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Screening virtual and synthetic combinatorial libraries may facili-
tate rapid drug lead discovery by selecting subsets of molecules ac-
cording to their similarity or dissimilarity toward specific com-
pound collections. Topological indices computed from atomic
connectivities or graph distances are increasingly used as structu-
ral descriptors in order to maximize the molecular diversity of li-
braries or to quantify the drug-like character of compounds. In this
paper we present efficient equations for the computation of several
distance-based topological indices of a molecular graph from the
distance invariants of its subgraphs. These equations offer an ef-
fective way to compute for non-weighted molecular graphs the
Wiener index, even/odd Wiener index, resistance distance index,
Wiener polynomial, and even/odd Wiener polynomial. Using a sim-
ple and fast algorithm one can compute these topological indices
for very large virtual combinatorial libraries without computing
the indices from the atomic scale up for each individual compound
– rather only distance-based indices of the building blocks are ne-
eded to generate the topological indices of the compound assembled
from the building blocks.
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INTRODUCTION

The present revolution in the drug discovery process is driven by the re-
cent progress in combinatorial chemistry and high throughput screening
techniques. The random testing of chemicals is not the best method to ob-
tain the maximum possible information from a combinatorial library, while
the synthesis and screening of a very large number of compounds is extre-
mely costly. The current trend is represented by an efficient utilization of
computational techniques in the virtual screening of combinatorial libraries
(VSCL) in order to increase the drug-like character and diversity of the com-
pounds proposed for screening.1,2 In order to be successful, this process of in

silico compound selection must incorporate additional target-specific infor-
mation.

Conventionally, the computational screening of chemical libraries is gen-
erally a four-step process:

– assemble the compounds from a group of building blocks;

– computation for each chemical compound of a set of structural descrip-
tors;

– dimensionality reduction by selecting from the descriptors set a chemi-
cal space that is relevant for the investigated target;

– compound selection with a statistical algorithm that implements a sim-
ilarity, diversity, or drug-like paradigm.

A large number of structural descriptors, many of them traditionally
used in QSPR and QSAR, are currently used in VSCL in order to transform
into a numerical form the structural features of molecules: physico-chemical
or empirical (log P, molecular polarizability); constitutional (number of aro-
matic rings, number of rotatable bonds, number of hydrogen-bond donors,
number of hydrogen-bond acceptors); structure keys and fingerprints; graph
invariants (cyclomatic number, atom pairs, path counts); topological indi-
ces3,4 (Wiener,5,6 Randiæ,7 Kier and Hall,8 Balaban,9,10 Harary11,12); geomet-
ric (polar surface area, molecular volume); quantum (HOMO energy, atomic
charges); grid (various steric, electrostatic, and lipophilic fields).

Although SAR and QSAR studies offer a rich variety of structural de-
scriptors, not all of them are fit for use in VSCL. While the typical number
of compounds in SAR and QSAR is usually between 10 and 100, a virtual li-
brary can easily exceed 106 compounds. In order to be efficient, the in silico

compound screening must use descriptors that require small computational
resources, thus explaining the wide popularity of counts of atom types,
counts of functional groups, fingerprints, constitutional descriptors, graph
invariants and topological indices. This trend is apparent from the examina-
tion of several recent papers relevant to VSCL including: selection of drug-
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like compounds;13,14 characterization of drug classes;15 property distribution
in drug databases;16 classification of compounds according to the biological
activity;17 Focus-2D, which uses simulated annealing and genetic algorithms
to generate targeted libraries;18 design of immunosuppressive compounds;19

characterization of building blocks chemical space;20 design of libraries with
CNS activity;21 ChemGPS, a chemical global positioning system.22

Because the selection of candidates for synthesis from chemical libraries
is time consuming whenever it involves hard to compute descriptors, such
as 3D pharmacophores, quantum indices, grid descriptors or other relevant
3D descriptors, the first step in VSCL implements a fast and efficient filter-
ing method intended to eliminate inappropriate reactants or products before
going to more sophisticated structural descriptors and screening methods.
For instance, there are promising ways of achieving an efficient sampling of
the virtual product set by computing the structural descriptors of products
without actually assembling the compounds from the building blocks.23–27

This procedure can be applied for all additive or nearly additive descriptors,
or for product descriptors that can be computed with a simple mathematical
procedure from the corresponding descriptors of reactants or building blocks
and a proper representation of the chemical process that takes place. Sev-
eral such structural descriptors include: molecular weight, total number of
atoms, number of atoms with a given atomic number Z, mass percent of at-
oms with a given atomic number Z, number of hydrogen bond donors, num-
ber of hydrogen bond acceptors, number of rotatable bonds, number of rings,
number of aromatic rings, total number of bonds, number of single, double,
triple, or aromatic bonds, atom types, number of various functional groups.
Another approach for obtaining product descriptors based on the building
blocks structure is to propose simplified algorithms and equations for the
computation of those QSAR descriptors that traditionally require the exami-
nation of the whole 2D or 3D product structure: octanol-water partition coef-
ficient obtained from atomic contributions;28 calculation of molecular polar
surface area as a sum of N, O, P and S atoms contributions;29 approximate
van der Waals molecular surface area computed from the atomic connectiv-
ity information;30 molecular polar surface area computed from the number
of hydrogen bond donors and acceptors;31 fast log P computation from the
sum of polar atoms, sum of nonpolar atoms, and sum of hydrogen bond do-
nors and acceptors.32

Although graph invariants and topological indices represent highly used
structural descriptors efficiently employed to quantify the drug-like charac-
ter of compounds or to measure the similarity and diversity of chemical li-
braries, their computation from reactants or building blocks has not previ-
ously been emphasized as a major way to speed-up the VSCL process.
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In the present paper we demonstrate several theorems for the calcula-
tion of some highly used distance-based topological indices of a molecular
graph from the distance invariants of its subgraphs. These equations offer
an efficient way to compute for non-weighted molecular graphs the Wiener
index, even/odd Wiener index, resistance distance index, Szeged index, Wie-
ner polynomial, and even/odd Wiener polynomial. As should be of especial
use for combinatorial libraries, the computation of these descriptors is ba-
sed on the molecular graph invariants of the corresponding building blocks.

WIENER INDEX

Let G be a simple (nonweighted) connected graph consisting of the ver-
tex set V(G) and the edge set E(G), and having �V(G)� vertices and �E(G)� ed-
ges. Molecular graphs are non-directed connected graphs which represent
chemical compounds. In molecular graphs vertices correspond to atoms and
edges represent covalent bonds between atoms. Alkanes and cycloalkanes
are usually represented as simple molecular graphs in which each vertex
corresponds to a carbon atom and each edge corresponds to a carbon–carbon
single bond. In this paper chemical compounds are represented as hydro-
gen-suppressed simple (non-weighted) graphs, i.e. all vertex-weights are
zero and all bond-weights are equal to one. We must emphasize that even
organic compounds containing heteroatoms and multiple bonds can be rep-
resented as simple molecular graphs whenever one is interested in comput-
ing topological indices and graph invariants that reflect only the molecular
connectivity and are free from the influence of various heteroatoms and dif-
ferent types of bonding. Almost all commercial programs that compute dis-
tance-based topological indices use this convention, and due to this situa-
tion all VSCL applications of these indices use this simplification. However,
molecules containing heteroatoms and multiple bonds can be represented as
vertex- and edge-weighted graphs, with special parameters for vertices (at-
oms) and edges (bonds). The computation of the distance-based topological
indices for weighted molecular graphs is presented in several recent pa-
pers.33–36 With dij we denote the topological distance between vertices i and
j of G, representing the length of the shortest path between vertices i and j,
i.e. the number of edges on that path. A cut edge of G is an edge which if de-
leted breaks G into two disconnected subgraphs. A cut vertex of G is a ver-
tex which if deleted breaks G into two disconnected subgraphs.

One of the most widely used graph descriptors, the Wiener index W, was
initially defined only for alkanes.5,6 Consider an acyclic graph G � G(V, E)
and denote with ni(j) and nj(i) the number of vertices situated on the different
sides of the edge �i, j�; vertex i is counted in ni(j) while vertex j is counted in
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nj(i). For acyclic graphs the Wiener index W � W(G) of a graph G may be gi-
ven by the formula:

� �
W n ni j j i

i j E

( ) ( ) ( )
, ( )

G
G

�
�
� (1)

where the summation goes over all edges from the edge set E(G), �i, j� �
E(G). For cyclic graphs the two invariants ni(j) and nj(i) are ambiguously so
defined due to the existence of vertices k situated at the same distance from
i and j, dik � dkj. Hosoya extended the definition of the Wiener index to cyclic
graphs with the aid of the distance matrix as »the half sum of the off-diago-
nal elements of a distance matrix D whose element dij is a number of bonds
for the shortest path between atoms i and j«.37 This extension of Eq. (1) to
cyclic graphs is not unique, and alternative ways have been proposed. For
example, the resistance distance index W' defined as the sum for all pairs of
vertices of the corresponding elements in the resistance distance matrix
W

38–41 has values coincident with W for acyclic graphs while for cycle-con-
taining graphs they differ. Gutman proposed the Szeged index Sz computed
with invariants ni(j) and nj(i) extended for cyclic graphs;42,43 Sz shares with
W' the same property of being identical with W for acyclic graphs and differ-
ent for cyclic graphs. Diudea defined the Szeged matrix which is the source
of a large number of topological indices.44,45 More details regarding these di-
stance-based topological indices and related graph invariants can be found
in two recent reviews.4,46 The actual definition of the Wiener index, which is
valid also for vertex- and edge-weighted molecular graphs representing or-
ganic compounds with heteroatoms and multiple bonds, is:4,34,35

W ij

j i

N

i

N

( ) ( )G G�
��

�� D

1

. (2)

The distance sum for vertex i from graph G, Wi(G), is the sum of all dis-
tances between vertex i and all other vertices from G:

Wi

j V

( ) ( )
( )

G G
G

�
�
� dij . (3)

For the computation of the Wiener index from subgraphs (building
blocks) we will use a well-known graph decomposition formula for W:47–49

Theorem 1. Let �a,b� be a cut edge between two subgraphs A and B of G
such that a � A and b � B. Denote various subgraphs of G � A–B as in the
Figure 1. Then the Wiener index of graph G is:

W W W V W V V V W Wa b( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )G A – B A B A A B A B B� � � � � � . (4)
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This formula is the core of an efficient algorithm for the fast computa-
tion of the Wiener index for compounds from combinatorial libraries. The
description of the algorithm for computing the Wiener index from building
blocks is first presented for the graphs from Figure 2:

Algorithm 1.

1. Consider a core structure C with two substitution atoms c1 and c2, and
two substituents R1 and R2 each having one substitution atom, r1 and r2, re-
spectively, all as in Figure 2.
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Figure 1. A graph G with a cut edge between vertices a and b, and its relevant sub-
graphs.
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Figure 2. Chemical compound generation from a core structure C and two substitu-
ents R1 and R2.



2. Compute the Wiener indices for the core structure C and the two sub-
stituents R1 and R2, i.e. W(C), W(R1), and W(R2).

3. Compute the distance sum for the substitution atoms c1, c2, r1, and r2, i.e.
Wc1

(C), Wc2
(C), Wr1 1( )R , and Wr2 2( )R .

4. Determine the distance between the two substitution atoms from the core
C, dc c1 2

.

5. Link the substituent R1 to C by inserting a bond between atoms r1 and c1,
and obtain in this way CR1.

6. Compute the Wiener index of CR1, W(CR1), by applying Eq. (4) to the mo-
lecular graph CR1 obtained by linking together C and R1:

W W V W V V V W Wc r( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (CR C R C C R C R R1 1 1 1 11 1
� � � � � ) . (5)

7. Determine the number of vertices in the subgraph CR1:

V V V( ) ( ) ( )CR C R1 1� � .

8. Compute the distance sum of atom c2 in the intermediate structure CR1

with the equation:

W W d V Wc c c c r2 2 1 2 11 1 11( ) ( ) ( ) ( ) ( )CR C R R� � � � . (6)

The distance sum Wc2
( )CR1 is necessary for the computation of the Wiener

index for the compound CR1R2.

9. Link the substituent R2 to CR1 by inserting a bond between atoms r2 and
c2, and obtain in this way CR1R2.

10. Compute the Wiener index of CR1R2, W(CR1R2), by applying Eq. (5) to
the molecular graph CR1R2 obtained by linking together CR1 and R2:

W W V W V Vc( ) ( ) ( ) ( ) ( ) ( )CR R CR R CR CR R1 1 11 2 2 22
� � � �

� �V W Wr( ) ( ) ( )CR R R1 2 2 2 . (7)

The scope of our investigation is to propose fast and efficient algorithms
for computing distance-based topological indices for combinatorial libraries,
and therefore it is important to compare the computational expense for com-
puting the Wiener index W with the usual Eq. (2) and with Eq. (4), as pro-
posed in the above algorithm. We will first examine the algorithm that in-
volves Eq. (2). For a molecular graph consisting of N atoms the connection
table is translated into the adjacency matrix A in O(N) computer operations.
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The computation of the distance matrix D from the adjacency matrix for
each compound needs O(N3) operations, i.e. the computer time is proportio-
nal to N3, indicating that when N increases this part of the algorithm will
need a powerful computer. The computation of W from D with Eq. (2) is ac-
complished in O(N2) steps. From this analysis it is clear that the most com-
putational demanding step is the generation of the distance matrix D from
the adjacency matrix. Chemical compounds generated for combinatorial li-
braries are fairly large and the above analysis demonstrates that the stan-
dard algorithm for the Wiener index is not efficient for VSCL.

We will now examine the algorithm for computing the Wiener index W

with Eq. (4) for the general case when a chemical compound CR1…Rm is ge-
nerated from a core structure C and m substituents R1, R2,…, Rm, as pre-
sented in Figure 3.

Algorithm 2.

1. Consider a core structure C with m substitution sites c1, c2,…, cm and m

substituents R1, R2,…, Rm, each having one substitution atom r1, r2,…, rm,
respectively. The final molecular graph is presented in Figure 3.

2. Compute the Wiener indices for the core structure C and the m substitu-
ents R1, R2,…, Rm, i.e. W(C), W(R1), W(R2),…, W(Rm).

3. Compute the vertex sum for the substitution atoms c1, c2,…, cm, r1, r2,…,
rm, i.e. Wc1

(C), Wc2
(C),…, Wcm

(C), Wr1 1( )R , Wr2 2( )R ,…, Wr mm
( )R .

4. Determine the distance between all m(m – 1)/2 pairs of substitution at-
oms from the core C, dc ci j

.

5. To an intermediate structure CR1…Ri–1 add the substituent Ri by insert-
ing a bond between atoms ri and ci, and obtain in this way CR1…Ri.
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Figure 3. Chemical compound generation from a core structure C and m substitu-
ents R1, R2,…, Rm.



6. Compute the Wiener index of CR1…Ri, W(CR1…Ri):

W W V Wi i i c ii
( ) ( ) ( ) ( )– –CR R CR R R CR R1 1 1 1 1� � �� � �

V V V W Wi i i r i ii
( ) ( ) ( ) ( ) ( )– –CR R R CR R R R1 1 1 1� �� � . (8)

7. Determine the number of vertices in the subgraph CR1…Ri:

V V Vi i i( ) ( ) ( )–CR R CR R R1 1 1� �� � .

8. Update the distance sum of atoms cj, i < j � m, in the intermediate struc-
ture CR1…Ri with the equation:

W W d V Wc i c i c c i r ij j i j i
( ) ( ) ( ) ( ) ( )–CR R CR R R R1 1 1 1� �� � � � . (9)

Repeat steps 5 through 8 until W(CR1…Rm) is computed.

We give an equivalent formula for computing the updated distance sum
for the atom ck after the first i substituents have been added to the core
structure C:

	 
W W d V Wc i c c c j r j

j

i

k k j k j
( ) ( ( ) ( ) ( )CR R C)+ R R1

1

1� � � �
�

� . (10)

From a thorough examination of the above algorithm we can easily di-
vide the computational expenses in two types: computation of several dis-
tance-based graph invariants for the building blocks and m times applica-
tion of Eq. (4) for computing W of CR1…Rm. The computation of the Wiener
index with Eq. (2) for C, R1, R2,…, Rm, distance sum from D for atoms c1,
c2,…, cm, r1, r2,…, rm, and distances between all pairs of atoms c1, c2,…, cm,
is the most computational demanding step, but we have to consider that the
size of the building blocks is much smaller than that of the final compound,
and this computation is performed only once for the whole combinatorial li-
brary. The second step involves the m–fold application of Eq. (4) and has a
time expense of O(m), where m, in general, is smaller than 5. One important
feature of the second step, which is repeated for each compound generated,
is that the computational expenses do not depend on the number of atoms N

from the final compound but on the number of building blocks, which is
small and constant for a given virtual library. At the ith stage, step 8 in-
volves m – i computations, so that as i ranges from 1 to m. Thus this step in-
volves overall m(m – 1)/2 such computations for each compound, i.e., a time
O(m2) arises. It is now clear that the usual algorithm for computing the
Wiener index with Eq. (2), which involves O(N3) operations per compound,
is much less efficient than the algorithm that uses Eq. (4) and involves
O(m2) operations per compound. Also, the larger the combinatorial library
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is, the greater the relative efficiency of our algorithm that uses Eq. (4), com-
pared with the standard one.

We present now an application of Theorem 1 to the computation of the
Wiener index W for a molecular graph generated from building blocks. Con-
sider the core structure C and the three substituents R1, R2, and R3 from
Figure 4, all of them used to assemble the graph CR1R2R3. The computation
of the Wiener index for CR1R2R3 is performed with a procedure similar to
that one presented in Algorithm 1:

1. Compute the Wiener indices for the four building blocks: W(C) � 27,
W(R1) � 3, W(R2) � 8, W(R3) � 15.

2. Compute the distance sums for the six connection atoms: Wc1
(C) � 9,

Wc2
(C) � 9, Wc3

(C) � 9, Wr1
( )R1 � 2, Wr2

( )R2 � 4, Wr3
( )R3 � 6.

3. Compute the shortest-path distance between all pairs of connection verti-
ces from the core structure C: dc c1 2

� �� dc c1 3
� 
� dc c2 3

� ��

4. Get the number of vertices in all four building blocks: �V(R1)� = 3, �V(R2)� = 4,
�V(R3)� = 5, �V(C)� = 6.

5. Connect the substituent R1 to C by joining vertices r1 and c1, obtaining in
this way CR1.

6. Compute the Wiener index of CR1, W(CR1), with Eq. (5):

W(CR1) � 27 � 3 � 9 � 6 � 3 � 6 � 2 � 3 = 87 .

7. Determine the number of vertices in the subgraph CR1:
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Figure 4. Core structure C and three substituents R1, R2 and R3 used as example in
the computation of distance-based topological indices from building blocks.



�V(CR1)� = 6 + 3 = 9 .

8. Compute the distance sum of atom c2 in the intermediate structure CR1

with Eq. (6):

Wc2 1( )CR = 9 + (2 + 1) � 3 + 2 = 20 .

9. Compute the distance sum of atom c3 in the intermediate structure CR1

with the equation:

W W d V Wc c c c r3 3 1 3 11 1 11( ) ( ) ( ) ( )CR (C) R R� � � �

Wc3 1( )CR � 9 � (3 � 1) � 3 + 2 = 23 .

10. Connect the substituent R2 to CR1 by joining vertices r2 and c2, obtain-
ing in this way CR1R2.

11. Compute the Wiener index of CR1R2, W(CR1R2), with Eq. (7):

W(CR1R2) � 87 � 4 � 20 � 9 � 4 � 9 � 4 � 8 � 247 .

12. Determine the number of vertices in the subgraph CR1R2:

�V(CR1R2)� � 9 � 4 � 13 .

13. Compute the distance sum of atom c3 in the intermediate structure CR1R2

with the equation:

W W d V Wc c c c r3 3 2 3 21 2 1 2 21( ) ( ) ( ) ( ) ( )CR R CR R R� � � �

Wc3 1 2( )CR R � 23 � (1 � 1) � 4 � 4 � 35 .

14. Connect the substituent R3 to CR1R2 by joining vertices r3 and c3, ob-
taining in this way CR1R2R3.

15. Compute the Wiener index of CR1R2R3, W(CR1R2R3), with the equation:

W W V W V Vc( ) ( ) ( ) ( ) ( ) ( )CR R R CR R R CR R CR R R1 2 3 1 2 3 1 2 1 2 33
� � � �

V W Wr( ( ) ( )CR R R R1 2 3 33
�

W(CR1R2R3) � 247 � 5 � 35 � 13 � 5 � 13 � 6 � 15 � 580 .
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EVEN/ODD WIENER INDEX

In a recent study we have partitioned all graph distances into two clas-
ses, i.e. even and odd distances, which are separately summed to give two
distinct structural descriptors, We(G) and Wo(G).50 The sum of even graph
distances We(G) from the molecular graph G is:

W dij

i j V

e e

G

G G( ) ( )
, ( )

�
�
� (11)

where dij
e represents an even distance between vertices i and j, and the

summation goes over all even distances from G. In a similar way we define
Wo(G), the sum of odd graph distances from the molecular graph G, by col-
lecting together all odd graph distances:

W dij

i j V

o o

G

G G( ) ( )
, ( )

�
�
� (12)

where dij
o represents an odd distance between vertices i and j. A simple rela-

tionship exists between the Wiener index W and the even/odd indices We(G)
and Wo(G):

W(G) = We(G) � Wo(G) (13)

We introduce four notations related to even/odd graph distances: di
e G( ),

the set of even graph distances from G that have vertex i as an endpoint,
di

o G( ), the set of odd graph distances from G that have vertex i as an end-
point, �di

e (G)�, the number of distances in di
e (G), �di

o (G)�, the number of dis-
tances in di

o (G). In a graph G, the sum of even distances that have vertex i

as an endpoint is the even distance sum for vertex i:

W di ij

j V

e e

G

G G( ) ( )
( )

�
�
� . (14)

Similarly, the odd distance sum for vertex i is the sum of odd distances
that have vertex i as an endpoint:

W di ij

j V

o o

G

G G( ) ( )
( )

�
�
� . (15)

From Eqs. (11) – (15) we notice a significant similarity between the Wie-
ner index W and the even/odd variants presented in this section. Therefore,
it is no surprise that for We and Wo one can devise two theorems, equivalent
to Theorem 1, for computing the respective topological indices from sub-
graphs obtained by deleting a cut edge.
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Theorem 2. Let �a,b� be a cut edge between two subgraphs A and B of G
such that a � A and b � B. Denote various subgraphs of G � A–B as in the
Figure 1. Then the even Wiener index of graph G is:

W W d dij

i V

ij

j Vi j V

i j
e e e

A

e

BA

G A – B( ) ( )
( ) ( ), ( )

� � � �
� ��

�

� �� dij

i j V

i j
e

B, ( )�

�

� �

W d d d d
i V

ia bj

j V i V

ia
e

A

e o

B A

oA( ) ( ) (
( ) ( ) ( )

� � � � � �
� � �
� � �1 1 bj

j V

We e

B

B) ( )
( )

� �
�
�

W d W d d d Wb a a b a b
e o e e o e oA B A A B A B( ) ( ) ( ) ( ) ( ) ( ) ( )� � � �

d W d d d W Wb a a b a b
e o o e o e eB A A B A B B( ) ( ) ( ) ( ) ( ) ( ) ( )� � � . (16)

Theorem 3. Let �a,b� be a cut edge between two subgraphs A and B of G
such that a � A and b � B. Denote various subgraphs of G = A–B as in the
Figure 1. Then the odd Wiener index of graph G is:

W W d dij

i V

ij

j Vi j V

i j
o o o

A

o

BA

G A – B( ) ( )
( ) ( ), ( )

� � � �
� ��

�

� �� dij

i j V

i j
o

B, ( )�

�

� �

W d d d d
i V

ia bj

j V i V

ia
o

A

e e

B A

oA( ) ( ) (
( ) ( ) ( )

� � � � � �
� � �
� � �1 1 bj

j V

Wo o

B

B) ( )
( )

� �
�
�

W d W d d d Wb a
e

a
e

b a
e

b
o e e eA B A A B A B( ) ( ) ( ) ( ) ( ) ( ) ( )� � � �

d W d d d W Wb a a b a b
o o o o o o oB A A B A B B( ) ( ) ( ) ( ) ( ) ( ) ( )� � � . (17)

Theorems 2 and 3 afford the computation of even and odd Wiener indi-
ces for combinatorial libraries, using algorithms similar to Algorithm 1
when the final compound is made up by three building blocks, or similar to
Algorithm 2 when the final compound is assembled from four or more build-
ing blocks. For such applications one needs also equations, similar to those
presented in Eqs. (6), (9), and (10) for the distance sum, used to update the
value of the even or odd distance sum of a substitution atom from the core
structure C after each addition of a substituent Ri.

Consider the case of a compound with the general formula CR1R2, as de-
picted in Figure 2. In computing the even distance sum of vertex c2 from
CR1 one can distinguish two cases, namely when the shortest-path distance
between c1 and c2 is even:
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W W d d Wc c c c r r2 2 1 2 1 11 1 11e e e o oCR C R R( ) ( ) ( ) ( ) ( )� � � � (18)

and the case when the shortest-path distance between c1 and c2 is odd:

W W d d Wc c c c r r2 2 1 2 1 11 1 11e e o e eCR C R R( ) ( ) ( ) ( ) ( )� � � � . (19)

A similar situation is encountered in computing the odd distance sum of
vertex c2 from CR1, when the shortest-path distance between c1 and c2 is
even:

W W d d Wc c c c r r2 2 1 2 1 11 1 11o o e e eCR C R R( ) ( ) ( ) ( ) ( )� � � � (20)

or the shortest-path distance between c1 and c2 is odd:

W W d d Wc c c c r r2 2 1 2 1 11 1 11o o o o oCR C R R( ) ( ) ( ) ( ) ( )� � � � . (21)

Similar equations can be developed for the general case when m substi-
tuents are added to a common core, as in Figure 3, corresponding to Eqs. (9)
or (10).

RESISTANCE DISTANCE INDEX

Klein and Randi} introduced a new graph distance function named the
resistance distance. Applying some results from the electrical network the-
ory,38–41 they identified a resistance-distance matrix W as an alternative to
the distance matrix D. For the computation of the molecular matrix W,
Klein and Randi} superposed onto the molecular graph G an electrical net-
work of resistors, in such a way that carbon atoms become nodes in the net-
work and carbon-carbon single bonds are represented as 1 ohm resistors;
the matrix element Wij is equal to the effective electrical resistance between
the vertices i and j. Of course this choice of 1 ohm resistors is most appropri-
ate for hydrocarbons without multiple bonds. A more a general definition
and procedure for the computation of the resistance-distance matrix W of
weighted molecular graphs, corresponding to organic compounds with hete-
roatoms and multiple bonds may be made.51 Consider an electrical network
of resistors in which a node (vertex) i corresponds to a vertex (with the same
label) in the molecular graph G, while each chemical bond �i,j� from the mo-
lecular graph is represented as a resistor between nodes i and j. Each resis-
tor has a value Ewij(w) (in ohm) depending on the chemical nature of the at-
oms represented by vertices i and j, and on the type of the chemical bond
between them; the Ewij(w) parameter is computed using the weighting
schemes w proposed in the literature.33–36 The resistance distance matrix
W(w) = W(w,G) of a graph G with N vertices is the square N�N symmetric
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matrix whose non-diagonal element Wij is equal to the electrical resistance
between vertices i and j:

W
G G G

ij
ij ij ijw

w w w i j

i j
( , )

( , ) – ( , ) ( , )
G

G G G if

if
�

� �

�

�
�
�

2

0

where G(w) is the generalized inverse to the w-weighted Laplacian matrix.
From the theory of electrical networks it is easy to determine that in the
case of acyclic hydrocarbons (e.g. alkanes, alkenes, alkynes), the resistance
distance matrix W is identical with the distance matrix D. The resistance
distance matrix is the source of a topological index related to W, namely the
resistance distance index W':

W ij

i j V

i j

' G G
G

( ) ( )
, ( )

�
�

�

� W . (22)

For the computation of the resistance distance index for molecular
graphs that can be decomposed in building blocks (subgraphs) by deleting
one edge one can use an equation similar to that presented in Theorem 1 for
the decomposition of W:

Theorem 4. Let �a,b� be a cut edge between two subgraphs A and B of G
such that a � A and b � B. Denote various subgraphs of G as in the Figure
1. Then the resistance distance index of graph G = A–B is:

� �W W W V W W' G ' A – B ' A B ' A – ' A( ) ( ) ( ) ( ) ( ) – ( ) –� � � b

� �V V V W W W( ) ( ) ( ) ( ) – ( ) ( )A B A ' – B ' B ' B� �a . (23)

If we denote with W'i(G) the resistance distance sum for vertex i from
graph G

W i ij

j V

' G G
G

( ) ( )
( )

�
�
� W (24)

the resistance distance index of graph G is

W W W V W V V V W' G ' A – B ' A B ' A A B A ' B( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )� � � � �a b � W'( )B . (25)

An application of Theorem 4 is presented for the computation of the re-
sistance distance index W' for the graph CR1R2R3 assembled from the core
structure C and three substituents R1, R2, and R3, as indicated in Figure 4.
The computation of the resistance distance index for CR1R2R3 is performed
with a procedure which is similar to Algorithms 1 and 2:
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1. Compute the resistance distance indices for the four building blocks:
W'( )C � 17.5, W'(R1) � 2, W'(R2) � 5, W'(R3) � 10.

2. Compute the resistance distance sums for the six connection atoms:
W c' ( )

1
C � 5.833, W c' ( )

2
C � 5.833, W c' ( )

3
C � 5.833, W r' ( )

1 1R � 1.333, W r' ( )
2 2R �

2.5, W r' ( )
3 3R � 4.

3. Compute the resistance distance between all pairs of connection vertices
from the core structure C: Wc c1 2

� 1.333, Wc c1 3
� 1.5, Wc c2 3

� 0.833.

4. Get the number of vertices in all four building blocks: �V(R1)� � 3, �V(R2)� �
�� �V(R3)� = 5, �V(C)� � 6.

5. Connect the substituent R1 to C by joining vertices r1 and c1, obtaining in
this way CR1.

6. Compute the resistance distance index of CR1, W'(CR1), with the equa-
tion:

W W V W V V V Wc r'( ) '( ) ( ) ' ( ) ( ) ( ) ( ) ' ( )CR C R C C R C R1 1 1 11 1
� � � � � W'( )R1

W'(CR1) � 17.5 � 3 � 5.833 � 6 � 3 � 6 � 1.333 � 2 � 63 .

7. Determine the number of vertices in the subgraph CR1:

�V(CR1)� = 6 + 3 = 9 .

8. Compute the resistance distance sum of atom c2 in the intermediate stru-
cture CR1:

W W V Wc c c c r' ( ) ' ( ) ( ) ( ) ' ( )
2 2 1 2 11 1 11CR C R R� � � �W

W c' ( )
2 1CR � 5.833 � (1.333 � 1) � 3 � 1.333 = 14.167 .

9. Compute the resistance distance sum of atom c3 in the intermediate
structure CR1:

W W V Wc c c c r' ( ) ' ( ) ( ) ( ) ' ( )
3 3 1 3 11 1 11CR C R R� � � �W

W c' ( )
3 1CR � 5.833 � (1.5 � 1) � 3 � 1.333 � 14.667 .

10. Connect the substituent R2 to CR1 by joining vertices r2 and c2, obtain-
ing in this way CR1R2.

11. Compute the resistance-distance index of CR1R2, W'(CR1R2):

W W V W V Vc' ( ) ' ( ) ( ) ' ( ) ( ) ( )CR R CR R CR CR R1 2 1 2 1 1 22
� � � �

V W Wr( ) ' ( ) ' ( )CR R R1 2 22
�
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W'(CR1R2) � 63 � 4 � 14.167 � 9 � 4 � 9 � 2.5 + 5 � 183.167 .

12. Determine the number of vertices in the subgraph CR1R2:

�V(CR1R2)� � 9 � 4 � 13 .

13. Compute the resistance distance sum of atom c3 in the intermediate
structure CR1R2:

W W V Wc c c c r' ( ) ' ( ) ( ) ( ) ' ( )
3 3 2 3 21 2 1 2 21CR R CR R R� � � �W

W c' ( )
3 1 2CR R � 14.667 � (0.833 � 1) � 4 � 2.5 � 24.5 .

14. Connect the substituent R3 to CR1R2 by joining vertices r3 and c3, ob-
taining in this way CR1R2R3.

15. Compute the resistance distance index of CR1R2R3, W'(CR1R2R3):

W W V W V Vc'( ) '( ) ( ) ' ( ) ( ) (CR R R CR R R CR R CR R1 2 3 1 2 3 1 2 1 23
� � � � R3) �

V W Wr( ) ' ( ) ' ( )CR R R R1 2 3 3 3�

W'(CR1R2R3) � 183.167 � 5 � 24.5 � 13 � 5 � 13 � 4 � 10 � 432.667 .

WIENER POLYNOMIAL

Hosoya used distances between pairs of graph vertices to define the Wie-
ner polynomial, whose first derivative gives the Wiener index W;52 several
years later, an equivalent formula was proposed by a group of mathemati-
cians.53 The higher derivatives of the Wiener polynomial give a sequence of
Wiener-type topological indices used with success in several QSPR mod-
els.54–56 Let d(G,k) be the number of pairs of vertices in G that are distance
k apart, and denote the largest element of D by l, often called the diameter
of G; obviously, d(G,1) is equal to the number of edges. The Wiener polyno-
mial of a graph G is defined by the following equation:

H x d k x xk

k

l
d

i j V

i j
ij( , ) ( , )

, ( )

G G
G

� �
� �

�

� �
1

. (26)

The previously mentioned relationship between the Wiener polynomial
and W is readily identified after computing the first derivative of H for x � 1:

d G

d
G

H x

x
W

x

( , )
( )

�

�
�

�

�
� �

�1

. (27)
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With Hi(G,x) we denote the vertex Wiener polynomial for the vertex
i � V(G). This graph polynomial collects all H(G,x) terms that have vertex i

as an endpoint:

H x xi
d

j V

ij( , )
( )

G
G

�
�
� . (28)

The Wiener polynomial of a graph can be computed from distance-based
graph invariants of its subgraphs obtained after deleting a cut edge:

Theorem 5. Let �a,b� be a cut edge between two subgraphs A and B of G
such that a � A and b � B. Denote various subgraphs of G as in the Figure
1. Then the Wiener polynomial H of graph G = A–B is

H x H x x x
d

i j V

i j

i V

d

j V

ij ij( , ) ( – )
, ( ) ( ) ( )

G A B,
A A B

� � �
�

�

� �
� � � �� �

�

�

x
d

i j V

i j
ij

, ( )B

H x x H x
i V

d d

j V

ia bj( ) ( )
( ) ( )

A, B,
A B

� � �
�

� �

�
� � 1

H x xH x H x H xa b( ) ( ) ( ) ( )A, A, B, B,� � . (29)

Using the decomposition method presented in Theorem 5 one can for dif-
ferent chosen values of the variable x compute the Wiener polynomial H(x)
and various related topological indices very efficiently. This is especially
true for generating topological indices for combinatorial libraries, when one
can use an algorithm similar to Algorithm 1 when the final compound con-
tains three building blocks, or similar to Algorithm 2 when the final com-
pound is assembled from four or more building blocks. These algorithms
must update the value of the vertex Wiener polynomial of a substitution
atom from the core structure C after each addition of a substituent Ri. Con-
sider the case of a compound with the general formula CR1R2, as depicted in
Figure 2. The vertex Wiener polynomial of vertex c2 from CR1 is computed
with the equation:

H x H x x H xc c
d

r
c c

2 2

1 2

11
1

1( , ) ( ) ( , )CR C, R� �
�

. (30)

A similar equation must be used in the general case when m substitu-
ents are added to a common core. From the recursion of (29) one can obtain
recursions for the first (or higher) derivatives of H(G,x). E. g., the derivative
recursion at x � 1 gives the Wiener-number recursion, and the second-deriv-
ative recursion evaluated at x � 1 leads to a recursion for Randi}’s hyper-
Wiener index57 (as generalized beyond trees in Ref. 58).
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EVEN/ODD WIENER POLYNOMIAL

A comparison of the formula of W from Eq. (2) and of H from Eq. (26)
suggests that the procedure of separating the Wiener index W into even and
odd terms can be applied also to the Wiener polynomial. The even Wiener
polynomial He collects all even graph distances:59

H x xd

i j V

even
ij
ee

G

G( , )
, ( )

�
�
� (31)

where the summation goes over all even graph distances dij
e , and the vari-

able x is an optimizable parameter. Similarly, the odd Wiener polynomial Ho

collects all odd graph distances:59

H x xd

i j V

odd
ij

o

G

G
o

( , )
, ( )

�
�
� (32)

where the summation goes over all odd graph distances dij
o , and the variable

x is a parameter that can be optimized for each QSAR/QSPR property and
data set of chemical compounds. The value of He and Ho for a given value of
the variable x gives two novel optimizable topological indices that were used
with success in QSPR studies.59 The first derivative of the even Wiener po-
lynomial He for x � 1 is equal to the even Wiener index We:

d G

d
G

e
eH x

x
W

x

( , )
( )

�

�
�

�

�
� �

�1

(33)

while the first derivative of the odd Wiener polynomial Ho for x � 1 is equal
to the odd Wiener index Wo:

d G

d
G

o
oH x

x
W

x

( , )
( )

�

�
�

�

�
� �

�1

. (34)

The even vertex Wiener polynomial for the vertex i � V(G), H xi
e G( , ), col-

lects all even-distance H(G, x) terms that have vertex i as an endpoint:

H x xi
d

j V

ije

G

G
e

( , )
( )

�
�
� (35)

while the odd vertex Wiener polynomial for the vertex i � V(G), H xi
o G( , ), col-

lects all odd-distance H(G, x) terms that have vertex i as an endpoint:

H x xi
d

j V

ijo

G

G
o

( , )
( )

�
�
� . (36)
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A comparison of Eqs. (11) and (12) that define the even/odd Wiener indi-
ces with Eqs. (31) and (32) that define the even/odd Wiener polynomials, re-
veals an important similarity between them, indicating that we can develop
theorems for computing the even and odd Wiener polynomials of graphs de-
composed at a cut edge.

Theorem 6. Let �a,b� be a cut edge between two subgraphs A and B of G
such that a � A and b � B. Denote various subgraphs of G as in the Figure
1. Then the even Wiener polynomial of graph G � A–B is

H x H x x x
d

i j V

i j

i V

d

j

ij ije e

A A

G A B,
e e

( , ) ( – )
, ( ) ( )

� � �
�

�

� �
� �

V

d

i j V

i j

x ij

( ) , ( )B B

e
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�

�

H x x x
i V

d d

j V i V

d
ia bj iae

A B A

A,
e o o

( )
( ) ( ) ( )

� �
�

� �

� �

� �� � �1 1 d

j V

bj H x
e

B

e B,
�
� � �

( )

( )

H x xH x H x xH x H x H xb b
e e o o e eA, A, B, A, B, B,( ) ( ) ( ) ( ) ( ) (� � �a a ) . (37)

Theorem 7. Let �a,b� be a cut edge between two subgraphs A and B of G
such that a � A and b � B. Denote various subgraphs of G as in the Figure
1. Then the odd Wiener polynomial of graph G � A–B is

H x H x x x
d

i j V

i j

i V

d

j

ij ijo o

A A

G A B
o o

( , ) ( – , )
, ( ) ( )
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�
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� �
� �

V

d

i j V

i j

x ij

( ) , ( )B B

o
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�

�

H x x x
i V

d d

j V i V

d
ia bj iao

A B A

A,
e e o

( )
( ) ( ) ( )

� �
�

� �

� �

� �� � �1 1 d

j V

bj H x
o

B

o B,
�
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( )

( )

H x xH x H x xH x H x H xb b
o e e o o oA, A, B, A, B, B,( ) ( ) ( ) ( ) ( ) (� � �a a ) . (38)

Similarly with the other formulas proposed in this paper, Theorems 6
and 7 are very efficient in computing even and odd Wiener polynomials and
corresponding topological indices for molecules that have one or more cut
edges. This is especially true for cases when a finite, small number of build-
ing blocks are combined to generate a huge number of chemical compounds.
If the final compound consists of three building blocks the procedure is simi-
lar to Algorithm 1, while for compound assembled from four or more build-
ing blocks the procedure can be derived from Algorithm 2. In both cases the
algorithms use a group of equations for updating the even or odd vertex
Wiener polynomial of a substitution atom from the core structure C after
each addition of a substituent Ri. We present the corresponding equations
derived for a molecular graph with the general formula CR1R2, as presented
in Figure 2. The computation of the even vertex Wiener polynomial for ver-
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tex c2 from CR1 has two possibilities, that is when the shortest-path distan-
ce between c1 and c2 is even:

H x H x x H xc c
d

r
c c
e

2 2

1 2

11
1

1
e e oCR C, R( , ) ( ) ( , )� �

�
(39)

and when the shortest-path distance between c1 and c2 is odd:

H x H x x H xc c
d

r
c c

2 2

1 2

11
1

1
e e eCR C, R

o

( , ) ( ) ( , )� �
�

. (40)

Analogously, in computing the odd vertex Wiener polynomial of vertex c2

from CR1, the shortest-path distance between c1 and c2 can be even:

H x H x x H xc c
d

r
c c

2 2

1 2

11
1

1
o o eCR C, R

e

( , ) ( ) ( , )� �
�

(41)

or odd:

H x H x x H xc c
d

r
c c

2 2

1 2

11
1

1
o o oCR C, R

o

( , ) ( ) ( , )� �
�

. (42)

Similar equations can be obtained for the general case when m substitu-
ents are added to a common core, making this procedure general enough to
be applied in VSCL.

CONCLUSIONS

Graph invariants and topological indices are extensively used in QSPR,
SAR and QSAR studies as effective numerical descriptors of the chemical
structure. Their recent applications in the investigation of chemical librar-
ies revealed their efficiency in quantifying the similarity, diversity, and the
drug-like character of chemicals. In all QSPR and QSAR studies the topo-
logical indices are computed with efficient numerical methods.60 These nu-
merical methods have the advantage of being general, i.e. one can use them
for any chemical structure, but often they involve significant computational
resources. For example, the computation of the distance matrix from the ad-
jacency matrix requires O(N3) operations, per N-atom molecule. As an alter-
native to the computation of topological indices with numerical methods,
mathematical chemists developed recurrence relationships or subgraph de-
composition equations, which calculate a graph invariant from the invariants
of selected subgraphs, usually obtained after deleting a vertex, edge, or cy-
cle. However, these subgraph decomposition equations have not previously
found an application in computing topological indices for QSAR studies. The
main reason evidently is the relatively small number of compounds, usually
between 10 and 100, in the QSAR studies. In such cases the topological indi-
ces are obtained with numerical methods because this is the most straight-
forward and general procedure, and the computation time is not critical.
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However, the process of screening virtual and synthetic combinatorial libra-
ries has some special characteristics that make attractive and time-effective
the computation of topological indices with subgraph decomposition equa-
tions. Using a relative small number of reactants that are combined follow-
ing a general reaction scheme, a virtual library can easily exceed 106 com-
pounds. Therefore, the time needed to compute the structural descriptors
becomes 106

� O(N3), and thence is critical, so that recent investigations
have been dedicated to the development of simplified algorithms for the cal-
culation of descriptors, such as the molecular polar surface area approxi-
mated as the sum of N, O, P and S atoms contributions,29 or the van der
Waals molecular surface area computed from the atomic connectivity infor-
mation.30 In this paper we have demonstrated several subgraph decomposi-
tion equations for distance-based topological indices and graph invariants:
the Wiener index, even/odd Wiener index, resistance distance index, Szeged
index, Wiener polynomial, and even/odd Wiener polynomial. We have pro-
posed a simple and fast algorithm for the computation of these topological
indices for very large virtual combinatorial libraries without actually as-
sembling the individual compounds from the building blocks. The procedure
uses numerical methods to compute distance-based graph invariants only
for the building blocks. The values are stored and used to compute topologi-
cal indices for the reaction products with the subgraph decomposition equa-
tions proposed in this paper. In this way, the most expensive step in comput-
ing distance-based topological indices, namely the generation of the distance
matrix, is skipped. The time investment proportional to the total number of
compounds scales as O(m2) when there are m substituent positions around a
core. We further note that such recursions as we have developed here may
be used to compute averages, standard deviations, and perhaps even extre-
mal values of suitable linear combinations representing selected properties,
all without repetitions for each compound – see, e.g., Refs. 24–27 for exam-
ples. Similar algorithms can be developed for connectivity indices and ver-
tex- and edge-weighted molecular graphs.61,62 Such directions are to be ad-
dressed in future investigations.
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SA@ETAK

Ra~unanje indeksa Wienerova tipa izgradnjom blokova
za virtualno pretra`ivanje kombinatori~kih knji`nica

Ovidiu Ivanciuc i Douglas J. Klein

Pretra`ivanje virtualnih i sintetskih kombinatori~kih knji`nica mo`e omogu}iti
br`e pronala`enje lijekova, osobito ako se odaberu podskupovi molekula po njihovoj
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sli~nosti (ili razli~nosti) specifi~nim kolekcijama spojeva. Topologijski indeksi, ra~u-
nani iz atomske povezanosti ili udaljenosti grafova sve se vi{e rabe kao strukturni
deskriptori kako bi se pove}ao skup razli~itih klasa molekula u knji`nicama spojeva
ili da bi se kvantificirala biolo{ka svojstva razmatranih spojeva. U ovome ~lanku
autori su izveli djelotvorne jednad`be za ra~unanje nekoliko topologijskih indeksa,
koje se temelje na udaljenostima u molekulskom grafu, iz invarijanata udaljenosti
njihovih podgrafova. S pomo}u tih jednad`bi mogu}e je djelotvorno ra~unati za neva-
gane molekulske grafove: Wienerov indeks, parni/neparni Wienerov indeks, indeks
otporne udaljenosti, Wienerov polinom i parni/neparni Wienerov polinom. Rabe}i
jednostavan i brzi algoritam mo`e se izra~unati navedene topologijske indekse za
vrlo velik broj virtualnih kombinatori~kih knji`nica bez ra~unanja indeksa za svaki
pojedina~ni spoj – ve} samo indekse za strukturne blokove koji se onda upotreblja-
vaju za generiranje indeksa spojeva sastavljenih od tih blokova.
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