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Summary 

The paper analyzes the elastic stability of steel thin-walled C- and Z-cross-section 
beams without lateral restraints. Firstly, mechanical properties of the beams material (steel) 
are determined by testing standard specimens in a laboratory. Based on the obtained data, the 
stability analysis of beams is carried out and critical forces are determined analytically by 
using the theory of thin-walled beams, numerically by using the finite element method 
(FEM), and experimentally by testing the C- and Z-cross-section beams in a laboratory. The 
analysis of critical forces and stability shows that the calculation according to the theory of 
thin-walled beams does not take the effect of local buckling into account, and that the 
resulting critical global forces do not correspond to the actual behaviour of the beam. The 
FEM gives the value of the critical force by taking the effect of the local buckling into 
consideration. The experimental test shows that the assumptions and simplifications, which 
have been introduced into the theory of thin-walled beams with open cross sections, 
significantly affect final results of the level of the critical force.  

Key words: elastic stability, critical force, thin-walled beam, C- and Z-section, finite 
element method 

1. Introduction 

Constructions which are made of thin-walled open cross-section beams are increasingly 
used in engineering practice because of safety requirements and economic conditions. The 
behaviour of such beams under specified load is considerably more complex than the behavior 
of beams with solid cross sections. Thin-walled open cross-section beams tend to buckle 
locally because of the shapes of their cross sections. The basic theory of thin-walled members 
with open cross sections was developed by Vlasov [1]. He applied the term “sectorial 
coordinate” for the first time and presented the subject of mixed torsion in a most outstanding 
manner. The numerical procedures as well as necessary modifications were introduced later 
by Gjelsvik [2], Murray [3] and Ojalvo [4]. 

Several researchers have investigated the behaviour of thin-walled open cross-section 
beams [5-8]. According to the form of the open cross-section beams, the position of the shear 
centre and the plane load, special attention should be paid to the stability of the thin-walled 
open cross-section beams. Paczos [9] compared the experimental values of the critical load 
with those obtained with the help of the finite element method (FEM) and theoretical 
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analyses. The experimental study of the thin-walled open cross-section beams subjected to 
pure bending is presented by Pastor [10]. There, the thin-walled open cross-section beams are 
exposed to the distortion of cross sections. In such beams, apart from the flexural form of the 
loss of stability, torsional and torsional-flexural losses of stability are possible, too. Lots of 
studies about this topic have been carried out [11-13]. 

The aim of this study is to determine whether the assumptions and simplifications which 
have been introduced in the theory of thin-walled open cross-section beams significantly 
affect the form of the loss of stability of the beam and the level of the critical force. Critical 
forces obtained by the theory of open-cross thin walled beams, by the FEM and 
experimentally will be compared, and the advantages and disadvantages of each method will 
be analyzed. It will give us an insight into the importance of the calculation of the stability of 
open-cross section thin walled beams. 

2. Preview of elastic stability using the theory of thin-walled beams  

It is assumed that a flat thin-walled beam with an arbitral cross section is loaded by 
centric compressive force F, Figure 1.  

 

Fig. 1  Thin-walled open cross-section beam loaded by centric compressive force  

The axes y, z are the main inertia axes of the cross section, while the axis x is a 
longitudinal axis of the beam. Point A is the shear centre, Figure 3. Displacement components 
of the shear centre A in the direction of the main axes of inertia y and z are marked  (x) and η 
(x), while φ (x) is a rotation angle of the cross section around the axis of the shear centre. 

Equations of equilibrium for the beam after the loss of stability may be written in the 
following form [15, 16]: 

0IV
y AE I F y F           (1a) 

0IV
z AE I F z F           (1b) 

2( ) 0IV
t A AE I r F G I z F y F                   (1c) 

Iy and Iz are the main axial moments of inertia, and It is the torsional moment of inertia 
(Saint-Venant torsional constant). Iω is the main sectorial moment of inertia of the cross 
section. yA and zA are coordinates of the shear centre. E is elasticity modulus and G is shear 
modulus. r2 is given in Eq. (8). 

The general solution to the system of Eq. (1) contains 12 constants of integration. In 
order to determine these constants, it is necessary to specify 12 boundary conditions. For 
homogeneous boundary conditions, a system of linear homogeneous equations is obtained. 
The critical load is determined from the condition that the determinant of the system is equal 
to zero. The beam freely laid on two bearings with span l, loaded by the centric compressive 
force is considered, Figure 2. 

F F

z

x

 

Fig. 2  The thin-walled beam freely laid on two bearings loaded with centric compressive force  
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For the freely laid beam, shown in Figure 2, the boundary conditions are:  

for  0x , 0 , 0       

for  1x , 0 , 0       (2) 

For the given boundary conditions, the solution to Eq. (1) can be assumed as follows:  

sin ,    sin ,    sin
n n n

A x B x C x
l l l
  

          (3) 

where A, B and C are unknown constants, and n is the whole positive number of sine 
half waves through the beam length. Once we put the expression (3) in Eq. (1) we get:  
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To make the system of equations (4) have a solution different from a trivial one, the 
determinant of the system must be equal to zero:  

2

0
0 0

( )

z A

y A

A A

F F z F
F F y F

z F y F r F F
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 (5) 

Euler critical buckling forces in the main planes (pure flexural buckling) Fz, Fy are 
shown in the expression (6): 
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 (6) 

Critical force for the torsional loss of stability (pure torsional buckling) Fω is shown in 
expression (7): 
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In expressions (4), (5), (7) it applies: 
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  (8) 

By analysing the determinant (5) we get:  
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 (9) 

Since the matrix of the system (4) is a symmetrical one, the cubic equation (9) has three 
real and positive roots: F1, F2, F3. For each of the three roots, the elastic line consists of n sine 
half waves. Of practical importance is only the case when the elastic line consists of a single 
sine half wave, which, according to expressions (3), (6) and 7 for n=1, gives:  
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sin ,    sin ,    sinA x B x C x
l l l
  

          (10) 
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In expression (9), figures Fz, Fy and Fω which are given by expressions (11a) and (11b): 

for: y zF F F      it will be   1 2 3y zF F F F F F     ; 

for: y zF F F       it will be   1 2 3y zF F F F F F     . 

Relevant is the critical buckling force of a beam 

1min FFFkr   (12) 

which suits both buckling and twisting of a beam and is always less than Fy, Fz, Fω.  

If the cross section has one axis of symmetry, for example if the major axis of inertia y 
is at the same time the axis of symmetry of the cross section, then zA=0, which indicates that 
the system of equations (1) takes the following form: 

0IV
y AE I F y F          (13a) 

0IV
zE I F       (13b) 

2( ) 0IV
t AE I r F G I y F              (13c) 

The first equation (13a) corresponds to in-plane buckling, and the other two equations 
(13b) and (13c) correspond to simultaneous twisting and out-plane buckling. The boundary 
conditions (2) of the system of equations (13) give a result determined by the expression (10). 

From Eq. (5) for zA=0 it is obtained: 

0zF F   (14a) 

2 0
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y A

A

F F y F
y F r F F

 


  
 (14b) 

From Eq. (14a) the Euler critical force is determined [15]: 
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By analysing the determinant (14), we get the equation for determining the other two 
critical forces:  

2 2 2 2 2( ) ( ) 0A y yr y F r F F F F F r             (16) 

From where [15]: 
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Since F2<F3, the relevant critical force is equal to the lower force between F2 and Fz. If 
Fz<F2, in-plane buckling of the beam appears, and if Fz>F2, simultaneous twisting and lateral 
out-plane bending appear. In other ways of supporting the beam, regarding the analogy of the 
problems of stability of a flat beam with a solid cross section, the expressions for critical 
compressive forces can be summarized in the following form [15]: 
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In Eq. (18) different coefficients of apparent length µ and ν are introduced, as the 
boundary conditions for deflection and rotation in the end sections of the beam do not have to 
be identical. For the beam which is at one end fixed and on the other end freely supported, the 
coefficient of apparent length of the beam by bending µ=0.7, and the ratio of the apparent 
length of the beams at the loss of stability by twisting ν = 0.7. For the beam which is freely 
supported at both ends µ= ν=1.0, for the beam which is fixed at both ends µ= ν=0.5, for the 
beam fixed at one end and free on the other one µ= ν=2.0. 

3. Determination of critical force and form of loss of stability  

The calculation and analysis of stability of the steel thin-walled C-section beam (C 
100/50/15/2 and C 100/50/15/4), Fig. 3a, and Z-section beam (Z 100/50/15/2 and Z 
100/50/15/4), Fig. 3b, will be carried out: 

 experimentally, by testing the models in the laboratory [16], 
 analytically, according to the theory of thin-walled open cross-section beams [15], 
 numerically, by the FEM with the computer program SAP2000 v14 („buckling“ 

analysis) [17]. 

The thicknesses of the beam walls are t=2 mm and t=4 mm. These beams, with a span 
l=120 cm, are fixed at one end, and freely supported at the other one, and loaded by 
compressive force in the centre of gravity of the cross section, Figure 3c.  
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y t

  
Fig. 3  Thin-walled open section beams: a) C 100/50/15/2 and C 100/50/15/4,  

b) Z 100/50/15/2 and Z 100/50/15/4, c) beam supports  

3.1 Experimental determination of critical force 

Mechanical properties of steel, from which the thin-walled C- and Z-cross-section 
beams were made, were determined in a laboratory by examining a series of three standard 
specimens with electroresistive tensiometers. The specimens were prepared for testing 
according to HRN EN ISO 6892-1:2010. The obtained values of the mechanical properties of 
steel are: tensile strength σM=402.34 MPa, liquid limit σT=321.16 MPa, modulus of elasticity 
E=183.76 GPa, Poisson's ratio ν=0.23 and shear modulus G=74.699 GPa. 

a) b) c) 
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The stability of thin-walled C- and Z-section beams is tested in a static press. For 
laboratory testing, solid steel plates were welded on these beams, 100/50/30 mm in 
dimension, through which compressive forces are acting. The steel plates and beams are made 
of the same material with the same mechanical properties. 

During the laboratory testing, inductive tensiometers were placed on the thin-walled C-
section and Z-section beam to measure the lateral displacement and electroresistive 
tensiometers were used to measure the longitudinal strain in the beams. The disposition of the 
measurement points on the C-section and Z-section beam is shown in Figure 4. 

  

Fig. 4  Disposition of measurement points on the thin-walled C-section and Z-section beam 

Fig. 5a shows a thin-walled C-section 100/50/15/2 beam which is prepared for testing, 
and Fig. 5b shows a thin-walled Z-section 100/50/15/2 beam prepared for testing. The beams 
were gradually loaded by the increasing force ΔF=50 kN up to the loss of stability.  

   
Fig. 5  Thin-walled beams prepared for testing: a) C 100/50/15/2, b) Z 100/50/15/2 

The loss of stability of the thin-walled C-section 100/50/15/2 beam appeared under the 
force Fkr=152.78 kN due to local buckling of the web, Fig. 6a. Fig. 6b shows the expansion of 

a) b) 
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beam flanges, and the deformed thin-walled C-section 100/50/15/2 beam is shown in Fig. 6c. 
Once the maximum force is achieved, strain and force are in a nonlinear relationship. Strain 
growths and axial stiffness of the beam fall nonlineary. It is obvious that the global critical 
load will not be reached due to the local buckling. 

    
Fig. 6  Loss of stability of the thin-walled C-section beam: a) local buckling of the web of beam C 100/50/15/2, 

b) expansion of beam flanges C 100/50/15/2, c) deformed beam C 100/50/15/2, d) deformed beam C 
100/50/15/4 

The loss of stability of the thin-walled beam C 100/50/15/4 appeared under the 
influence of the global critical force Fkr=583.47 kN. Fig. 6d shows the deformed thin-walled 
beam C 100/50/15/4. Local bucklings of the webs in the beams do not appear due to higher 
wall thickness t=4 mm.  

The loss of stability of the thin-walled beam Z 100/50/15/2 appeared under the 
influence of force Fkr=145.89 kN due to local buckling of the web, Fig. 7a. Fig. 7b shows the 
deformed thin-walled beam Z 100/50/15/2.  

    
Fig. 7  Loss of stability of the thin-walled Z-section beam: a) local buckling of the web of beam Z 100/50/15/2, 

b) deformed beam Z 100/50/15/2, c) deformed beam Z 100/50/15/4 

a) b) c) d) 

a) b) c) 
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The loss of stability of the thin-walled beam Z 100/50/15/4 appeared under the 
influence of the global critical force Fkr=398.76 kN. Fig. 7c shows the deformed thin-walled 
beam Z 100/50/15/4. 

3.2 Analytical determination of the critical force 

The values of critical forces will be determined analytically, based on the theory of thin-
walled open cross-section beams. In the structural analysis, it is often necessary to determine 
geometrical properties of a thin-walled beam with an open cross section [18]. 

3.2.1 C-section beam 

For the thin walled C-section 100/50/15/2 beam with the wall thickness t=2 mm the 
cross-sectional area is A=444 mm2, Fig. 3a. The coordinate of the centre of gravity regarding 
the centre line of the open vertical is e = 31.57 mm. The main moments of inertia of the cross-
section are: Iy=717620 mm4; Iz=156672.973 mm4. The torsional moment of inertia of the 
cross-section is It=592 mm4, and the main sectorial moment of inertia of the cross-section is 
Iω=341640615.1 mm6. r2=3617.49 mm2; yA=40.60 mm; zA=0. Using the expressions (18), we 
get the following values: 

Fy=1844.53 kN   ;   Fz=460.21 kN   ;   Fω=254.97 kN. 

Critical force: 

F1=Fz=460.21 kN 

By solving the expression (17), we get the other two values of the critical force: 

F2=238.79 kN;   F3=3618.2 kN. 

Relevant critical force: Fkr=Fmin=238.79 kN. 

The loss of beam stability occurs under twisting and lateral out-plane buckling. The 
critical stress in the beam at the time of the loss of stability is 

MPa 82.537
A

Fkr
kr . 

The critical stress under pure buckling in the plane of symmetry is:  

MPa 51.1036
A
Fz

z . 

The critical stress is only 52% of the critical Euler stress.  

For the thin walled C-section 100/50/15/4 beam with the wall thickness t=4 mm the 
cross-sectional area is A=856 mm2, Fig. 3a. The coordinate of the centre of gravity regarding 
the centre line of the open vertical is e=32,52 mm. The main moments of inertia of the cross-
section are: Iy=1323853.33 mm4; Iz=275242.87 mm4. The torsional moment of inertia of the 
cross-section is It=4565.33 mm4, and the main sectorial moment of inertia of the cross-section 
is Iω=569632394.7 mm6. r2=3337.29 mm2; yA=38.33 mm; zA=0. Using the expressions (18), 
we get the following values: 

Fy=3402.76 kN   ;   Fz=707.47 kN   ;   Fω=540.91 kN. 

Critical force:  

F1=Fz=707.47 kN 

By solving the expression (17), we get the other two values of the critical force: 

F2=503.38 kN  ;   F3=6541.99 kN. 

Relevant critical force: Fkr=Fmin=503.38 kN. 
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The loss of beam stability occurs under twisting and lateral out-plane buckling. The 
critical stress in the beam at the time of the loss of stability is 

MPa 06.580
A

Fkr
kr . 

The critical stress under pure buckling in the plane of symmetry is:  

MPa 48.826
A
Fz

z . 

The critical stress is 70% of the critical Euler stress. 

3.2.2 Z-section beam 

For the thin walled Z-section 100/50/15/2 beam with the wall thickness t=2 mm the 
cross-sectional area is A=444 mm2. The position of the main axis of inertia is α=-28.29o, Fig. 
3b. The main moments of inertia of the cross-section are: Iy=Imax=901248 mm4; Iz=Imin=92936 
mm4. The torsional moment of inertia is It=592 mm4, and the main sectorial moment of inertia 
of the cross-section is Iω=394405371.1 mm6. r2=2239.15 mm2; yA=zA=0. Using the 
expressions (18), we get the following values: 

Fy=2316.52 kN   ;   Fz=238.88 kN   ;   Fω=650.24 kN. 

Critical force: 

Fkr=Fmin=238.88 kN 

The loss of the beam stability appears under pure twisting in the plane of minimum 
flexural stiffness (the plane x, y). The critical stress in the beam at the time of loss of stability 

is: MPa 02.538
A

Fkr
kr . 

For the thin walled Z-section 100/50/15/4 beam with the wall thickness t=4 mm the 
cross-sectional area is A=856 mm2. The position of the main axis of inertia is α=-27.57o, Fig. 
3b. The main moments of inertia of the cross-section are: Iy=Imax=1638279.83 mm4; 
Iz=Imin=164394.83 mm4. The torsional moment of inertia is It=4565.38 mm4, and the main 
sectorial moment of inertia of the cross-section is Iω=735052717.8 mm6. r2=2105.93 mm2; 
yA=zA=0. Using the expressions (18), we get the following values: 

Fy=4210.94 kN   ;   Fz=422.55 kN   ;   Fω=1059.01 kN. 

Critical force is: 

Fkr=Fmin=422.55 kN. 

The loss of the beam stability appears under pure twisting in the plane of minimum 
flexural stiffness (the plane x, y). Critical stress in the beam at the time of the loss of stability 

is:  MPa 63.493
A

Fkr
kr . 

4. Numerical determination of the critical force 

The calculation of the thin-walled C- and Z-section beams is done by using a finite 
element method in the computer program SAP2000 v14. Thin-walled beams are modelled by 
plate elements. The thin-walled C-section beam is divided into 1800 rectangular finite 
elements. The thin-walled Z-section beam is divided into 1440 rectangular finite elements. 
Dimensions of finite elements that make up the web are 12 x 12 mm, the flange is 11.5 x 12 
mm and the stiffener is 13x12mm in size. The beams are modelled by using the steel plate 
100/50/30 mm in dimension and the mechanical properties equal to the plate which was used 
in the experimental study. 
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For the C-section 100/50/15/2 beam, the critical factor of buckling obtained from the 
"buckling" analysis in SAP2000 v14 is 162.44 kN. The beam was loaded by unit force (in the 
centre of gravity of the cross section), which means that the critical force is Fkr=162.44 kN. 
On the deformed shape of the C-section beam, under the influence of the critical force, the 
occurrence of the largest local buckling in the lower half of the height of the beam can be 
seen, Fig. 8a. 

     
Fig. 8  Deformed shape of the thin-walled beam under the action of the critical force: a) C-section 100/50/15/2, 

b) Z-section 100/50/15/2, c) C-section 100/50/15/4, d) Z-section 100/50/15/4 

For the Z-section 100/50/15/2 beam, the critical factor of buckling obtained from the 
"buckling" analysis in SAP2000 v14 is 160.53. The beam was loaded by unit force (in the 
centre of gravity of the cross section), which means that the critical force is Fkr=160.53 kN. 
Regarding the deformed shape of the Z-section beam under the action of the critical force, it 
can be seen that the largest local buckling appears in the upper half of the beam, Fig. 8b. 

For the C-section 100/50/15/4 beam, the critical factor of buckling is 601.87. The beam 
was loaded by the unit force in the centre of gravity of the cross-section, which means that the 
global critical force is Fkr=601.87 kN. The shape of the buckling of the beam is shown in Fig. 
8c. 

For the Z-section 100/50/15/4 beam, the critical factor of buckling is 415.56, which 
means that the global critical force is Fkr=415.56 kN. The loss of beam stability appears by 
pure twisting in the plane of the minimum flexural stiffness. The shape of beam buckling is 
shown in Fig. 8d. 

5. Comparison of the results of theoretical and experimental research  

The values of critical forces Fkr for the thin-walled C- and Z-section beams which will 
be analyzed and compared are obtained analytically based on the theory of thin-walled open 
cross-section beams, numerically, with the FEM and experimentally, by testing. The results 
are shown in Table 1.  

a) b) c) d) 
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Table 1  Comparison of critical forces 

Fkr [kN] 
C-section beam Z-section beam 

100/50/15/2 100/50/15/4 100/50/15/2 100/50/15/4 
Feks 152.78 583.47 145.89 398.76 
Fteor 238.79 503.38 238.88 422.51 
FSAP 162.44 601.87 160.53 415.56 

The critical force determined by the theory of thin-walled beams has the same value for 
the C-section 100/50/15/2 beam and the Z-section 100/50/15/2 beam, but it is incorrect 
because it does not take local buckling into account, yet it gives a critical value of global 
forces. Values of that critical force Fteor are higher than those obtained by the FEM and 
experimental testing. The FEM, carried out according to the "Buckling" analysis in SAP, 
provides critical forces with the occurrence of local buckling. These values FSAP deviate from 
the results of the experimental tests Feks, which could be explained with imperfections of real 
elements (geometric imperfections, material inhomogeneity, residual stresses), as well as with 
model imperfections in the approximation of the mathematical and the numerical model. 

With the thin-walled C-section 100/50/15/2 beam, local buckling appears in the lower 
half of the height of the beam, Fig. 8a, while with the thin-walled Z-section 100/50/15/2 beam 
it appears in the upper half of the height of the beam, Fig. 8b. The "Buckling" analysis gives 
us a range of possible local buckling which was confirmed by the experimental tests. 

Thin-walled beams with a greater wall thickness are also observed, t=4 mm. With the 
C-section 100/50/15/4 beam and the Z-section 100/50/15/4 beam global stability loss appears 
without the occurrence of local buckling. For the Z-section 100/50/15/4 beam with an 
asymmetrical cross section, the critical forces FSAP obtained by the FEM and Fteor obtained 
analytically by the theory of thin-walled beams are equal.   

In the calculation of the beam stability of the symmetrical C-section 100/50/15/4 beam, 
it is necessary to take torsional stability into account. For the C-section 100/50/15/4 beam, the 
value of the global critical force Fteor obtained analytically is smaller than the global critical 
force FSAP which was obtained by the FEM. The difference in the size of the critical force 
obtained analytically and numerically for beams with symmetrical C-sections occurs because 
of the stiffness of the plate through which the load is transferred. 

6. Conclusion 

For the thin-walled C-section 100/50/15/2 and Z-section 100/50/15/2 beams, after 
reaching the maximum force, strain and force are in a nonlinear relationship. Strain grows and 
axial stiffness of the beam falls nonlineary. Global critical force will not be achieved due to 
local buckling. For these beams, the finite element method gives the value of the critical force 
with the occurrence of local buckling, and the area of possible local buckling is determined, 
which coincides with the experimental tests. To the thin-walled open-cross section beams that 
are subject to the local loss of stability, we cannot apply the theory of thin-walled beams for 
calculating the critical force of the loss of stability, because that calculation gives a value of 
the critical global force without taking the local buckling of parts of a beam into account. 

The relationship between the dimensions of the cross-section of thin-walled beams, the 
thickness of the wall and the height of the beam affect the way of cancellation of the beam, 
i.e. the loss of stability (local or global). By increasing the thickness of the beam wall there 
occurs the loss of beam stability reaching a global critical force, without having local 
buckling, for the C-section 100/50/15/4 and Z-section 100/50/15/4 beam. 

To obtain the dependence of the cross-section dimensions and the height of the beam, 
which affect the way of the loss of the beam stability, further experimental tests and 
numerical calculations should be carried out. 
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For the thin-walled Z-section beam where the plane load goes through the shear centre, 
torsional stability should not be taken into account, and the critical forces obtained analyti-
cally and numerically are equal. For the C-section beam, the plane load does not go through 
the shear centre and here buckling and torsion appear simultaneously, so the rigidity of the 
plate, through which the load is transferred, has an influence on the value of the critical load. 
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