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Resistance Distances in Fullerene Graphs*
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Resistance distances are computed for all 1812 C60 fullerenes and
found to correlate with the number of pentagon adjacencies and
hence with relative energy. Within the set, the unique isolated-pen-
tagon isomer has the lowest resistance distance (RT = 479482/209),
the lowest Wiener index (W = 8340) and the highest Balaban index
(J = 2025/2224). The most stable C40 fullerene isomer, one of two
with the lowest achievable number of pentagon adjacencies, also
has the lowest resistance distance in the set.

Key words: Balaban index, C40 fullerenes, C60 fullerenes, resistan-
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INTRODUCTION

Within the potentially vast class of the fullerenes, thermodynamic sta-
bility and isomer selectivity are determined by a delicate balance of steric
and electronic factors.1 Graph theory gives a tool for dealing with �-electro-
nic structure, in the shape of Hückel theory,2 but it is also useful in the mod-
elling of the competing steric effects. One approach to quantification of ste-
ric strain in polyhedral cage molecules is through distance-based invariants.
The Wiener index, for example, is an established measure of molecular com-
pactness,3 and shows selectivity in picking fullerenes from general cubic
polyhedra, isolated-pentagon fullerenes from general fullerenes and, in com-
bination with other invariants, it can in some cases identify the low-energy
cages in the sub-set of isolated-pentagon fullerenes.4 Several other indices
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have similar characteristics, and there are many distance-related invari-
ants in the literature of chemical graph theory.

Recently, resistance distances5 have been calculated for Platonic polyhe-
dra6,7 in an algebraic treatment that was described as presenting some diffi-
culty for the dodecahedron.7 Numerical solution of the problem is straight-
forward, and is applied here to a representative sample set of fullerenes, the
1812 isomers of C60, to compare the extremal properties of resistance dis-
tance with those of other distance-related indices. It is found that the uni-
que truncated icosahedral isomer, the experimental C60 molecule, is extre-
mal in this property, as it is in the Wiener and Balaban indices, and is in
fact the isomer with the lowest resistance distance of all the cages that can
be assembled from 12 pentagonal and 20 hexagonal faces. A previous study
concentrated on the relative abilities of these and other indices to characte-

rise C60 fullerenes.8 The focus here is on the ability of the resistance dis-
tance to reflect the physically and chemically important energetics of the
fullerenes. In this context, the multiplicity of an index value is less impor-
tant than its extremal properties.

METHOD

The concept of resistance distance of a graph is based on an electrical
analogy.5 Each edge of the graph is taken to be a wire of unit resistance, and
pairs of vertices are treated as terminals across which there is an applied
potential drop. Unit current is assumed to flow in at one terminal and out at
the other. For each choice of a pair of terminal vertices, bond currents are
calculated over the whole graph by application of Kirchhoff's laws,9 and the
resistance between the terminals follows from the sum of bond currents
taken along any route from one to the other. Summation of the calculated
resistance over all distinct choices of the terminal pair gives the total resis-
tance distance RT(G) of the graph G.5,7

If resistance is regarded as a metric defining a separation �ij for each
pair of vertices i and j of G, then RT(G) is the half sum of all the entries, re-
lated to the matrix W in the same way that W, the Wiener Index, derives
from the ordinary distance matrix D. To emphasise this similarity, RT(G) is
sometimes called the Kirchhoff Index, Kf.9 In an acyclic graph Wiener and
Kirchhoff indices are equal; in a general graph Kf is equal to the quasi-Wie-
ner index.10,11

If the vertices are labelled 1 to n, each edge vector is given a positive
sense in the direction from lower to higher vertex label. Bond currents are
then scalar multiples (positive or negative) of the bond vectors <ij>, descri-
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bed by coefficients cij. Kirchhoff's first and second laws give the current
sums at the vertices:

Aij

j

n

'
�

�
1

cij = +1 (i = input terminal)

= –1 (i = output terminal) (1)

= 0 (otherwise)

where A' is a signed adjacency matrix with elements Aij' = +1 for neighbours
j > i, Aij' = –1 for neighbours j < i, and Aij' = 0 otherwise. Similarly, for the cy-
cles i1 i2 i3 ... ir,

Ai i1 2
' ci i1 2

+ Ai i2 3
' ci i2 3

+ ... + Ai ir 1
' ci ir 1

= 0 . (2)

A cubic polyhedron such as a fullerene has n vertex conditions of type (1)
and (n/2+2) face-cycle conditions of type (2), of which (n–1) and (n/2+1), re-
spectively, can be taken as independent in the absence of symmetry. Again
in the absence of symmetry considerations, there are n(n–1)/2 distinct choi-
ces of terminal pairs, and the patterns of current are determined by the lin-
ear matrix equation

B × C = D (3)

�(n–1) + (n/2 +1)� × 3n/2 3n/2 × n(n–1)/2 3n/2 × n(n–1)/2

where B contains the various A' entries of the LHS of (1) and (2), C is the
matrix of n(n–1)/2 column vectors c of scalar current coefficients, and D is a
rectangular array of the RHS of (1) and (2), with one column for each choice
of terminal pair. Symmetry can be used to reduce both the dimensions of c

and the number of columns in D, but as most fullerenes have no symmetry,
and the dimensions of the equations are in any case easily manageable for
C60, no further manipulation of (3) is used here. The inversion of B is conve-
niently performed for these small cases using Gauss-Jordan elimination, for
which standard subroutines are available.12 The program was tested for the
dodecahedron, and reproduced the results of Ref. 7.

RESULTS

All quantities needed for the solution of (3) follow from the face-spiral
encoding of the adjacency information for fullerene isomers.1,13 The 1812
isomer datasets were constructed and processed to produce patterns of cur-
rents for each of the 1770 pairings of terminals, the corresponding pair
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resistances, and hence the total resistance distances for each isomer. Full
lists of other distance invariants are also available.4

The truncated icosahedral isomer 60:1812 has 23 distinct terminal pair-
ings, equivalent to the number of derivatives C60X2, and these lead to 23 dif-
ferent contributions to RT(60:1812). Conversion of the high precision numer-
ical results to fractional form gives the total resistance distance for this
isomer as RT(60:1812) = 479482/209 (i.e. 2294.1722). The separate resistan-
ces are shown in Table I, using the standard vertex-spiral numbering sche-
me14 for the atoms of C60, and the pattern of currents for the 1,2 pairing
across one of the formal double bonds of the structure is illustrated in Fig-
ure 1.
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TABLE I

Contributing resistances for the distinct pairings of terminal vertices in
icosahedral C60 fullerene. Each distinct pair 1,m in the IUPAC vertex-spiral

numbering scheme14 has a resistance R(m), which can be expressed as a fraction
i(m)/25080 where i(m) is an integer, contributing with multiplicity g to the total

resistance distance, RT(60:1812).

m g R(m) = i(m)/(120 × 209)

6 60 16273/25080 � 0.648844
2 30 16778/25080 � 0.668978
7 60 23234/25080 � 0.926396
3 120 24749/25080 � 0.986802
4 60 27274/25080 � 1.087480

13 120 29359/25080 � 1.170614
19 60 29864/25080 � 1.190750
17 120 31488/25080 � 1.255502
18 120 32519/25080 � 1.296611
15 60 33133/25080 � 1.321093
16 60 33835/25080 � 1.349083
38 60 34405/25080 � 1.371810
39 60 34843/25080 � 1.389274
31 120 35369/25080 � 1.410248
34 120 36048/25080 � 1.437321
35 60 36704/25080 � 1.463477
33 120 36769/25080 � 1.466069
53 60 37534/25080 � 1.496571
52 120 37859/25080 � 1.509530
49 60 38054/25080 � 1.517305
55 30 38438/25080 � 1.532616
51 120 38503/25080 � 1.535207
60 30 38760/25080 � 1.545455



Several patterns emerge when all 1812 values of RT are considered. The
whole set of isomers spans a range of 264.94 and the average over the distri-
bution is 2320.08. As shown in Figure 2(a), RT correlates smoothly with Np,
the number of pentagon adjacencies in the fullerene polyhedron, which is
known to be a useful qualitative measure of relative energy in lower full-
erenes.15 The isolated-pentagon isomer has, of course, Np = 0, and minimum
RT; the isomer next in RT is also the C60 fullerene with the smallest non-zero
Np (isomer 60:1809), which is related to the truncated icosahedron by a sin-
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Figure 1. Bond currents in truncated-icosahedral C60 for a pair of terminals span-
ning the hexagon-hexagon edge of the polyhedron. The standard IUPAC numbering
scheme is used.14 Arrows on the diagram show the direction of current flow; dotted
lines are graph edges with zero current. The non-zero currents are (in units of
501610–1): 33556 (1®2); 8302 (1®6, 1®9, 3®2, 12®2); 5951 (4®3, 6®5, 9®10,
11®12); 5050 (5®4, 10®11); 2351 (6®7, 9®8, 14®3, 7®21, 8®24, 13®12, 15®14,
30®13); 1624 (18®17, 19®18, 26®27, 27®28); 1427 (16®15, 21®20, 24®25,
29®30); 987 (35®34, 38®37, 43®44, 46®47); 924 (21®22, 22®39, 23®42, 24®23,
31®30, 32®15, 33®32, 48®31); 901 (17®4, 5®19, 10®26, 28®11); 723 (17®16,
20®19, 25®26, 28®29); 704 (20®38, 25®43, 34®16, 47®29); 656 (36®35, 37®36,
44®45, 45®46); 650 (53®52, 57®58); 644 (55®60); 641 (39®40, 40®54, 41®56,
42®41, 49®48, 50®33, 51®50, 59®49); 331 (37®53, 44®57, 52®35, 58®46); 322
(54®55, 56®55, 60®51, 60®59); 319 (52®51, 54®53, 56®57, 58®59); 283 (34®33,
39®38, 42®43, 47®48).



gle Stone-Wales transformation.16 The isomer of highest resistance distance
is the high-energy 1812:1, the cylinder with hemi-dodecahedral caps, for which
Np = 20. This isomer has RT = 2559.1089 (to machine accuracy, 47105517/
18407). The extreme values of Kf and W for 60:1 and 60:1812 have been re-
ported,8 though in the case of the Kirchhoff index, multiplied by an uncon-
ventional extra factor of two.

Other distance invariants have been calculated for this set of fullere-
nes.4,8 Isomer 60:1812 has the lowest Wiener index, W, and the highest Ba-
laban index,17 J, in the set. Figure 2(b) shows that there is a strong correla-
tion, isomer-by-isomer, between W and RT. The correlation between J and
RT (not shown) is of similar quality, as W and J are strongly (inversely) cor-
related.4

For C60, all three invariants pick out the icosahedral isomer, tracking
both the total energy and the number of pentagon adjacencies. For other
numbers of vertices, there are some indications that RT will in fact have a
better performance than the other distance invariants as a predictor of en-
ergy. Table II shows W and RT for the 40 fullerene isomers of C40, all of
which necessarily have some adjacent pentagons. Isomer 40:38 is one of two
with the minimal 10 pentagon adjacencies, and is predicted to be the C40

fullerene of lowest energy by many methods;15 it turns out also to have the
smallest resistance distance, by a margin of 1 part in 1000, whereas its Wie-
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Figure 2. Correlations between resistance distances and other graph theoretical
invariants for the set of 1812 fullerene isomers of C60. (a) Scatter plot of RT against
Np, the number of pentagon adjacencies. (b) Scatter plot of RT against W, the Wiener
index. The isolated-pentagon isomer is denoted by the empty circle, other isomers by
the filled circles.



ner index of 2994 is shared by 2 isomers and beaten by 6 others. The C40 iso-
mer of lowest Wiener Index is actually the other fullerene with 10 adjacen-
cies, 40:39, which quantum mechanical methods predict to be marginally
less stable than 40:38. In this case, RT is performing better than both the
very robust pentagon-adjacency index, which would not decide between
40:38 and 40:39 and the Wiener index which would plump for the wrong iso-
mer. Further investigation of the resistance distance for large sets of fulle-
renes may be worthwhile.
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Otporne udaljenosti u fullerenskim grafovima

Patrick W. Fowler

Za svih 1812 C60 fulerena izra~unane su otporne udaljenosti i na|eno je da kore-
liraju s brojem susjednih peterokuta i stoga s relativnom energijom. Unutar toga
skupa, izomer s potpuno izoliranim peterokutima ima najmanju otpornu udaljenost
(RT = 479482/209), najmanji Wienerov indeks (W = 8340) i najve}i Balabanov indeks
(J = 2025/2224). Najstabilniji izomer C40 fulerena, jedan od dva s najmanjim mogu-
}im brojem susjednih peterokuta, tako|er ima najmanju otpornu udaljenost u pri-
padnom skupu izomera.
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