the  straight  lines  AsBt   and BuAv  are 
those with maximum and minimum slope respectively.
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	 Proof. We consider a line r with slope m > mst , that passes through the points  
Ps(xs , ys ) ∈ Ls  and Pt(xt , yt) and we prove that Pt  ∈ Lt . We calculate:

	 Since yt > bt then the straight line r does not cross the line segment Lt and this 
proves that mst  is the maximum slope between those of the straight lines that cross all 
segments. Similarly m’uv is the minimum of the slopes.

A SPECIAL STRAIGHT LINE

	 Now we are able to suggest some algorithms that allow us to find a straight line, 
among others, that can cross in the “best way” all line segments.

Algorithm 1. A (not so) special straight line (Figure 5 and 6).

1.	 Let the n line segments be given, then we find the straight line r = AsBt .
2.	 We check if Φ(Bi , As , Bt ) ≥ 0 for all i ∈ {1, 2, . . . , s − 1}.
3.	 We check if Φ(As , Bt , Aj ) ≤ 0 for all j ∈ {t + 1, t + 2, . . . , n}.
4.	 If the checks at points 2 and 3 have failed then  there is no reason  to continue, other-

wise we can find also the straight line p = Bu Av . By the Theorem 9 we are sure that 
the straight lines r and p pass through all the line segments L1 , L2 , . . . , Ln.
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5.	 We choose the line s1 that, in L (R2 ), corresponds to the midpoint between r and p. 
By the Proposition  7 the set of all the straight lines passing through  all of the  line 
segments L1 , L2 , . . . , Ln  is convex, then s1  also passes for all of those line segments.

	 In Figure 5 we have that

	 in Figure 6 we have that

	 But this algorithm does not always give us a “good” straight line.  As it is shown 
in Figure 6, sometimes the straight line we get does not seem to be one of the best and in 
this example the straight line passes through the end-point of one of the line segments.

Algorithm 2. A straight line a little bit more special.

1.	 We perform steps 1, 2, 3 and 4 of Algorithm 1.
2.	 Among all the straight lines AiAj , with 1 ≤ i < j ≤ n, we take only those that cross all 

line segments L1 , L2 , . . . , Ln , that are distinct from r and p and we take only once if 
two or more of them are identical.

3.	 Among all the straight lines BiBj , with 1 ≤ i < j ≤ n, we take only those that cross all 
line segments L1 , L2 , . . . , Ln , that are distinct from r and p and we take only once if 
two or more of them are identical.

4.	 By the Proposition 7 all the straight lines found in steps 2 and 3, together with r and 
p, are the vertices of a convex polygon in L (R2 ). Let us take the straight line s2 that 
corresponds to the centroid of the vertices of this polygon.

	 Let us review the example in Figure 5.
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	 In Figure  7 we have represented  the  line  segments  and in Figure  8 we have 
represented, in L (R2 ), the convex polygon formed by all the straight lines that cross all 
line segments; the point G is the centroid of the vertices of the polygon and it is associated 
with the straight line s2 that would seem to go through the line segments better than the 
straight line s1 in Figure 5. In summary we have:

 and finally the equation of s2 is
	
	 Let us review also the example in Figure 6.
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	 Even in this example the straight line s2 crosses all the line segments in a very 
“better” way than  the  straight  line  s1  do in Figure  6.  In summary  in this example we 
have:

and finally s2 :

Algorithm 3. An even more special straight line.

1.	 We perform steps 1, 2 and 3 of Algorithm 2.
2.	 We do the same observations done in the step 4 of the Algorithm 2, but in this case, 

as straight line s3 , we take the straight line associated with the centroid of the whole 
polygon that we find in L (R2 ).

	 Let us review again the two examples above.
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	 We observe the polygon in Figure 8:

•	 the signed area A of the polygon P1P2P3P4 P5 is (P0 ≡ P5 ):

•	 and than we will find the centroid C (mC , bC ) of the polygon following the calcula-
tions:
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•	 we get the straight line s3 (Figure 11) with equation that is associ-
ated with the centroid C .

	
	 Now we observe the polygon in Figure 10:

•	 the signed area A of the polygon P1P2P3P4  is (P0 ≡ P4 ):

•	 we will find the centroid C (mC , bC ) of the polygon following the calculations:
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•	 we get the straight line s3 (Figure 12) with equation that is 
associated with the centroid C .

	
	 In the  two  examples  it seems  clear  that  the  straight  line  that  we find with the 
Algorithm  1 is not so “good”,  while  it seems that  the two centroids give us two straight 
lines quite similar.  If this fact would be always true, then we might consider more ap-
propriate to use the Algorithm 2, at least to avoid the huge amount of calculations that 
must be done to find the straight line with the Algorithm 3.  But this result is accidental, 
due to the few examples seen, and the next example is the confirmation.  I end this article 
proposing such an example without calculations.
	 In Figure 13 and 14 we have:
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	 The latest example is a further confirmation of what we thought, that is that the 
line that we find with Algorithm 3 seems to be “better” than others.  At this  point  it 
would be interesting  to  study  the  set  of lines  in L (R2 ) with  a different point of view, 
perhaps less geometrical and a little bit more statistical, considering that now, as we have 
seen with Theorem 9, there’s a way to know if the segments are intersected by a straight 
line.  At the end we want to remember having had the  opportunity  to  consult  with  ar-
ticles  [1] and [2] which, with different purposes and in different ways, deal with a topic 
very close to the one discussed in this article.
And finally we will be grateful to Omar Lakkis for the helpful suggestions he gave us.
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