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Leapfrog transformations starting with the genus 3 Klein and Dyck

tessellations consisting of 24 heptagons and 12 octagons, respecti-

vely, can generate possible highly symmetrical structures for allo-

tropes of carbon and the isosteric boron nitride, (BN)x. The Klein

tessellation, alternatively described as a platonic �3,7� tessellation,

corresponds to the Riemann surface for the multi-valued function

w z z� ( – )1 27 , which can also described by the homogeneous quartic

polynomial �3� � �3� � �3� � 0. The symmetry of this polynomial is

related to the heptakisoctahedral automorphism group of the Klein

tessellation of order 168. Similarly the Dyck or �3,8� tessellation

can be described by a Riemann surface which corresponds to the

homogeneous Fermat quartic polynomial �4 � �4 � �4 � 0. The sym-

metry of the Fermat quartic relates to the automorphism group of

the Dyck tessellation of order 96.

Key words: Riemann Surface, boron nitride, leapfrog transforma-

tion, Klein tessellation, Dyck tessellation.

INTRODUCTION

Until the 1980’s diamond and graphite were the only well-characterized

allotropes of elemental carbon. The structure of diamond is well known to

consist of an infinite three-dimensional network of tetrahedral sp3 carbon

* This paper is dedicated to Milan Randi} in recognition of his pioneering contributions to

mathematical chemistry.
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atoms whereas the structure of graphite consists of an infinite planar net-

work of hexagons of trigonal sp2 carbon atoms. During the 1980’s new allo-

tropes of carbon were discovered exhibiting finite molecular cage structures

rather than the infinite polymeric structures of diamond and graphite; such

carbon allotropes have been named fullerenes. The key feature of the struc-

tures of such fullerenes is the presence of pentagons as well as hexagons of

trigonal carbon atoms. The best known and most symmetrical fullerene is

C60, which is now well known to have a truncated icosahedral structure of Ih

point group symmetry.1 The substitution of pentagons for some of the hexa-

gons in the graphite structure converts the zero curvature infinite flat

graphite structure into a positive curvature finite polyhedral structure.

A question of interest is the favored shapes of networks of trigonal car-

bon atoms in which some of the hexagons of graphite are replaced by hepta-

gons. Such networks do not correspond to positive curvature surfaces lead-

ing to finite polyhedra but instead to negative curvature surfaces2 leading

to infinite structures known as infinite periodic minimal surfaces (IPMS’s).3

Mackay and Terrones4 in 1991 apparently first recognized the possibility of

such negative curvature allotropes of carbon. In 1992 Vanderbilt and Ter-

soff 5 first postulated the so-called D168 structure with a unit cell of genus

three containing 24 heptagons and 56 hexagons and a total of 168 carbon at-

oms. In 1996 the author6 first pointed out the connection between this D168

carbon structure and a genus three surface tessellated with 24 heptagons

first described by the German mathematician Felix Klein in 1879 (Ref. 7)

which is conveniently called the Klein tessellation. Thus the relationship

between the Klein tessellation and the D168 structure through a so-called

leapfrog transformation8–12 was found to be completely analogous to the re-

lationship between the regular dodecahedron and the truncated icosahedron

of C60. The permutational symmetry of the Klein tessellation and thus the

D168 structure could be described by a simple permutation group of order

168, which has been called the heptakisoctahedral group, 7O, because of its

origin from the octahedral group by adding seven-fold symmetry.13 The hep-

takisoctahedral group also bears a relationship to the icosahedral group

since it can be generated from a finite field of seven elements by a procedure

analogous to the generation of the icosahedral (or pentakistetrahedral

group)13 from a finite field of five elements.

A similar approach can be used to describe structures of carbon or iso-

steric boron nitride allotropes consisting only of hexagons and octagons.14 In

this case the relevant figure is a genus three surface tessellated with 12 oc-

tagons, which was first described in 1880 by Walther von Dyck,15 a contem-

porary of Felix Klein. The relevant permutation group is a group of order

96, which has a normal subgroup chain leading to the trivial group C1
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through subgroups of order 48 and 16 not related to the octahedral or tetra-

hedral groups.

This paper presents an alternative method for studying IPMS structu-

res, such as those found in carbon or boron nitride allotropes or some zeo-

lites16 based on Riemann surfaces tessellated with polygons. The geometri-

cal construction now known as a Riemann surface was first developed by

Riemann in the 19th century for the study of multi-valued functions, of

which w z� is a trivial example. Riemann surfaces played a major role in

the 19th century in the development of the theory of elliptic functions.17 The

Klein and Dyck tessellations mentioned above can be considered as genus 3

Riemann surfaces tessellated with heptagons and octagons, respectively, re-

lated to homogeneous polynomials of degree 4. This paper develops the rele-

vant theory of Riemann surfaces by first considering simpler examples in-

cluding a genus 1 Riemann surface related to elliptic integrals and a genus

2 Riemann surface of pentagonal bipyramidal symmetry.

POLYHEDRAL POLYNOMIALS AND RIEMANN SURFACES

The usual types of convex polyhedra, including the five regular polyhe-

dra (Figure 1), can be represented as points on the surface of a sphere. The

same sphere, taken as a special unit sphere called the Riemann sphere, can

also be used to represent the complex numbers z � a � bi. Such spheres pro-

vide a method for generating special polynomials associated with a given po-

lyhedron. In this connection, first represent the complex numbers z � a � bi
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by points on the (x, y) plane with the x-coordinate corresponding to a and the

y-coordinate corresponding to b; such a plane is called an Argand plane (Fig-

ure 2). The Argand plane can then be mapped onto the Riemann sphere

(Figure 2) so that the North Pole is � and the South Pole is 0; the 0–� axis

can be called the polar axis.18 The equation of the Riemann sphere is taken

to be p2 � q2 � r2 � 1.

The polyhedral polynomials are polynomials whose roots correspond to

the locations of the polyhedral vertices, the midpoints of the polyhedral edg-

es, or the midpoints of the polyhedral faces on the surface of the Riemann

sphere. Polyhedral polynomials are frequently expressed in terms of homo-

geneous variables so that all terms are the same combined degree in two

variables, i.e.,

a x a u vn i
i

n i
i n i

i

n

i

n

– –
–�

��
��

11

. (1)

The use of homogeneous variables corresponds to the substitution x � u/v.

Now consider the projection of points on the Riemann sphere onto its

equatorial plane, taken as an Argand plane as noted above (Figure 2). A

complex number z � a � bi gives
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Figure 2. Projection of the Argand plane for the complex number z � a � bi onto the

Riemann sphere.



Solving for p, q, and r gives
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Every rotation of the Riemann sphere around its center corresponds to a

linear substitution

z
z

' �
�
�

� �

� �

z
. (4)

For a rotation of the sphere by an angle � where p, q, r and –p, – q, –r re-

main constant,

z
v iu z t is

t is z v iu
'

( ) – ( – )

( ) ( – )
�

�

�

�
(5)

where s � p sin(�/2), t � q sin(�/2), u � r sin(�/2), and v � cos (�/2) so that

s2 � t2 � u2 � v2 � 1 . (6)

For a rotation about the polar axis this reduces to

z' � ei�z . (7)

Now consider the vertices of a regular octahedron and a regular icosa-

hedron as points on the surface of such a Riemann sphere oriented such

that the north pole (z � �) is one of the vertices in each case. This leads to

the following homogeneous polynomials for these regular polyhedra in these

orientations where z is taken to be u/v.18,19

(a) Octahedron (Oh symmetry):

Vertices: 	 � uv(u4 – v4) (8a)

Edges: 
 � u12 – 33u8v4 – 33u4v8 � v12 (8b)

Faces: W � u8 � 14u4v4 � v8. (8c)

(b) Icosahedron (Ih symmetry):

Vertices: f � uv(u10 � 11u5v5 – v10) (9a)

Edges: T � u30 + 522u25v5 – 10,005u20v10 – 10,005u10v20 –

522u5v25 � v30 (9b)

Faces: H � –u20 � 228u15v5 – 494u10v10 – 228u5v15 – v20 . (9c)
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In order to generate similar polynomials for a regular tetrahedron, align

a tetrahedron on the Riemann sphere so that the midpoints of its six edges

are the same as the vertices of the octahedron defined by the polynomials

(8a–8c). Then the tetrahedral polynomials are the following:

Vertices: � � � � �u u v v4 2 2 42 3– (10a)

Edges: 	 � uv(u4 – v4) (same as equation 8a) (10b)

Faces: � � � �u u v v4 2 2 42 3– – . (10c)

The roots of these polyhedral polynomials correspond to the locations of

the vertices, edge midpoints, and face midpoints on the Riemann sphere.

For example, the six roots of the vertex polynomial of the octahedron (equa-

tion 8a) are �, 0, �1, and �i, which are the locations of the six vertices of the

octahedron on the Riemann sphere. The root of � for equation (8a) relates to

the absence of a u6 or v6 term even though all of the terms are of degree 6

implying the need for six roots.

The degrees of the polyhedral polynomials are equal to the numbers of

corresponding elements (vertices, edges, or faces). Furthermore, interchang-

ing the vertex and face polynomials for a given polyhedron gives the corre-

sponding polynomials for its dual. For example, since the dual of an octa-

hedron is a cube, the vertex polynomial of the octahedron (equation 8a) is

the face polynomial of the dual cube and the face polynomial of the octa-

hedron (equation 8c) is the vertex polynomial of the dual cube. Also since

the tetrahedron and its dual, also a tetrahedron, together form a cube, the

product of the vertex and face polynomials of a tetrahedron (i.e., equations

10a and 10c) equals the vertex polynomial of the cube or the face polynomial

of its dual, namely the octahedron (equation 8c).

The concept of a Riemann surface was originally introduced to facilitate

the integration of multi-valued functions.17 A simple example of such a mul-

ti-valued function is the function w z� which has two values depending on

whether the positive or negative square root is taken. However, in order to

illustrate the geometry of Riemann surfaces it is instructive to use the more

complicated function

w a z a z a z a z a� � � � �4
4

3
3

2
2

1 0 (11a)

	 �w a z z z z z z z z4 1 2 3 4( – )( – )( – )( – ) (11b)

in which a0,…,a4 are arbitrary complex constants and z1,…,z4 are the roots

of the polynomial under the radical. If z is a complex variable, such as that

represented on the surface of a Riemann sphere, then equation (11) defines
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w as a two-valued algebraic function of z. This equation is used to define a

so-called elliptic curve,20 where a point on the elliptic curve is a pair (z,w)

satisfying equation (11).

The value of w in equation (11) might appear to depend upon five vari-

ables, either an (0 
 n 
 4) in equation (11a) or a4 and zn (1 
 n 
 4) in equa-

tion (11b). However, for the purpose of integration to give, for example, an

elliptic integral, this function actually depends on only one complex vari-

able, which is called the cross-ratio, 
.20,21 Thus consider

z
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. (12)
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Equation (12) also takes z2 to �, z3 to 1, and z4 to 0. Now solve for z as a

function of z' and substitute for z in the right hand side of equation (11) to

give
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so that w a z z z' ' ( – ')( – ')2
4 1 1� ' � . (18)

Next let w
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so that w z z z" ' ( – ')( – ')2 4 1 1� 
 . (20)
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Dropping all primes from equation (20) gives the elliptic curve in the

Riemann normal form, i.e.

w z z z2 4 1 1� ( – )( – )
 . (21)

Thus given equation (11) of an elliptic curve, the Riemann normal form

(equation 21) can be obtained by computing the cross-ratio, 
� of the four

roots of the polynomial. Note that in converting equation (11) to equation

(21) the degree of the polynomial in z on the right hand side is reduced from

4 to 3 corresponding to sending one root of the quartic in (11) to infinity in

the transformation of equation (11) to equation (21).

With this algebraic background the Riemann surface can be obtained

corresponding to the Riemann normal form (equation 21). The original pur-

pose of the Riemann surface was to convert a multi-valued integrand, such

as one containing a square root of a polynomial, into a single valued inte-

grand in order to facilitate subsequent integration. In this connection note

that in equation (11) for z � z1,…,z4 there are two values of w corresponding

to the positive and negative square roots. At z1,…,z4, which are called criti-

cal points, there is a unique value for w, since the two values for w coalesce

at these points.

We can construct a Riemann surface, M2, for the elliptic curve repre-

sented by equation (21), which has critical points at 0, 1, 1/
� and �.17 For

convenience in obtaining M2, we take the Argand plane (Figure 2) and slit it

along the real axis from 0 to 1 and along a half line parallel to the real axis

going to the right beginning at 1/
 and ending at � (Figure 3). An important

requirement in slitting the Argand plane is that the two slits do not inter-

sect. To represent w defined by equation (21) in its entirety, we take a sec-

ond copy of the slit Argand plane and attach this second copy to the first at

the points 0, 1, 1/
� and � and along the slits. The bottom of each slit on ei-

ther sheet is attached to the top of the corresponding slit on the other sheet,

where a sheet refers to a single copy of the Argand plane. The two sheets

can thus be pictured as being parallel and lying over the Argand plane so

that each point projects down vertically on the point of the Argand plane

with the same value of z. Since each of the two slit sheets may be mapped

onto a sphere, the Riemann surface M2 is like a basketball and an internal

air bladder joined by the two crossed slits.

Surfaces, including Riemann surfaces such as the one described above,

can be characterized by their genus. The genus of a sphere or a surface topo-

logically homeomorphic to a sphere is zero. In this connection two surfaces

S1 and S2 are said to be topologically homeomorphic to each other if S1 can be

deformed to S2 without tearing or cutting. Surfaces of non-zero genus are

topologically homeomorphic to surfaces generated by drilling holes (or tun-
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nels) through a plastic sphere. The genus, g, of such a surface is the number

of holes that must be drilled through a plastic sphere to make a surface

homeomorphic to the surface in question. Thus the genus of a sphere itself

is zero and the genus of a torus (i.e., a doughnut) is one. Note that a stan-

dard coffee cup with one handle and a doughnut are both examples of sur-

faces of genus one. The Riemann surface for equation (13) is also an exam-

ple of a surface of genus one.17 We will find that the Riemann surfaces of

interest in connection with study of the Klein and Dyck tessellations both

have genus three.

PLATONIC TESSELLATIONS OF RIEMANN SURFACES

The Riemann surfaces used to model allotropes of carbon and boron ni-

tride with structures based on IPMS’s may be considered to be decorated or

tessellated with polygons corresponding to the fused rings of the atoms ma-

king up the chemical structure in question. For example, in the D168 struc-

ture for a carbon allotrope, the genus three surface is tessellated with hexa-

gons and heptagons corresponding to the C6 and C7 carbon rings in the
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structure. In this connection a tessellation of a surface can be described in

terms of its flags, where a flag is a triple (V, E, F) consisting of a vertex V, an

edge E, and a face F, which are mutually incident.22 A tessellation is called

platonic if its symmetry group acts transitively on its flags. The regular po-

lyhedra (Figure 1) are examples of platonic tessellations of the sphere. The

so-called Schäfli notation �p,q� can describe a platonic tessellation consist-

ing of q regular p-gons at each vertex.

Now consider platonic tessellations in the Euclidean plane, i.e., a flat

surface of zero curvature. In the Euclidean plane, the angle of a regular

p-gon �p�, is (1 – 2/p)�; hence q equal �p�’s of any size will fit together

around a common vertex if this angle is equal to 2�/q leading to the follow-

ing relationship:

(p – 2)(q – 2) � 4 . (22)

There are only three integral solutions of equation (22), which lead to

the three platonic tessellations of the plane, namely �4,4�, �6,3�, and �3,6�
(Figure 4). The �4,4� tessellation is the pattern of the checkerboard and the

�6,3� tessellation corresponds to the structure of graphite.

Now consider platonic tessellations of the sphere that correspond to the

regular polyhedra (Figure 1). The angle of the regular spherical polygon �p�
is greater than (1 – 2/p)� and gradually increases from this value to � as the

circumradius of the underlying sphere increases from 0 to �/2. Thus if

(p – 2)(q – 2) < 4 , (23)
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then the size of �p� can be adjusted so that its angle is exactly 2�/q. Then q

such �p�’s will fit together around a common vertex leading to the platonic

spherical tessellations �2,q�, �p,2�, �3,3�, �3,4�, �4,3�, �3,5�, �5,3� corre-

sponding to the q-gonal hosohedron formed by q lunes,23 the p-gonal dihe-

dron formed by two p-gons, the regular tetrahedron, the regular octahedron,

the cube, the regular icosahedron, and the regular dodecahedron, respecti-

vely (Figure 1). In this connection a lune is a spherical polygon with two

vertices and two edges.

Finally consider regular tessellations in the hyperbolic plane, in which

the angle of a regular hyperbolic polygon �p� is less than (1 – 2/p)� and gra-

dually decreases from this value to zero when the (negative) curvature goes

from 0 to –�. Thus if

(p – 2)(q – 2) > 4 , (24)

then the size of �p� can be adjusted so that its angle is exactly 2�/q. Then q

such �p�’s will fit together around a common vertex and further �p�’s may

be added indefinitely. In this manner, a regular hyperbolic tessellation �p,q�
can be constructed, which is an infinite collection of regular p-gons filling

the whole hyperbolic plane. There are obviously an infinite number of inte-

gral solutions to equation (22) leading to an infinite number of different reg-

ular hyperbolic tessellations. The regular hyperbolic tessellations �7,3� and

�8,3� correspond to the genus 3 Klein and Dyck tessellations, respectively,

which are the ones of interest in the context of this paper. For convenience

in some of the figures the edges of the hyperbolic polygons are drawn as

straight lines even though they are actually curved lines.

Euler’s theorem can be generalized to tessellations embedded in a sur-

face of genus g (or Euler characteristic 
) by using the following equation:

v – e � f = 2(1 – g) = 
 . (25)

Note that if g � 0 so that 
 � � (i.e., for polyhedra homeomorphic to a

sphere), equation (25) reduces to the familiar version of Euler’s theorem, i.e.

v – e � f � 2 . (26)

Platonic tessellations of surfaces with constant curvature can be con-

structed by reflections in three mirrors defined by three sides of a right tri-

angle of geodesics, called an orthoscheme triangle or asymmetric unit (Fig-

ure 5a).24,25 The orthoschemes correspond to the flags of the tessellation.

For a platonic tessellation �p,q� the acute angles of the orthoscheme are �/p

and �/q. The set of replicas of one orthoscheme obtained by repetitions of
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these reflections covers the surface totally without overlap. For example, in

the Euclidean plane, the �6,3� and �3,6� platonic tessellations of hexagons

and triangles (Figure 4) are obtained from an orthoscheme with angles of

�/2, �/6, and �/3. Similarly, the �4,4� checkerboard tessellation of squares is

obtained from an orthoscheme with angles of �/2, �/4, and �/4. Furthermore,

on the sphere, each of the regular polyhedra (Figure 1) can be obtained from

its own orthoscheme. For example, a regular dodecahedron �3,5�, as well as

its dual icosahedron �5,3�, can be generated from a non-Euclidean ortho-

scheme with angles of �/2, �/3, and �/5. Figure 5b shows the division of a

single pentagonal face of a regular dodecahedron (Figure 1) into ten of these

orthoschemes, alternately shaded and unshaded. Extension of this division

to all 12 faces of the regular dodecahedron leads to a total of 120 ortho-

schemes to cover the entire surface of the regular dodecahedron. The ortho-

scheme triangle is the fundamental region of the symmetry (automorphism)

group of the tessellation. Two points of the same fundamental region are not

related by a symmetry operation and all points related by a symmetry oper-

ation are equivalent to one point of the orthoscheme. In the example of the

regular dodecahedron the 120 orthoschemes represent the 120 operations of

the full icosahedral symmetry group Ih. Similarly the 60 unshaded ortho-

schemes (or equivalently the 60 shaded orthoschemes) represent the 60 pro-

per rotations of the icosahedral rotational subgroup I.

The conversion of platonic tessellations into favorable structures for car-

bon and boron nitride allotropes requires the use of a so-called leapfrog

transformation to introduce hexagonal rings in a symmetrical manner.8–12
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scheme triangles showing the alternate shaded and unshaded triangles.



The leapfrog transformation of a tessellation consists of omnicapping (stel-

lation) followed by dualization (Figure 6) and the final tessellation is called

the leapfrog of the original tessellation. This reduces considerably the angu-

lar strain thereby generating an energetically favorable structure. Leapfrog

transformations have the following characteristics:

(1) In the leapfrog transformation of a trivalent tessellation (i.e., one

with a Schäfli symbol of the type �3,q�) the numbers of vertices and edges

are triple the numbers of vertices and edges, respectively, in the original

tessellation.

(2) The number of faces in the leapfrog of a trivalent tessellation is equal

to the sum of the numbers of vertices and faces in the original tessellation.

(3) The permutational symmetry (i.e., the point group symmetry in the

case of the genus zero polyhedra) of the original tessellation is retained in

the leapfrog.

(4) The leapfrog transformation of a trivalent tessellation »dilutes« the

original tessellation with the minimum number of hexagons so that no two

polygons from the original tessellation share a common vertex or edge in the

leapfrog. Furthermore, each vertex of the leapfrog belongs to exactly one po-

lygon from the original tessellation.
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dron (C60 polyhedron).



The most familiar example of a leapfrog transformation is the conver-

sion of the 20-vertex regular dodecahedron into the 60-vertex truncated ico-

sahedron of C60. Similarly the D168 structure for the hypothetical Vander-

bilt-Tersoff allotrope of carbon5 consisting only of hexagons and heptagons

can be obtained by a leapfrog transformation from the Klein tessellation.6

A GENUS 2 RIEMANN SURFACE OF PENTAGONAL

BIPYRAMIDAL SYMMETRY

Before considering the genus 3 Riemann surfaces corresponding to the

Klein and Dyck tessellations, it is first instructive to consider a simpler Rie-

mann surface B2 consisting of a genus 2 surface tessellated by F equilateral

�/5 triangles (i.e., triangles in which each angle is �/5).26 In order for such a

triangular tessellation (triangulation) to be platonic, it must have E F� 3

2

edges and V F� 3

10
vertices, since ten triangles meet at a vertex. Solving for


��2) in Euler’s formula (equation 25) gives the following:


 ( ) – – –B V E F F2 3

10

3

2
1 2� � � � �


�
�

�

�
� � . (27)

Equation (27) leads to F = 10, E = 15, and V = 3. The ten triangles fitting

around one vertex form a 2�/5 decagon, which is a fundamental domain for

a surface that we want to construct (Figure 7a). What remains is the deriva-

tion of suitable identifications of edges of the decagon to generate a quotient

surface with the necessary conditions for a platonic tessellation. For exam-

ple, we want the 2�/5 rotations around the center of the decagon to extend

to permutational symmetries of the surface. This implies that identification

of one pair of edges determines all of the other edge identifications. Since

the angles at five decagon vertices sum to 2�, the edge identifications have

to identify every second vertex. This leaves only the two possibilities of iden-

tifying edges 1 and 4 and identifying edges 1 and 6. Both are seen to lead to

the same Riemann surface, which has genus 2.

The quotient surfaces can be defined algebraically by constructing two

meromorphic functions and determining the algebraic relationship between

them. To define the first such function, z, consider the C5 rotation group

around the center of the decagon. This group has three fixed points, namely

the center of the decagon and the two identified sets of vertices. Using Eu-

ler’s formula (equation 25) the quotient surface can be seen to be a sphere.

Thus take any triangulation of B2 that is invariant under the rotation

group. Then the quotient surface is also triangulated. If the number of fixed

points of the rotations on M2 is f, then the Euler number can be computed
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for this quotient surface by the following equation derived from equation

(25):
1

5

1

5
2[ + ] +( – ) –V f E F f f f� � �(– – ) ���2� . (28)
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Figure 7. (a) Division of the 2� /5 decagon representing the genus 2 Riemann surface

B2 into 10 equivalent triangles. In Figures 7, 8, and 10 the edges are labeled by italic

numbers. (b) The function z arising from mapping one of the triangles onto half of

the Riemann sphere with a slit from 0 to 1. (c) The function w arising from mapping

one of the triangles onto one-fifth of the Riemann sphere with a slit bisecting the an-

gle at 0.



This indicates that f � 3 and shows that for this quotient surface 
 � 2

corresponding to a sphere. The coefficient 1/5 in equation (28) relates to the

fact that the C5 rotation group effectively »divides« B2 by five.

An alternative method for studying this Riemann surface uses what is

called Riemann mapping. Color the ten triangles in Figure 7a alternately

black and white. »Riemann map« a white triangle to the upper hemisphere

of the Riemann sphere (Figure 2). »Möbius normalize« the Riemann sphere

so that the vertices of the triangle go to 0, 1, and � and extend analytically

by reflection in the radial boundary to a map from the decagon to a fivefold

covering of the sphere branched over � and with slits from 0 to 1 on each

sheet. Finally identify the edges of the slits in the same way as the pre-im-

age edges of the decagon. The quotient sphere is thus seen as isometric to

the double of a hyperbolic 2�/5 triangle. Alternatively the Riemann surface

B2 can be seen as a fivefold covering of the Riemann sphere, branched over

0, 1, �. In any case this leads to a meromorphic function z on M2 that sends

the three vertices of the triangulation as fivefold branch points to 0, 1, and

� (Figure 7b).

In order to define the second function, w, consider the quotient of B2 by

any involution (symmetry operation of period 2) to give the following equa-

tion where B2 is effectively »divided« by two:

1

2

1

2
2[ + ] +( – ) –V f E F f f f� � �(– – ) ���2� . (29)

This leads to f � 2 or f � 6. In both cases the involution taken is the one

used to define the identifications leading to the solution f � 6 corresponding

to 
 = 2 and a sphere. The resulting meromorphic function w on M2 is nor-

malized by sending the midpoint of the decagon to � and the two other ver-

tices of the triangulation to 0. Since reflection in the triangle edges corre-

sponding to radii of the decagon passes to the quotient, the function w can

also be understood as mapping each triangle to a spherical 2�/5 sector that

is bounded by great circle arcs from 0 to � and has a straight slit in the di-

rection of the angle bisector (Figure 7b). By scaling the slit may be taken to

arbitrary length.

By comparing the divisors of z and w we see that w5 and z(z – 1) are pro-

portional and can be scaled so that

w5 = z(z – 1). (30)

The multi-valued nature of w can be emphasized by rewriting equation

(30) as

w z z� ( – )15 (31)
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corresponding to the five-fold covering of the Riemann sphere by the quo-

tient Riemann surface corresponding to z(z – 1). Also note that equations

(30) or (31) are defining equations for B2 for either identification pattern,

i.e., edge 1 to edge 4 and edge 1 to edge 6 (Figure 7a).

This triangle tessellation is seen not to be platonic since if it were pla-

tonic the 120° rotation of one triangle would extend to a symmetry of the

whole surface. The symmetry of this tessellation is thus limited to the same

D5 pure rotation group of the pentagonal bipyramid, which like the original

tessellated decagon (Figure 7a) has 10 triangular faces. The two equivalent

right triangles obtained by bisecting each of the 10 triangular faces of the

tessellated decagon in a manner to preserve the D5 symmetry lead to 20 or-

thoschemes which correspond to the 20 operations of the D5h point group of

the pentagonal bipyramid.

GENUS 3 RIEMANN SURFACES:

THE KLEIN AND DYCK TESSELLATIONS

The Klein Tessellation

The Klein tessellation, K2, is a �3,7� tessellation of a genus 3 surface by

2�/3 regular heptagons. If F is the number of faces of such a tessellation,

the number of vertices V is 7

3
F and the number of edges E is 7

2
F so that Eu-

ler’s formula (equation 25) gives the following result:

c(K F2 4 1
7

2

7

3
) – –� � � �


�
�

�

�
�	 F = 24, V = 56, E = 84. (32)

In the dual �7,3� tessellation of the genus 3 surface by 2�/7 triangles

(the little triangles) the numbers F and V are interchanged. The leapfrog of

K2 has 3V � 168 vertices, 3E � 252 edges, and F � V � 80 faces (56 hexagons

and 24 heptagons) corresponding to a unit cell of the D168 structure for a

carbon allotrope suggested by Vanderbilt and Tersoff.5

Consideration of the properties of the Klein tessellation, K2, is facilita-

ted by considering a coarser tessellation, M2, of the same genus 3 surface by

big triangles so that six small triangles of K2 make up each big triangle of

M2. The coarse tessellation M2 (Figure 8a) has fourteen �/7 triangles so ori-

ented to have a cyclic group of order 7 (C7) as at least part of its automor-

phism group. Euler’s theorem requires M2 to have 21 edges and 3 vertices.

There are two distinct genus 3 Riemann surfaces of this type but only one of

these two has the 120° rotations (C3 operations) around triangle centers as

part of its automorphism group. This latter Riemann surface is the one used
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to generate K2 by subdividing each of its big triangles into six of the little

triangles of K2.

Now consider a cyclic rotation group of prime order p on a surface of ge-

nus 3 with f fixed points. The Euler number for the quotient surface obtai-

ned by »division« by p is given by the following equation:

1
4

p
V F E F f f[ ]( – =

1
) – (– – )� � � �f

p
�–2,0,2� (33)

so that

f
p p p

� � �
 
!
"

#
$
%

–
–

,
–

,
–

2
2

1

4

1
2

6

1
(34)

is an integer for 
 � �–2,0,2�, respectively.

Therefore p = 7 is the maximum prime order, f = 3 in that case, and the

quotient surface is a sphere, i.e., of genus 0 with 
 = 2. A genus 3 surface

with an order 7 cyclic group of automorphisms therefore has a natural quo-

tient map to the sphere. This quotient map may be mapped onto the Rie-

mann sphere by sending the three fixed points to 0, 1, and �.

Equation (34) also shows that an involution (i.e., an operation of period

2) must have f = 0, 4, or � fixed points for quotient surfaces of genera 0, 1,

and 2, respectively. However, an involution of a platonic �3,7� tessellation

cannot have its fixed points at the vertices or the centers of the faces of the

tessellation. Thus the fixed points of the involutions must be at edge mid-

points. In such a case f must divide the number E of edges. Therefore f = 8,

which corresponds to a genus 0 quotient surface, cannot occur for an involu-

tion of the Klein tessellation K2 with 84 edges. The quotient surface for an

involution of a platonic tessellation of heptagons thus cannot be a sphere

but must be a torus.

A platonic �3,7� tessellation also implies a rotation group of order p = 3

around each of the heptagon vertices. Equation (34) for p = 3 indicates that

the number of fixed points, f, must be 2 or 5 for genus 1 and 0, respectively.

However f = 5 is excluded since it does not divide V = 56. Therefore f must

be 2 corresponding to a torus of genus 1 for a quotient surface for a rotation

group of order 3.

Now consider the coarser tessellation, M2, of the 14 big triangles to form

a hyperbolic tetradecagon (Figure 8a). We see that all of the odd and all of

the even vertices each have to be identified separately to give a smooth hy-

perbolic surface with the required 3 vertices. This leaves three possibilities:

identify edge 1 to edge 4, 6, or 8. The last case has the 180° rotation around

the center of the tetradecagon as an involution with f = 8 fixed points (na-
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mely the center and the pairwise-identified midpoints of the tetradecagon

edges) so that the quotient surface is a sphere and thus M2 is not platonic.

Identification of edge 1 to 4 leads to the same genus 3 surface thereby leav-

ing only the identification of edge 1 to edge 6 as a candidate for a platonic
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Figure 8: (a) The coarse tessellation M2 of a tetradecagon representing the genus 3

Klein tessellation K2 into 14 equivalent big triangles. The italic numbers on the

outer edges can also be considered as numbers of the corresponding triangles. (b)

The function z arising from mapping one of the big triangles onto one-half of the

Riemann sphere with a slit from 0 to 1. (c) The function w arising from mapping one

of the big triangles onto 3/14 of the Riemann sphere with a slit dividing the 3� /7 an-

gle at 0 into angles of � /7 and 2� /7.



surface. This latter identification turns out to be the coarse tessellation, M2,

corresponding to the Klein tessellation, K2, and is consistent with Klein’s

original description of this tessellation.7

The proof of platonicity of Klein’s tessellation, K2, can use the coarse tes-

sellation M2 (Figure 8a) with the 14 big triangles colored alternately black

and white to show that the 120° rotations (C3) in the center of each big tri-

angle are part of the automorphism group. In Figure 8a the odd-numbered

edges can be assumed to be black and the even-numbered edges to be white.

In the identification of edge 1 to edge 6 each black edge of the tetradecagon

is identified with the white edge that is counterclockwise 5 steps ahead (or

the white edges with the black ones 9 steps ahead). Now call the vertex at

the center of the tetradecagon vertex 1, the left endpoint of a black edge ver-

tex 2 and its right endpoint vertex 3. The identification of edge 1 to edge 6

can be restated as follows:

(1) Vertex 2 as seen from vertex 1 is rotated by 2�2�/7 around the center

of the tetradecagon.

(2) The triangle adjacent to this black edge is, at vertex 2, rotated by 1�2�/7.

(3) Vertex 3 is rotated by 3�2�/7 around the center of the tetradecagon.

(4) The same triangle adjacent to this black edge is rotated around ver-

tex 3 by –1�2�/7.

Thus rotation around vertex 1 by 2�/7 is rotation at vertex 2 by 4·2�/7

and at vertex 3 by 2�2�/7. This rule remains the same (mod 7) if the vertices

are cyclically permutated thereby demonstrating the three-fold symmetry of

the coarse tessellation M2 and hence the Klein tessellation, K2.

In order to apply this identification rule, consider the coarse tessellation

M2 (Figure 8a) with the 14 �/7 big triangles alternately colored black and

white. The equivalence classes of triangles and their vertices are marked

from 1 to 14 and from 1 to 3, respectively. The 120° rotation around any tri-

angle center cyclically permutes the (equivalence classes of) vertices. Simi-

larly, reflection in a triangle edge interchanges the black and white trian-

gles and therefore the cyclic orientation of their vertices. However, neither

of these two operations changes the identification rule. These reflections ge-

nerate the order 7 rotational symmetry and thus pass to the quotient sphere

obtained by »dividing« by seven (see equations (33) and (34) for p = 7). This

quotient sphere is generated by mapping a black triangle to the upper half

plane and then normalizing the triangle so that vertices 3, 2, and 1 go to 0,

1, and �, respectively. This quotient sphere generates the function z for the

Klein tessellation (Figure 8b).

The coarse tessellation M2 can also be mapped onto a Riemann sphere in

a second way to generate a function w. Thus map one of the black triangles
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of M2 to a spherical domain that is bounded by two great circles from 0 to �
with angle 3�/7 at �. This sphere has a great circle slit from 0 dividing the

angle at 0 in the ratio 2:1 with the bigger angle counterclockwise first (Fig-

ure 8c). This map can be extended analytically by reflection in the edges

(around �) to cover the sphere three times. The slits in these three sheets

are such that always in two sheets there are slits above each other, and the-

se are not always above a slit in the third sheet. This forced identification of

the slits is compatible with the identification of the edges of the tetradeca-

gon since the rotation angles �4,1,2��2�/7 counterclockwise at the vertices of

a black triangle are the same as the rotation angles �–3,1,2��2�/7 at the ver-

tices of the Riemann sphere. By comparing the divisors of w and the above

quotient function z we find that w7 and z(z – 1)2 are proportional and can be

scaled to give the following equation:

w7 � z(z – 1)2 (35a)

w z z� ( – )1 27 . (35b)

Now introduce the new variables x and y defined by the equations:

x
z

w
�

–( – )1
2

(36a)

y
z

w
�

( – )1
3

. (36b)

Solving equations (36) for w and z gives the following:

w � –x/y (37a)

z
x

y
� �1

3

2
. (37b)

Substituting equations (37) into equation (35) gives

x3y � y3 � x � 0 . (38)

Introducing the homogeneous variables x = �&� and y � � /� leads finally

to the following homogeneous quartic equation:

�3�� �3� � �3� � �' (39)
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Equation (39) is unchanged upon permutation of the coordinates �� �and

� corresponding to the three-fold symmetry of the genus 3 Klein tessella-

tion.

We will now generate the orthoschemes for the Klein tessellation in or-

der to observe its automorphism group. Each of the 24 heptagons of the

Klein tessellation can be divided into fourteen equivalent hyperbolic right

triangles with angles of �/2, �/3, and �/7 (Figure 9a) leading to a total of

(14)(24) � 336 orthoscheme triangles (Figure 9b). These orthoschemes can

be divided into two equivalent sets (indicated in Figure 9b as shaded and

unshaded triangles). Either set of orthoschemes corresponds to the 168 op-

erations of the heptakisoctahedral group, 7O. Furthermore, the full set of

336 orthoschemes (shaded and unshaded) corresponds to the full group 7Od

(Ref. 13). The latter group is generated from 7O by addition of reflection op-

erations and the improper rotation S6 � �v' ( C7 (Ref. 13). Six of the 336

orthoschemes make up the 56 (� 336/6) little triangles of the Klein tessella-

tion and 24 of the 336 orthoschemes make up the 14 (� 336/24) big triangles

of the tetradecagon (Figure 8a).

The Dyck Tessellation

The Dyck tessellation, D2, is generated by a �3,8� tessellation of a genus

3 surface by 2�/3 octagons. If F is the number of faces of such a tessellation,

the number of vertices V is 8

3
F and the number of edges E is 8

2
4F F� so that

Euler’s formula gives the following result:


 ( ) – –K F2 4 1 4
8

3
� � � �


�
�

�

�
�	 F = 12, V = 32, E = 48. (40)
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Figure 9. (a) The orthoscheme triangle for the Klein tessellation K2. (b) Division of

one of the 24 heptagonal faces of the Klein tessellation into its 14 orthoscheme trian-

gles showing the alternate shaded and unshaded triangles.



In the dual �8,3� tessellation by �/4 triangles (i.e., the little triangles in

this case) the numbers F and V are interchanged. The leapfrog of D2 has

3V � 96 vertices, 3E � 144 edges, and F � V � 44 faces (32 hexagons and 12

octagons).

Consideration of the properties of the Dyck tessellation, like those of the

Klein tessellation, is facilitated by consideration of a coarser tessellation,

M2, consisting of eight �/4 hyperbolic squares fitting together around a cen-

tral vertex to give a hexadecagon with vertex angles alternately �/4 and

2�/4 (Figure 10a). Each of the eight �/4 hyperbolic squares in M2 can be di-

vided by a diagonal into two triangles to give a total of 16 triangles, namely
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Figure 10: (a) The tessellation of a hexadecagon representing the genus 3 Dyck tes-

sellation D2 into 8 hyperbolic squares. One diagonal (dashed lines) divides each of

the hyperbolic squares into two equivalent hyperbolic triangles, namely the big tri-

angles of the coarse tessellation M2. (b) Division of one of the 8 hyperbolic squares

into four little triangles using both diagonals (dotted lines). (c) Division of one of the

32 little triangles into 6 orthoschemes.



the big triangles. Also both diagonals of a �/4 hyperbolic square divide the

square into four little triangles (Figure 10b). Because of the alternating pat-

tern of vertex angles, the only identification pattern consistent with

platonicity has an edge from a �/4 vertex clockwise to a 2�/4 vertex (e.g.,

edge 1 in Figure 10a) identified with the edge five places away (edge 6 in

Figure 10a). This identification pattern is that of the Dyck tessellation (Fig-

ure 11a).

Now consider the original Dyck tessellation of twelve octagons on the ge-

nus 3 surface. Take a given octagon, e.g., octagon 1 in the center of Figure

11a, and inscribe two �/4 hyperbolic squares by joining even-numbered and

odd-numbered vertices, respectively (Figure 11b). Extend one of these in-

scribed hyperbolic squares (called red) to a tessellation of the hyperbolic pla-

ne and color its tiles red and green in checkerboard fashion, i.e., the �4,4�
tessellation in Figure 4. Similarly, extend the other inscribed hyperbolic

square (called blue) to another checkerboard tessellation, this time with

blue/yellow tiles. These two complementary checkerboard tessellations can

be colored so that they have the following properties:

(1) Each red tile has the same midpoint as a blue tile and each green tile

has the same midpoint as a yellow tile.

(2) The vertices of the red/green tile are the midpoints of the yellow tiles

and vice versa. Similarly the vertices of the blue/yellow tiles are the mid-

points of the green tiles.
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Figure 11. (a) The Dyck tessellation showing the twelve octagons and the pattern of

identification of the outer edges. Thus in Figure 11a edges designed by the same let-

ter, i.e., A through H, are identified. (b) Inscription of two squares inside one of the

octagons of the Dyck tessellation. Either square can be extended into a �4,4� tessel-

lation, i.e. the checkerboard pattern.



Now define two functions f and g in this hyperbolic plane and consider

their mapping onto the Riemann sphere (Figure 2). Map one tile to the unit

disc of the Riemann sphere so that the vertices go to 1, i, –1, and –i, i.e., the

four fourth roots of 1. The functions f and g each have simple poles at the

common centers of the red and blue squares, respectively. Furthermore each

function has simple zeros at the other midpoints of its tiles, i.e., at the four-

fold branch points of the other function whose branch points are the fourth

roots of –1. This leads to the following equation, known as the Fermat

quartic:

f 4 � g4 � 1 � 0. (41)

Introducing the homogeneous variables �� �, and � so that f � �&� and g �
� &� leads to the following homogeneous quartic equation:

�4 � �4 � �4 = 0. (42)

If we now identify points on the hyperbolic plane that are not separated

by f and g, we obtain a surface together with two tessellations by 8 squares.

The vertices of both of the tessellations define a tessellation by 32 equilat-

eral �/4 triangles. These 32 triangles correspond to the little triangles of the

dual of the Dyck tessellation, namely the �8,3� tessellation. Each of these 32

little triangles (Figure 10b) are divided into six orthoschemes (Figure 10c)

giving a total of 32 ( 6 = 192 orthoschemes on the Dyck tessellation. If these

192 orthoschemes are shaded and unshaded in an alternating manner, the

96 orthoschemes of one type (either shaded or unshaded) generate the auto-

morphism group of the Dyck tessellation, namely the tetrakisoctahedral

group 4O. This group has been discussed in detail elsewhere.

SUMMARY

The structure of the truncated icosahedral fullerene C60, which consists

exclusively of pentagons and hexagons, can be generated from the regular

(pentagonal) dodecahedron by omnicapping followed by dualization, namely

the so-called leapfrog transformation. Analogous leapfrog transformations

starting with the genus 3 Klein and Dyck tessellations consisting of 24 hep-

tagons and 12 octagons, respectively, can generate possible highly symmet-

rical structures for allotropes of carbon and the isosteric boron nitride,

(BN)x. The Klein tessellation, alternatively described as a platonic �3,7� tes-

sellation, corresponds to the Riemann surface for the multi-valued function

w z z� ( – )1 27 which can also described by the homogeneous quartic polyno-
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mial �3�� �3� � �3� � 0. The symmetry of this polynomial is related to the

heptakisoctahedral automorphism group of the Klein tessellation of order

168. The Dyck or �3,8� tessellation can also be described by a Riemann sur-

face which corresponds to the homogeneous Fermat quartic polynomial �4 �
�4 � �4 � 0. The symmetry of the Fermat quartic relates to the automor-

phism group of the Dyck tessellation of order 96.
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SA@ETAK

Riemannove povr{ine kao deskriptori za simetri~ne negativno
zakrivljene strukture ugljikovih i borovih nitrida

R. Bruce King

Transformacije '`abljeg' skoka po~inju s Kleinovim i Dyckovim mozaicima 3. vrs-

te koji se sastoje od 24 sedmerokuta i 12 osmerokuta. Svaki zasebno mo`e generirati

mogu}e visoko simetri~ne strukture za alotrope ugljika i izosteri~nog borova nitrida,

(BN)x. Kleinov mozaik plo~e, alternativno opisan kao platonski �3,7� mozaik, odgo-

vara Riemannovoj povr{ini za vi{ezna~nu funkciju w z z� ( – )1 27 , koja se tako|er mo-

`e opisati homogenim polinomom �3� � �3� � �3� = 0. Simetrija tog polinoma pove-

zana je s heptakisoktaedarskom automorfnom grupom Kleinova mozaika reda 168.

Sli~no tomu, Dyckov ili �3,8� mozaik mo`e se opisati Riemannovom povr{inom koja

odgovara homogenom Fermatovu polinomu �4 � �4 � �4 � 0. Simetrija Fermatova

polinoma povezana je s automorfnom grupom Dyckova mozaika reda 96.
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