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The chemical potential for a novel intrinsic graph metric, the resis-

tance distance, is briefly recalled, and then a number of »sum ru-

les« for this metric are established. »Global« and »local« types of sum

rules are identified. The sums in the »global« sum rules are graph

invariants, and the sum rules provide inter-relations amongst dif-

ferent invariants, some involving the resistance distance while

others do not. Illustrative applications to more »regular« graphs

are made.
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INTRODUCTION

A novel distance function on a graph was identified1 a few years back.

And though this »resistance distance« function appearing as part of electri-

cal circuit theory had been intensively studied in physics, in engineering,

and in mathematics, it rather amazingly apparently had been without rec-

ognition that it is a distance function (or metric) on graphs. For instance, it

is not mentioned in Buckley and Harary’s2 monograph on Distances in

Graphs. The term resistance distance was used because of the physical in-

terpretation: one imagines unit resistors on each edge of a graph G and

takes the resistance distance between vertices i and j of G to be the effective

resistance between vertices i and j (as when a battery is attached at these

two vertices). This resistance distance is in fact intrinsic to the graph, with

* Dedicated to the Professor Milan Randi} on the occasion of his 70th birthday.
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some nice purely mathematical interpretations also, as reviewed in Refs. 3

and 4, though three of these alternate interpretations were earlier estab-

lished before recognition of the function as a metric. On the other hand

there is the long recognized »shortest-path« distance function which has

been extensively studied.2 In fact the resistance and shortest-path distances

agree whenever in the graph there is but one path between the two consid-

ered vertices – and otherwise the resistance distance becomes diminished

from this reference when there are multiple pathways between the two ver-

tices (regardless of whether the two distinct paths are disjoint or not). That

is multiple pathways between two vertices not unsurprisingly engender

better »communication« with a consequent lessening of the effective dis-

tance (or resistance) between the two vertices. As such, the shortest-path

distance might be imagined to be more relevant when there is corpuscular

communication (along edges) between two vertices, whereas the resistance

distance might be imagined to be more relevant when the communication is

wave- or fluid-like. Thence concerning electronic wave-functions one natu-

rally imagines the relevance of the resistance distance. Indeed paying atten-

tion to multiple pathways between a pair of vertices is of paramount impor-

tance even in classical chemistry, as witnessed by the importance of distin-

guishing between single and double (or triple) bonds, and in the relevance of

6-cycles in organic aromatics. But so far there has been only preliminary

chemical application (e.g., as Refs. 5–7) of the resistance distance, but that

chemical communication in molecules is rather wave-like suggests the util-

ity of the concept. Of course there are multifarious applications in physics

and electrical engineering, but evidently they have been (rather success-

fully) pursued without explicit use of the metricity of the concept (of electri-

cal resistance). Even Snelling and Doyle’s8 charming mathematically ori-

ented book (which incidently emphasizes a nice probabilistic interpretation

of the resistance between two vertices) does not identify this as a metric.

At present it seems that the development of further methodologies and

theorems concerning such a fundamental concept (with a substantial poten-

tial for chemical applications, beyond the traditional electrical ones) may be

of interest. This is the broad aim here. In particular an extension is sought

of some earlier work1 involving a broad class of formulas for selected sums

of resistance distances. The theoretical development of such »sum rules« is

described in the section Mathematical Formulation and Results for General

Graphs, with some attempt at the identification of systematic sets of such

sum rules. Thereafter in the section Specialized Results for Highly Regular

Graphs we indicate substantial simplifications which occur with more regu-

lar graphs, it being noted that some resistance distances between closer

sites may sometimes be especially simply determined, and a few illustrative

applications are made.
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MATHEMATICAL FORMULATION AND RESULTS

FOR GENERAL GRAPHS

Standard notation for a (molecular) graph G is used. The vertex (or site)

set is V and the edge (or bond) set is E. Resistance distances are neatly gi-

ven in terms of a graph’s so-called Laplacian matrix. This matrix L has

rows and columns labelled be the vertices of the graph G, so that if N is the

number of sites, the matrix is N � N, and L may be expressed as a difference

L � – A between the diagonal matrix of site degrees and the usual adja-

cency matrix A. That is, the elements �ij are 0, except for the (i = j) diagonal

for which �ii is the degree �i of site i�V, and the elements A ij are 0 except

for i,j which are adjacent (in G) whence Aij = 1. The matrix L may be viewed

as a sort of discretized representation of the Laplacian operator of conven-

tional analysis and mathematical physics, and so may naturally be expected

to be of a fundamental nature in graph theory. And indeed it has been much

studied, e.g., as reviewed in Refs. 9–11.

For a connected graph G as are the subject of study here, it may be rea-

dily seen that L has all eigenvalues positive except one that is 0. The eigen-

vector j associated to this 0-eigenvalue has all its components the same,

which we might take to be 1. Then L has a generalized inverse , which has

j as a 0-eigenvalue eigenvector, and on the space orthogonal to j, is the

ordinary inverse to L restricted to this same space. The matrix with all its

elements being 1/N is a projection operator = N–1jj†. If I denotes the iden-

tity matrix, then

L = L = I –

this resultant being essentially the full N-dimensional space extension of

the identity matrix for the subspace orthogonal to j. And there is a funda-

mental result that the resistance �ij between two vertices i and j of G is

given in terms of the elements of by

Theorem A – Let a connected graph G have Laplacian matrix L , and let

its generalized inverse (as above) be . Then the resistance distance be-

tween vertices i and j of G is

�ij = �ii – �ij – �ji + �jj

and this is a metric on the graph.

The formula of this theorem may be formally derived1 using Kirchoff ’s

laws, and seems to have been long known in the electrical engineering liter-

ature, with it appearing in several texts, such as Ref. 12. For our present
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purposes the formula of this theorem might just be accepted as a definition

of the resistance distance.

One of the various consequences of this result is:

Theorem B – For G an N-site connected graph and an arbitrary N � N

matrix M,

( )
,

LML
i j�

�
V

ij �ij = –2 tr�ML�

(Here tr denotes the trace operation, which sums over the diagonal ele-

ments of the matrix argument.) A proof is found in Ref. 1, but may be estab-

lished here again. One merely substitutes the result of theorem A into the

left-hand side of the present formula to obtain

( )
,

LML
i j�

�
V

ij (�ii – �ij – �ji + �jj) = 2 �ii

i j

( )
,

LML
�

�
V

ij jj – 2
i�

�
V

(LML )ii

where we have used the symmetry of the matrices, and introduced the ele-

ments 	i = 1 of the special vector j. Because j is a 0-eigenvalue eigenvector

to L, the first summation here vanishes, and in the second the product L

may be replaced by I – , to obtain

0 – 2 (LM(I
i�

�
V

– )ii = – 2 ( )LM
i�

�
V

ii – 0 = – 2 tr(LM)

and thereby establish the theorem.

This theorem B may be viewed as a general »sum rule« for resistance

distances, with different particular realizations for different particular choi-

ces of M. For the case of M = one is fairly directly led to

Corollary C – For G an N-site connected graph with edge set E,

� �

� ij

i j, �

�
E

= N–1 .

In fact this particular result was long ago established by Foster13 and by

Weinberg.14

Ref. 1 goes on to consider a couple other sum rules specialized to the

case of highly regular graphs, but here we first consider the case of general

connected graphs. The first type are »global« and lead to relations amongst

graph invariants, whereas the second type are »local« and entail relations

amongst different subsets of sites in one or more local regions of the parent

graph. Such »local« subsets of sites might for instance be those of the neigh-

bor set n(a) of a given site a�V. These »local« sum rules arise with a »local«

choice for the matrix M in theorem B, but there is a great deal of latitude in
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choosing M – all that is required is that it be of the proper dimension

(N � N). A candidate for a canonical set of local sum rules is:

Theorem D – Let a,b�V in a connected graph G. Then

� a
–1

i j, �

�
n( )a

�ij =
i�

�
n( )a

�ia – 1

�a �b �ab – �a
j�

�
n( )b

�aj – �b
i�

�
n( )a

�ib +
ji ��

��
n( )n( ) ba

�ij = 2
a�b, a�b

where 
a�b is 0 unless a and b are neighbors in which case it takes the value

1.

The proof proceeds from theorem B with the choice of M as the matrix

Oab which has all elements 0 except the (a,b)th element which is 1. The

b = a choice M = Oaa leads to the first consequence of the theorem (when it

is also recalled that L = –A). The choice of M = Oab with b � a leads to the

second consequence of the theorem.

This theorem D provides a hierarchy of conditions each correlating with

a pair of vertices a,b. In fact it can be shown that the conditions of this theo-

rem in essence determine all the �ij.

Theorem E – For a connected graph G, the conditions of theorem D de-

termine all the �ij, if also it is understood that �ij = �ji and �ii = 0, all i,j�V.

A proof begins with a recasting of the conditions of theorem D into a

suitably compact form, namely as

i j, �

�
V

(L�L)ab,ij �ij = 2Lab

where B�C denotes the (N2 � N2) Kronecker product of two (N � N) matrices

B and C, with the elements of B�C given by (B�C)ab,ij 
 BaiCaj. Here L�L is

a sort of »super-matrix« which operates on the vector space of ordinary

N � N matrices, including . Then our equation can be written even more

compactly as

(L�L) = 2L

(where and L on the right-hand side are understood to be here viewed as

N2 � 1 »super-vectors«). Now the super-matrix L�L does not have a proper

inverse, because it has 0-eigenvalue eigenvectors as follows from the null

eigenvalue of L (and because B�C has eigenvalues which may be verified to

be products of those of B and C). But L�L does have a generalized inverse

� which is zero on the null space of L�L, and on the orthogonal subspace

may be verified to multiply onto L�L to give the identity (on this orthogonal
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space). Thence the application of � to the equation (L�L) = 2L gives

only the part of not in this null subspace – that is, it gives up to an ad-

ditional correction in the null space. And this additional correction may be

expressed as a sum of null eigenvectors to L�L, such null eigenvectors be-

ing verified to be j�b and a�j for arbitrary N-vectors a and b. Thence the

general solution for as dictated by the conditions of theorem D is

= 2 ( � )L + j�b + a�j

Now

(( � )L)ab = �i,j �ai �bj Lij = ( L )ab = �ab

(where for the final equality it has been recalled that L is symmetric in its

indices). Thus this general solution is given in the form

�ab = 2 �ab + 	a �b + �a	b = 2 �ab + �b + �a .

Next the symmetry condition (�ab = �ba) leads to �b + �b = �a + �a and conse-

quently �b – �b = �a – �a, independently of the choice of a and b. Thence this

difference �a – �a must in fact be independent of a, as we summarize by

writing �a – �a = 2�. Next the condition of zero diagonal (for �) implies

0 = �aa = 2 �aa + �a + �a = 2 �aa + 2�a + 2�

so that �a = –�aa – �. Then also �a = �a + 2� = –�aa + �. Thus the final particu-

lar solution satisfying the symmetry and zero-diagonality conditions is

�ab = 2 �ab – �bb + � – �aa – � = 2�ab – �bb – �aa

which is the correct result, and the theorem is thereby established.

That is, the local conditions of theorem D have essentially all the infor-

mation to determine the �ij. A question of interest is whether it is of a useful

form. Actually going through the detailed inversion for L�L in the proof of

the theorem E, is certainly at least as difficult as going through the inver-

sion for L as indicated in theorem A. We come back to the utility of theorem

D in the next section. Here it has been established that though we have con-

sidered a specific set of local sum rules in theorem D, the set is »complete«.

In contrast to the »local« sum rules of theorem D, one may choose M to

be a matrix which is a (matrix) graph invariant, with rows and columns

which are labelled by vertices of G. Such sum rules are »global« and end up

involving ordinary scalar graph invariants. Such choices for the matrix M

include A, , L, , I (the identity matrix), D (the distance matrix for the
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usual shortest-path metric), or various combinations of these matrices. Of-

ten such a choice leads to a relation between graph invariants involving the

�ij and those seemingly not involving the �ij.

An example might be developed involving a particularly well-known

graph invariant, namely, Randi}’s15 so-called connectivity index

1
c

� �



�

�
i j, E

(�i �j)
–1/2 .

Then if M (in theorem B) is taken to be –1/2A –1/2 � A, one finds

Corollary F – Let G be a connected graph with vertex and edge sets V

and E. Then

1
c

� �

�
�

�
i j, E

(�i �j)
1/2 �ij –

� �

� �

�

i j

ki jk

1 2 1 2

1 2

/ /

/
,

�

��

��
n( )V k

�ij +
� � lki j ���

���
n( )n( )E ji,

(�i �j)
–1/2 �ij.

Though 1
c has been extensively utilized15,16 for structure/property and

structure/activity correlations for a vast variety of molecules and properties

(or activities), it seems that none of the three invariants on the right-hand

side of the equation in this corollary have been previously contemplated.

Another sum rule involving 1
c occurs with the choice M = A, but again the

�-containing invariants that are then related to 1
c seem to be previously

unconsidered. Sum rules for higher order connectivity indices are also con-

ceivable, as well as many other topological indices which have arisen in

»chemical graph theory«. Substitutions for M of a wide variety of standard

(N � N) graph-theoretic matrices are possible – use of the shortest-path dis-

tance matrix D or its powers, in particular would give sorts of inter-rela-

tions between the shortest-path and resistance distances. If si is defined as

the sum of the shortest-path distances of the ith row of D and S is taken to

the diagonal matrix with these si along the diagonal, then M = S–1/2AS–1/2

(or M = S–1/2AS–1/2) leads to a relation involving the Balaban17 index J (in

particular tr�ML� gives J up to a factor of e/(1 + m), with e the number of

edges and m the cyclomatic index). Evidently enormous numbers of yet other

sum rules are possible. But typically the relations found by application of

the theorem B seem to interrelate known indices to more than one new

(�-containing) »topological index«. What really might be is desired that all

the graph invariants involved in more interesting inter-relations should

have some independent motivation.

Here we focus on what might be perceived to be a »canonical« sequence

of »global« sum rules, with that of corollary C being but the first member.

Toward this end we introduce weighted sums over n-step walks between

various vertices (i and j) of G,
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wij(n) � (A( –1A)n–1)ij, n � 1 .

That is, wij(n) is a sum over n-step walks between vertices i and j with a

weight which is a product of �ii
–1 for each one of the internal vertices i of

such a walk. It may be noted that wij (n) has a sort of probabilistic interpre-

tation in terms of »random« walks. Such random walks passing through a

vertex i in the walk take the next step along any one of the �i edges at i

with equal probability. Thence, wij(n)/�i gives the probability pn�j� i� that an

n-step walk starting from site i ends at site j (and also pn�i� j� = wij (n)/�j).

Thus wij (n) may be viewed to be the symmetric part of p�i� j� which is also

common to p�j�i�. If one wished one could introduce n-step walk matrices

W(n) with elements wij (n), and this would be reminiscent of the »walk ma-

trices« introduced by Diudea18 though his do not ordinarily seem to involve

the �i
–1 factors, such as relate to unbiased random walking (as we have no-

ted). Sums over rather similarly weighted self-returning walks may also be

defined

tn �
j�

�
V

wii(n)/�ii, n � 1 .

That is, this is just a trace over (A –1)n, or over the nth power of the

symmetric matrix –1/2A –1/2 � A (such being involved in an alternative11

definition of the graph Laplacian, as L � I – A). These tn are graph inva-

riants, with tn /N being the probability that a random n-step walk be self-re-

turning (presuming that each site i for initiation of the walk is equally li-

kely). The sum-rules to be enunciated are for the invariants

Sn �
1

2 i j, �

�
V

wij(n) Wij, n � 1 .

Indeed we have:

Theorem G – For a connected N-site graph G,

S1 = N – 1, S2 = N – 2, and Sn = N – n +
i

n

�

�

�
2

1

ti, n � 3.

As a start for the proof, the result for S1 is involved in corollary C, which

if translated into the current notation may be expressed as S1 = N–1. The

result for S2 is derived from theorem B with the choice M = –1, which

yields

0 – 2S1 + S2 =
1

2 i j, �

�
V

( – 2A + A –1A)ij �ij =
1

2 i j, �

�
V

(L –1L)ij �ij =

– tr� –1L� = – tr�I – L� = – N

and thence S2 = N – 2, with the recognition that t1 = 0. Now for the general

case consider theorem B with M = –1(A –1)n–1, for n � 1, whence
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Sn+2 – 2Sn+1 + Sn =
1

2 i j, �

�
V

(L –1(A –1)n–1 L)ij �ij =

– tr� –1 (A –1)n–1 L� = – tr�(A –1)n–1 – –1(A –1)n–1A� = – (tn–1 – tn) .

But this is essentially a recursion relation for the resistance sums, and its

use for n = 1, with the recognition that t1 = 0 and t0 � 0, then yields S3 =

N – 3 + t2. Finally, use of mathematical induction then straight-forwardly

completes the proof.

This thence indicates some sort of connection between resistance distances

and random walks. Indeed such a connection in other contexts is known.8,19–22

SPECIALIZED RESULTS FOR HIGHLY REGULAR GRAPHS

It turns out that both our »local« and »global« sum rules (of theorems D

and F) rather readily determine some resistance distances for more highly

regular graphs. Thence it is of relevance to refer to symmetry equivalence

classes of pairs of vertices. The symmetry equivalence addressed here is

that under the full autmorphism group A of the graph G – i.e., A is the set

of vertex permutations which preserve edges. And the equivalence class con-

taining a pair �i,j� � V is just the set of all pairs �P(i),P(j)� for P� A. Let �

be a generic label for such a class, let #� denote the numbers of (unordered)

pairs of such vertices, and let w�(n) and �� denote the common values for

wi,j(n) and �ij for pairs �i,j� in this class. Then

Sn =
�

� #� w�(n) �� .

Only pairs � with an intersite distance �n occur in this sum, so that it

may be quite limited, for sufficiently highly regular graphs. The pair with i =

j does not occur in this sum (because �ii = 0), but wii(n) is still defined

though now the equivalence classes � are essentially those of a single site.

Then denoting the degree of a site in such an equivalence class � as ��, the ti

may be reexpressed as

ti =
�

� #� w�(i)/�� .

Overall the relation of theorem F may involve sums as in these symme-

try-reduced expressions for Sn and ti with rather few terms if the graph is

sufficiently highly regular.

For a vertex transitive graph, there is just one orbit � (�0) for individual

sites, and for an edge transitive graph there is just one orbit � (�1) for near-
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est neighbor pairs of sites. Using either the S1 condition of theorem G or cor-

ollary C directly, one has:

Corollary H – For an edge transitive graph with N vertices and e edges,

the nearest neighbor resistance distance is �1 = (N–1)/e.

This has been noted several times already.1,13,14,22

Vertex transitivity has important consequences for the self-returning

walk probability sums

ti = #0 w0(i)/�0 = Nw0(i)/�0

and there are consequences for the Sn also. In particular

Theorem I – Let G be an edge transitive connected graph, with c�n(a).

Then

�
i a�

�
n( )

ic = 2�a�(N–1)/e� – 2.

The proof uses the a = b result of theorem D, and utilizes edge transitiv-

ity to change the sum over i�n(a) to �a�1, and corollary H is used to substi-

tute for �1. Then also the sum over �i,j��n(a) is noted to be equivalent to 1/2

times one over i,j�n(a), and then edge transitivity is used to eliminate one

of these sums (say over j at a vertex c�n(a)).

Special cases of this theorem for graphs with additional regularity fea-

tures (including vertex transitivity) have been noted.1,23 With vertex transi-

tivity also a result much like the result of corollary I may be obtained from

the second (S2) part of theorem F.

The graphs of the regular polyhedra might be expected to lead to excep-

tionally simple results. These graphs have but one equivalence class for

pairs of vertices at any given shortest-path distance d, so that the equiva-

lence classes are naturally labelled by � � d. The computation of the Sn en-

tails counting different n-step walks between different pairs of vertices with

different resistance distances therebetween. Then one finds that the condi-

tion for Sn may involve the �d for d up to n, and in application of the rela-

tions of theorem D in increasing order n, one finds a relation for �n in terms

of those (already known) �d with d < n. That is, these relations of theorem D

lead to a complete determination of all the resistance distances. In imple-

menting this scheme, one finds the results of Table I. Here the results for

the various �n agree with those of Lukovits et al.,24,25 as corrected in Ref.

23. The results also agree with those of van Steenwijk.26 The use of these

global relation for Sn seems to become notably more tedious as n increases.

The graphs of the regular polyhedra may also be treated by corollary C

and the local conditions of theorem D. Again one finds that as one proceeds
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to conditions for pairs of vertices at ever greater shortest-path distances,

the relations involve �d for ever increasing values of d, and inversion to ob-

tain the �d is relatively straight-forward. The relations resulting from theo-

rem D are given in Table II. There the initial relations to determine �1 are

imagined to be the same as in Table I, so are not repeated again. And also

reported in Table II is the sum W’ of all the resistances over all (unordered)

pairs of vertices. This graph-invariant sum is an analogue of the Wiener

number, and the values again agree with Palacios.23 The use of the »local«

relations for a pair of vertices (a and b) at a distance n seems to become

more tedious as n increases, though the tediousness seems to be a little less

than for the corresponding global relation involving Sn.

An especially simple circumstance is found with the complete graph KN,

for which every pair of vertices have the same effective resistance, �1 = 2/N.
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TABLE I

Invariants and resistance distances for global relations for the regular polyhedra

Polyhedron S
n �n

tetrahedron S1 = 6 ��1 �1 = 1/2

octahedron S1 = 12 ��1

S2 = 6 ��1 + 3 ��2

�1 = 5/12

�2 = 1/2

cube S1 = 12 ��1

S2 = 8 ��2

t2 = 8/3

S3 = (28 ��1 + 8 ��3)/3

�1 = 7/12

�2 = 3/4

�3 = 5/6

icosahedron S1 = 30 ��1

S2 = 12 ��1 + 12 ��2

t2 = 12/5

S3 = (78 ��1 + 48 ��2 + 12 ��3)/5

�1 = 11/30

�2 = 7/15

�3 = 1/2

dodecahedron S1 = 30 ��1

S2 = 20 ��2

t2 = 20/3

S3 = 10 � (5 ��1 + 2 ��2 + 2 ��3)/3

t3 = 0

S4 = 20 � (�1 +7 ��2 + 4 ��3 + �4)/9

t4 = 5/27

S5 = 10 � (29 ��1 + 22 ��2 + 22 ��3 + 4 ��4 + 2 ��5)/27

�1 = 19/30

�2 = 9/10

�3 = 16/15

�4 = 17/15

�5 = 7/6

}

}

}
}

}



The applicability of the theorematic results here even without vertex

transitivity might be emphasized. For the complete bipartite graph (with m

and n vertices in the two parts) corollary H directly yields

�1 = (m + n – 1)/mn, G = Km,n .

And letting �2(m) and �2(n) be the respective resistance distances between

two vertices in the m- and n-site parts, the application of theorem I first for

a site a in the n-site part and then for a site a in the m-site part leads to

�2(m) = 2/m and �2(n) = 2/n, G = Km,n .

Thereby all the resistance distances for the complete bipartite graph are ob-

tained. It may be noted that if m and n are both large, then to a first ap-

proximation �1 is just the average of �2(m) and �2(n), so that amusingly the

resistance distance between (one set of) next-nearest neighbor pairs of sites

can be less than between nearest neighbors.

As yet another example the 14-site rhombic dodecahedron of Figure 1

might be considered. This has octahedral symmetry and may be viewed as

the dual of the cubo-octahedron. From corollary H one finds �1 = 13/24, whi-

le from theorem J one may choose the primary vertex (a in the corollary) to

be of degree 3 and then of degree 4, thereby obtaining

�13 = 3 �1 – 1 = 5/8 and 2 �24 + �25 = 2(4 �1 – 1) = 7/3
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TABLE II

Local relations and resistance sums for the regular polyhedra

Polyhedron �n
W’

tetrahedron �1 = 3 ��1 – 1 2

octahedron (4�1 + 2 ��2)/4 = 4 ��1 – 1 13/2

cube �2 = 3 ��1 – 1

16 ��1 + 2 ��3 – 12 ��2 = 2
13

icosahedron �1 + �2 = 5 ��1 – 1

18 ��1 – 12 ��2 + 2 ��3 = 2
28

dodecahedron �2 = 3 ��1 – 1

14 ��1 – 10 ��2 + 2 ��3 = 2

–5 ��1 + 7 ��2 – 4 ��3 + �4 = 0

�1 – 4 ��2 + 7 ��3 – 5 ��4 + �5 = 0
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where the vertex labelling is as in the figure. Two of these next nearest

neighbor resistance distances thence are not determined, at this stage. For

this polyhedron though there are 3 inequivalent sets of next nearest neigh-

bors, it may be seen that there is but one class of next-next nearest neigh-

bors, so that there is just one resistance distance �3 for such pairs, and the

next local sum rule of theorem D yields

12 �21 – 8 �13 – 3(2 �24 + �25) + (9 �1 + 4 �3) = 2

whence �3 = 21/32.

The specialization of corollary H and theorem I to the limit of infinite

lattice networks is of some interest. We have:

Corollary J – For infinite edge-transitive lattice networks, with c�n(a),

�1 = 2/� and �
i a�

�
n( )

ic = 4(�a/�) – 2

where � is the average degree of the sites.

Notably these results apply whether or not the lattice is vertex transi-

tive. With this extra assumption Thomassen27 has established the first re-

sult for the limit of infinitely large lattice networks. For instance, for the

rhomboidal lattice of Figure 2 one has twice as many degree 3 sites as de-

gree 6 sites, so that � = (2/3) · 3 + (1/3) · 6 = 4 and �1 = 1/2.

This corollary may be applied fairly readily for the example of all (four)28

vertex- and edge-transitive 2-dimensional lattice networks. For the hexago-

nal lattice there is only one equivalent next-nearest neighbor pair, whence

the sum rule (of corollary J) allows one to determine the corresponding re-

sistance distance. However, for each of the remaining three example lattices

there are two inequivalent next-nearest neighbor pairs.
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Figure 1. The rhombic dodecahedron, which is the dual of the cubo-octahedron.



For the hexagonal lattice:

�1 = 2/3 and �2 = 1

where �2 denotes the resistance distance between next nearest neighbors

(all of which are equivalent).

For the square-planar lattice:

�1 = 1/2 and 2 �2 + �2’ = 2

where �2 and �2’ denote the respective resistances across the diagonal of a

square and between two vertices separated 2 steps along either the x- or

y-axes of the lattice.

For the triangular lattice:

�1 = 1/3 and 6 �2 + 3 �2’ = 4

where �2 and �2’ denote the respective resistances between two vertices

across two triangles sharing a base and between two vertices separated 2

steps along any of the primitive translational lattice directions.

For the Kagome lattice:

�1 = 1/2 and 6 �2 + 3 �2’ = 4

where �2 and �2’ denote the respective resistances between two next-nearest

neighbors within a hexagonal ring and between two vertices separated 2

steps along any of the primitive translational lattice directions.

Figure 3 shows small sections of these latter three lattices, and identi-

fies pairs of vertices associated to �2 and �2’. The behavior that the first lo-
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Figure 2. A section of the edge-transitive but not vertex-transitive rhomboidal lattice

considered in the text.



cal sum rule determines a unique �2 sometimes occurs for circumstances

other than the hexagonal lattice – for instance, for the (tetrahedral) dia-

mond lattice, one finds such an �2 (= 2/3, while �1 = 1/2).

CONCLUSION

Sum rules for resistance distances have been sought to be more thor-

oughly explored. A systematic complete sequence of »local« sum rules is

found in theorem D. There are noted to be an endless variety of »global«

sum rules which may also be viewed as inter-relations between a (possibly

familiar) graph invariant without resistance distances and graph invariants

involving resistance distances, though out of the vast variety many of the

invariants seem typically to be quite »exotic«. A set of »global« sum rules are

suggested to be »canonical« and thence are developed. This sequence of sum

rules entails two sequences of graph invariants Sn, n�1, (involving the �ij)

and tm, m�1, (not involving the �ij). Each sequence involves random walking

with the subscript (n or m) identifying the number of steps in the random

walks considered. Both the »local« and canonical »global« sum rules seem

able to determine nearer neighbor resistance distances for sufficiently regu-

lar graphs, as is illustrated for several examples, including: the regular

polyhedra; the 2-dimensional vertex- and edge-transitive lattice networks;

the complete bipartite graph; and a few other cases. The first sum rule (of

theorem F or corollary C) for the nearest neighbor resistance distances

leads to particularly simple results for edge transitive graphs, and for more

general circumstances the determination of next-nearest neighbor resis-

tance sums seems most readily to proceed using the local sum rule of theo-

rem D. It is here illustrated how the theorems may be used to determine re-
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Figure 3. Small sections of the square-planar, triangular, and Kagome lattices, with

an indication of the �2 and �2’ pairs of vertices in each case.



sistance distances for even more distant pairs of vertices. Thence further

illuminating results are found for the resistance distance.

Note added in proof: Prof. J. L. Palacios points out that in Ref. 29 Foster estab-

lished the S2 sum rule of Theorem G.

Acknowledgment. – The support of the Welch Foundation of Houston, Texas is

acknowledged.

REFERENCES

1. D. J. Klein and M. Randi}, J. Math. Chem. 12 (1993) 81–85.

2. F. Buckley and F. Harary, Distances in Graphs, Addison-Wesley, Reading, Massa-

chusetts, 1990.

3. D. J. Klein, Commun. Math. Chem. (MatCh) 36 (1996) 7–27.

4. D. J. Klein and H.-Y. Zhu, J. Math. Chem. 23 (1998) 179–195.

5. D. Bonchev, A. T. Balaban, X. Liu, and D. J. Klein, Intl. J. Quantum Chem. 50
(1994) 1–20.

6. H.-Y. Zhu and D. J. Klein, J. Chem. Inf. & Comp. Sci. 36 (1996) 1067–1075.

7. O. Ivanciuc, T. Ivanciuc, and D. J. Klein, Commun. Math. Chem. (MatCh) 44
(2001) 251–278.

8. P. G. Doyle and J. L. Snell, Random Walks and Electric Networks, Math. Assoc.

Am., Washington, DC, 1984.

9. B. Mohar, in: Y. Alavi, C. Chartrand, O. R. Oilermann, and A. Schwenk (Eds.),

Graph Theory, Combinatorics, and Applications, John Wiley and Sons, NY, 1991,

pp. 871–898.

10. R. Merris, Lin. Alg. and Its Appl. 197/198 (1994) 143–176.

11. F. R. K. Chung, Spectral Graph Theory, Am. Math. Soc., Providence, Rhode Is-

land, 1997.

12. S. Seshu and M. B. Reed, Linear Graphs and Electrical Networks, Addison-Wes-

ley, Reading, Massachusetts, 1961.

13. R. M. Foster, in: Contributions to Applied Mechanics, Edward Brothers, Ann Ar-

bor, Michigan, 1949, pp. 333–340.

14. L. Weinberg, IRE Trans. Cir. Th. 5 (1958) 8–30.

15. M. Randi}, J. Am. Chem. Soc. 97 (1975) 6609–6615.

16. M. Kier and L. C. Hall, Molecular Connectivity in Chemistry and Drug Research,

Academic Press, 1976.

17. A. T. Balaban, Chem. Phys. Lett. 99 (1982) 399–404.

18. (a) M. Diudea, J. Chem. Inf. Comp. Sci. 36 (1996) 535–540; (b) 833–836.

19. C. St. J. A. Nash-Williams, Proc. Camb. Phil. Soc. 55 (1959) 181–194.

20. P. Tetali, J. Theor. Prob. 4 (1991) 101–109.

21. J. L. Palacios, Adv. Appl. Prob. 26 (1994) 820–824.

22. J. L. Palacios, Intl. J. Quantum Chem. 81 (2001) 29–33.

23. J. L. Palacios, Intl. J. Quantum Chem. 81 (2001) 135–140.

24. I. Lukovits, S. Nikoli}, and N. Trinajsti}, Intl. J. Quantum Chem. 71 (1999) 217–

225.

25. I. Lukovits, S. Nikoli}, and N. Trinajsti}, Croat. Chem. Acta 73 (2000) 957–967.

26. F. J. van Steenwijk, Am. J. Phys. 66 (1998) 90–91.

648 D. J. KLEIN



27. C. Thomassen, J. Comb. Th. B 49 (1990) 87–102.

28. B. Grünbaum and G. C. Shephard, Tilings and Patterns, Freeman and Co., NY,

1986.

29. R. M. Foster, IRE Trans. Cir. Th. 8 (1961) 75.

SA@ETAK

Pravila sume otpornih udaljenosti

Douglas J. Klein

Po{to su ukratko prikazane mogu}nosti uporabe nove intrinsi~ne grafovske me-

trike, otporne udaljenosti u kemiji, dan je niz pravila sume za tu metriku. Identi-

ficirana su »globalna« i »lokalna« pravila sume. Zbrojevi u »globalnim« pravilima

sume grafovske su invarijante, a pravilo sume upu}uje na me|usobni odnos razli-

~itih invarijanti, od kojih neke uklju~uju otporne udaljenosti, a neke ne. Dane su ilu-

strativne primjene na gotovo »regularne« grafove.
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