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A NOTE ON THE NUMBER OF D(4)-QUINTUPLES

Ljubica Baćić and Alan Filipin

Abstract. In this paper we will significantly improve the known
bound on the number of D(4)-quintuples, illustrating the elegant use of
the results the authors proved in [1] together with more efficient way of
counting the number of m-tuples that was introduced in [5]. More precisely,
we prove that there are at most 7 · 1036 D(4)-quintuples.

1. Introduction

Let n be a non-zero integer. A set {a1, a2, . . . , am} of m positive integers
is called a D(n)-m-tuple if aiaj +n is a perfect square for all i, j with 1 ≤ i <
j ≤ m. The problem of finding such sets has a long and rich history. To see
all details, together with references, one should visit [2]. Here we will consider
the case n = 4.

In the case n = 4 there is a conjecture, which appeared for the first time
in [4], that if {a, b, c, d} is a D(4)-quadruple with a < b < c < d, then

d = a+ b+ c+
1
2

(abc+ rst) ,

where r, s and t are positive integers defined by r2 = ab + 4, s2 = ac + 4
and t2 = bc + 4. If in a D(4)-quadruple the largest element is defined in
such way, we call that quadruple a regular one. The conjecture is that all
D(4)-quadruples are regular. It furthermore implies that there does not exist
a D(4)-quintuple.

In recent years the second author [6] proved that there does not exist a
D(4)-sextuple and that there are only finitely many quintuples. He further-
more [7] proved that irregular quadruple cannot be extended to a quintuple
with a larger element and [8] that there are at most 10323 quintuples. Here we
will significantly improve that result proving the following theorem. However,
this bound is still to large to solve the problem of existence of D(4)-quintuples
completely.
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Theorem 1.1. The number of D(4)-quintuples is less than 7 · 1036.

In the proof we will present the use of recent results proven in [1] and
[5], so we will not keep this paper self-contained. However, it should not be
a problem, because both papers are available. Also, here we will present the
most recent results and methods in solving those kind of problems which make
this paper up-to-date.

2. Improving the bounds of elements

In this section we will consider a D(4)-quintuple {a, b, c, d, e} such that
a < b < c < d < e. From [7] we first know that {a, b, c, d} is a regular
quadruple and from [8, Proposition 2] we know that there are at most 4 ways
to extend a quadruple to a quintuple with a larger element. We will use both
of those results later.

Here we will firstly improve the bounds from [8] of elements b and d in a
D(4)-quintuple {a, b, c, d, e} such that a < b < c < d < e. From [1, Lemma 3]
it is enough to consider b > 104 which we will assume from now on. We will
need the following definition.

Definition 2.1. Let {a, b, c} be a D(4)-triple such that a < b < c.

• We call {a, b, c} a triple of the first kind if c > b5.
• We call {a, b, c} a triple of the second kind if b > 4a and c > b2.
• We call {a, b, c} a triple of the third kind if b > 4a and b5/3 < c < b2.
• We call {a, b, c} a triple of the fourth kind if b > 4a and b4/3 < c < b5/3.

If {a, b, c} is a triple of the first, second, third or fourth kind, we call that
triple a standard D(4)-triple.

Proposition 2.2. Every D(4)-quadruple {a, b, c, d} with a < b < c < d
contains a standard triple {A,B,C} such that A < B < C = d.

Proof. If {a, b, c, d} is irregular D(4)-quadruple, then it easily implies
c > 4a and d > c2, so {a, c, d} is of the second kind.

Let now {a, b, c, d} be a regular quadruple and b > 4a. Then, d > abc >
b2, so {a, b, d} is of the second kind.

If {a, b, c, d} is a regular quadruple and b ≤ 4a < 5a, then from [1, Lemma
1] we know that c = c±

ν where

c+
0 = 0, c+

1 = a+ b+ 2r, c+
ν+2 = (ab+ 2)c+

ν+1 − c+
ν + 2(a+ b),

c−
0 = 0, c−

1 = a+ b− 2r, c−
ν+2 = (ab+ 2)c−

ν+1 − c−
ν + 2(a+ b).

Here r =
√
ab+ 4. Now if c > 4b3, then d > abc > b5 and {a, b, d} is of

the first kind. If c ≤ 4b3, then it is easy to check that c = c+
1 , c = c−

2 or
c = c+

2 . If c = c+
1 we have c = a + b + 2r and 4a < c < 4b which implies

d > abc > c2. So {a, c, d} is of the second kind. If c = c−
2 , then d = c−

3 which
implies c5/3 < d < c2, so {a, c, d} is of the third kind. In the case c = c+

2 we
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have d = c+
3 which implies c4/3 < d < c5/3, so {a, c, d} is of the fourth kind.

We are now ready to prove the main result of this section.

Proposition 2.3. Let {a, b, c, d, e} be a D(4)-quintuple with a < b < c <
d < e. Then {a, b, c, d} is a regular quadruple and it contains the standard
triple {A,B,C} such that A < B < C = d. Moreover,

(i) {a, b, c, d} cannot contain the triple {A,B, d} of the first kind.
(ii) if {a, b, c, d} contains the triple {A,B, d} of the second kind, then d <

1089 and b < 3.17 · 1044.
(iii) if {a, b, c, d} contains the triple {A,B, d} of the third kind, then d <

1066 and b < 6.33 · 1016.
(iv) if {a, b, c, d} contains the triple {A,B, d} of the fourth kind, then d <

1059 and b < 1.1 · 1012.

Proof. We will firstly use congruence method more carefully, similarly
as it was done in [10]. In [8] the second author proved that if we have the
triple {A,B,C = d} in a quintuple, such that A < B < C, then we have
to solve finitely many equations of the form V2m = W2n, where (Vm) and
(Wn) are binary recurrence sequences. More precisely, the second author
proved there, that we have to consider only the case with even indices when
we have an extension to a quintuple. Considering congruences modulo C2

we get the lower bound on m. Precisely, V2m = W2n for n > 2 implies
m > 0.495B−0.5C0.5. Here we use B ≥ b > 104 and n < m < 2n. So we have

Am2 ± Sm ≡ Bn2 ± Tn (mod C),

where S =
√
AC + 4 and T =

√
BC + 4. Let us assume m ≤ 0.495B−0.5C0.5.

Then it is easy to see that absolute value of both sides of the congruence are
less than C and have the same sign (for example Bn2 < B · 0.4952B−1C <
C/4) so we actually have an equation here, i.e.

Am2 −Bn2 = ±(Tn− Sm).

That implies

4m2 − 4n2 = (C ± (Tn+ Sm))(Bn2 −Am2).

If Bn2 = Am2, then 4m2 − 4n2 = 0, or m = n which is contradiction. So we
must have

4(m2 − n2) ≥ |C ± (Tn+ Sm)|.
The case with sign ’+’ gives us 4m2 > C which is contradiction to m ≤
0.495B−0.5C0.5. Let us now consider the case with sign ’-’. We have

4(m2 − n2) ≥ C − (Tn+ Sm)

which yields

C ≤ Tn+ Sm+ 4(m2 − n2) ≤ 2Tm+ 4 · 0.75m2 <
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< 0.99(BC + 4)0.5B−0.5C0.5 + 0.736B−1C < C

which gives us contradiction again, so we must have m > 0.495B−0.5C0.5.
(i) Here we combine this lower bound on m together with Lemma 6,

Lemma 7 and the proof of Proposition 1 from [1]. The only difference is that
we have

0.00325a(a′)−1b−1(b − a)−2c > 0.00325a(4b)−1b−3c > 0.0008125b−4c.

It implies

0.495b−0.5d0.5

2
<

log(128.08b6d2) log(0.00041b2d2)
log(bd) log(0.0008125b−4d)

.

From d > b5, and using that the right hand side is decreasing in d for d > b5,
we get

0.495b2 <
2 log(128.08b16) log(0.00041b12)

log(b6) log(0.0008125b)

which cannot be satisfied for b > 104, so this case cannot appear.
In the cases (ii)-(iv) we get the upper bound

2m
log(2m+ 1)

< 6.543 · 1015 log2 C

as it was done in [8, Lemma 7].
(ii) Here we have d = C > B2 which implies

2m > 0.99 · C−0.25C0.5 = 0.99C0.25.

Then we have
0.99d0.25

log(0.99d0.25 + 1)
< 6.543 · 1015 log2 d

or d < 1089. That also yields, using b2 < d, b < 3.17 · 1044.
In (iii) it is easy to see that d = c−

3 > b4/16 > b3 which implies 2m >

0.99d1/3. Then we have

0.99d1/3

log(0.99d1/3 + 1)
< 6.543 · 1015 log2 d

which gives us d < 1066 and b < 6.33 · 1016.
In the case of (iv) from d = c+

3 > b5/16 > b4 we have 2m > 0.99d3/8.
Then we have

0.99d3/8

log(0.99d3/8 + 1)
< 6.543 · 1015 log2 d

which gives us d < 1059 and b < 1.1 · 1012.
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3. Counting the number of quintuples

In this section we will prove Theorem 1.1. To prove this we will use
mostly the methods from [5] where it was introduced the more efficient way
of counting using divisor sums. Here we can use lemmas exactly the same
(Lemma 3.1) or similar to Lemma 3.5 from [5] because there are at most
2ω(n)+2 solutions of the congruence x2 ≡ 4 (mod n) satisfying 0 < x < n
(see [9, Chapter 5, 4g]). Here the ω(n) denotes the number of distinct prime
factors of n.

Lemma 3.1. If N ≥ 3, then
N∑

n=1

2ω(n) < N(logN + 1).

Lemma 3.2.
N∑

n=3

d(n2 − 4) < 4N(log2 N + 4 logN + 2),

where d(n) is the number of positive divisors of n.

The last Lemma can be used in the case when we get an upper bound N
on r =

√
ab+ 4, because it implies that the number of D(4)-pairs {a, b} with

a < b is less than 2N(log2 N + 4 logN + 2).
We will count the number of possible quintuples {a, b, c, d, e} such that

a < b < c < d < e considering the cases of standard triples from the previous
section. As we said before, we will use that {a, b, c, d} is a regular quadruple,
that there are at most 4 ways to extend it to a quintuple with a larger element
and that b > 104.

(ii) Let now {a, b, c, d} contains a triple of the second kind. Then we know
that d < 1089 and b < 3.17·1044. Here we will consider two possibilities
from [3, Lemma 1] where authors proved that c = a+ b+ 2r or c > ab
but we will also consider the subcases ab < c ≤ a2b2 and c > a2b2.

First if c > a2b2 we have d > abc > a3b3 > 0.99r6 which yields
r < 6.83 · 1014 = N1. Then the number of pairs {a, b} with a < b is
less than 2N1(log2 N1 +4 logN1 +2) from Lemma 3.2. For a fixed pair
{a, b}, the element c which extends it to a triple {a, b, c} belongs to the
union of finitely many binary recurrent sequences, and the number of
those sequences is less than or equal to the number of solutions of the
congruence t20 ≡ 4 (mod b) with |t0| < b. The number of this is less
than 8 · 2ω(b). In every sequence we have tν =

√
bcν + 4 > 2(r − 1)ν−1

which with the upper bound on cν < d < 1089 and b > 104 gives us
ν ≤ 24. So in each sequence we can have at most 24 elements. Because
the product of the first 30 primes is greater than 3.17 · 1044 we have
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that the number of sequences is less than 8 · 229 < 4.3 · 109. So the
number of possible quintuples in this case is less than

2N1(log2 N1 + 4 logN1 + 2) · 4.3 · 109 · 24 · 4 < 7.37 · 1029.

Secondly, if ab < ab ≤ a2b2, we have d > abc > a2b2 > 0.99r4

which yields r < 1.79 · 1022 = N2. Then the number of pairs {a, b}
with a < b is less than 2N2(log2 N2 + 4 logN2 + 2). For a fixed pair
{a, b} as before we have at most 8 · 2ω(b) sequences. Again the product
of the first 30 primes exceeds 3.17 · 1044 and therefore the number of
sequences is less than 8 · 229 < 4.3 · 109. But now, from c ≤ a2b2 we
get that in every sequence we can have at most 4 elements. So the
number of possible quintuples in this case is less than

2N2(log2 N2 + 4 logN2 + 2) · 4.3 · 109 · 4 · 4 < 6.98 · 1036.

In the last subcase when c = a + b + 2r, we have d > abc >
(r2 − 4)(3r + 1) which implies r < 3.22 · 1029 = N3. Because c and d
are unique here we have that the number of quintuples is less than

2N3(log2 N3 + 4 logN3 + 2) · 4 < 1.26 · 1034.

(iii) If {a, b, c, d} contains a triple of the third kind we have from Proposition
2.3 that b < 6.33 · 1016 = N4. Since c and d are unique here, we have
from Lemma 3.1 that the number of quintuples is less than

4N4(logN4 + 1) · 4 < 4.02 · 1019.

(iv) Finally, if {a, b, c, d} contains a triple of the third kind we have b <
1.1 · 1012 = N5. Since c and d are again unique in this case, from
Lemma 3.1 we have that the number of quintuples is less than

4N5(logN5 + 1) · 4 < 5.06 · 1014.

If we sum up everything, we have just proved that the number of D(4)-
quintuples is less than

7.37 · 1029 + 6.98 · 1036 + 1.26 · 1034 + 4.02 · 1019 + 5.06 · 1014 < 7 · 1036

which finishes the proof of Theorem 1.1.
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O broju D(4)-petorki

Ljubica Baćić i Alan Filipin

Sažetak. Elegantnom primjenom rezultata iz [1] i efikas-

nijom metodom prebrojavanja m-torki predstavljenoj u [5], u

ovom članku značajno smo poboljšali najbolju prethodno poznatu

ogradu za broj D(4)-petorki, Točnije, dokazali smo da postoji naj-

više 7 · 1036 D(4)-petorki.

Ljubica Baćić
Primary School Nikola Andrić
32000 Vukovar
Croatia
E-mail: ljubica.bacic@skole.hr

Alan Filipin
Faculty of Civil Engineering
University of Zagreb
10 000 Zagreb
Croatia
E-mail: filipin@master.grad.hr

Received: 2.3.2014.



14


