A NOTE ON THE NUMBER OF $D(4)$-QUINTUPLES

Luubica Baćić and Alan Filipin

Abstract

In this paper we will significantly improve the known bound on the number of $D(4)$-quintuples, illustrating the elegant use of the results the authors proved in [1] together with more efficient way of counting the number of m-tuples that was introduced in [5]. More precisely, we prove that there are at most $7 \cdot 10^{36} D(4)$-quintuples.

1. Introduction

Let n be a non-zero integer. A set $\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$ of m positive integers is called a $D(n)$-m-tuple if $a_{i} a_{j}+n$ is a perfect square for all i, j with $1 \leq i<$ $j \leq m$. The problem of finding such sets has a long and rich history. To see all details, together with references, one should visit [2]. Here we will consider the case $n=4$.

In the case $n=4$ there is a conjecture, which appeared for the first time in [4], that if $\{a, b, c, d\}$ is a $D(4)$-quadruple with $a<b<c<d$, then

$$
d=a+b+c+\frac{1}{2}(a b c+r s t)
$$

where r, s and t are positive integers defined by $r^{2}=a b+4, s^{2}=a c+4$ and $t^{2}=b c+4$. If in a $D(4)$-quadruple the largest element is defined in such way, we call that quadruple a regular one. The conjecture is that all $D(4)$-quadruples are regular. It furthermore implies that there does not exist a $D(4)$-quintuple.

In recent years the second author [6] proved that there does not exist a $D(4)$-sextuple and that there are only finitely many quintuples. He furthermore [7] proved that irregular quadruple cannot be extended to a quintuple with a larger element and [8] that there are at most 10^{323} quintuples. Here we will significantly improve that result proving the following theorem. However, this bound is still to large to solve the problem of existence of $D(4)$-quintuples completely.

[^0]Theorem 1.1. The number of $D(4)$-quintuples is less than $7 \cdot 10^{36}$.
In the proof we will present the use of recent results proven in [1] and [5], so we will not keep this paper self-contained. However, it should not be a problem, because both papers are available. Also, here we will present the most recent results and methods in solving those kind of problems which make this paper up-to-date.

2. Improving the bounds of elements

In this section we will consider a $D(4)$-quintuple $\{a, b, c, d, e\}$ such that $a<b<c<d<e$. From [7] we first know that $\{a, b, c, d\}$ is a regular quadruple and from [8, Proposition 2] we know that there are at most 4 ways to extend a quadruple to a quintuple with a larger element. We will use both of those results later.

Here we will firstly improve the bounds from [8] of elements b and d in a $D(4)$-quintuple $\{a, b, c, d, e\}$ such that $a<b<c<d<e$. From [1, Lemma 3] it is enough to consider $b>10^{4}$ which we will assume from now on. We will need the following definition.

Definition 2.1. Let $\{a, b, c\}$ be a $D(4)$-triple such that $a<b<c$.

- We call $\{a, b, c\}$ a triple of the first kind if $c>b^{5}$.
- We call $\{a, b, c\}$ a triple of the second kind if $b>4 a$ and $c>b^{2}$.
- We call $\{a, b, c\}$ a triple of the third kind if $b>4 a$ and $b^{5 / 3}<c<b^{2}$.
- We call $\{a, b, c\}$ a triple of the fourth kind if $b>4 a$ and $b^{4 / 3}<c<b^{5 / 3}$. If $\{a, b, c\}$ is a triple of the first, second, third or fourth kind, we call that triple a standard $D(4)$-triple.

Proposition 2.2. Every $D(4)$-quadruple $\{a, b, c, d\}$ with $a<b<c<d$ contains a standard triple $\{A, B, C\}$ such that $A<B<C=d$.

Proof. If $\{a, b, c, d\}$ is irregular $D(4)$-quadruple, then it easily implies $c>4 a$ and $d>c^{2}$, so $\{a, c, d\}$ is of the second kind.

Let now $\{a, b, c, d\}$ be a regular quadruple and $b>4 a$. Then, $d>a b c>$ b^{2}, so $\{a, b, d\}$ is of the second kind.

If $\{a, b, c, d\}$ is a regular quadruple and $b \leq 4 a<5 a$, then from [1, Lemma 1] we know that $c=c_{\nu}^{ \pm}$where

$$
\begin{aligned}
& c_{0}^{+}=0, c_{1}^{+}=a+b+2 r, c_{\nu+2}^{+}=(a b+2) c_{\nu+1}^{+}-c_{\nu}^{+}+2(a+b), \\
& c_{0}^{-}=0, c_{1}^{-}=a+b-2 r, c_{\nu+2}^{-}=(a b+2) c_{\nu+1}^{-}-c_{\nu}^{-}+2(a+b) .
\end{aligned}
$$

Here $r=\sqrt{a b+4}$. Now if $c>4 b^{3}$, then $d>a b c>b^{5}$ and $\{a, b, d\}$ is of the first kind. If $c \leq 4 b^{3}$, then it is easy to check that $c=c_{1}^{+}, c=c_{2}^{-}$or $c=c_{2}^{+}$. If $c=c_{1}^{+}$we have $c=a+b+2 r$ and $4 a<c<4 b$ which implies $d>a b c>c^{2}$. So $\{a, c, d\}$ is of the second kind. If $c=c_{2}^{-}$, then $d=c_{3}^{-}$which implies $c^{5 / 3}<d<c^{2}$, so $\{a, c, d\}$ is of the third kind. In the case $c=c_{2}^{+}$we
have $d=c_{3}^{+}$which implies $c^{4 / 3}<d<c^{5 / 3}$, so $\{a, c, d\}$ is of the fourth kind.

We are now ready to prove the main result of this section.
Proposition 2.3. Let $\{a, b, c, d, e\}$ be a $D(4)$-quintuple with $a<b<c<$ $d<e$. Then $\{a, b, c, d\}$ is a regular quadruple and it contains the standard triple $\{A, B, C\}$ such that $A<B<C=d$. Moreover,
(i) $\{a, b, c, d\}$ cannot contain the triple $\{A, B, d\}$ of the first kind.
(ii) if $\{a, b, c, d\}$ contains the triple $\{A, B, d\}$ of the second kind, then $d<$ 10^{89} and $b<3.17 \cdot 10^{44}$.
(iii) if $\{a, b, c, d\}$ contains the triple $\{A, B, d\}$ of the third kind, then $d<$ 10^{66} and $b<6.33 \cdot 10^{16}$.
(iv) if $\{a, b, c, d\}$ contains the triple $\{A, B, d\}$ of the fourth kind, then $d<$ 10^{59} and $b<1.1 \cdot 10^{12}$.

Proof. We will firstly use congruence method more carefully, similarly as it was done in [10]. In [8] the second author proved that if we have the triple $\{A, B, C=d\}$ in a quintuple, such that $A<B<C$, then we have to solve finitely many equations of the form $V_{2 m}=W_{2 n}$, where $\left(V_{m}\right)$ and $\left(W_{n}\right)$ are binary recurrence sequences. More precisely, the second author proved there, that we have to consider only the case with even indices when we have an extension to a quintuple. Considering congruences modulo C^{2} we get the lower bound on m. Precisely, $V_{2 m}=W_{2 n}$ for $n>2$ implies $m>0.495 B^{-0.5} C^{0.5}$. Here we use $B \geq b>10^{4}$ and $n<m<2 n$. So we have

$$
A m^{2} \pm S m \equiv B n^{2} \pm T n \quad(\bmod C)
$$

where $S=\sqrt{A C+4}$ and $T=\sqrt{B C+4}$. Let us assume $m \leq 0.495 B^{-0.5} C^{0.5}$. Then it is easy to see that absolute value of both sides of the congruence are less than C and have the same sign (for example $B n^{2}<B \cdot 0.495^{2} B^{-1} C<$ $C / 4)$ so we actually have an equation here, i.e.

$$
A m^{2}-B n^{2}= \pm(T n-S m)
$$

That implies

$$
4 m^{2}-4 n^{2}=(C \pm(T n+S m))\left(B n^{2}-A m^{2}\right)
$$

If $B n^{2}=A m^{2}$, then $4 m^{2}-4 n^{2}=0$, or $m=n$ which is contradiction. So we must have

$$
4\left(m^{2}-n^{2}\right) \geq|C \pm(T n+S m)|
$$

The case with sign ' + ' gives us $4 m^{2}>C$ which is contradiction to $m \leq$ $0.495 B^{-0.5} C^{0.5}$. Let us now consider the case with sign ' - '. We have

$$
4\left(m^{2}-n^{2}\right) \geq C-(T n+S m)
$$

which yields

$$
C \leq T n+S m+4\left(m^{2}-n^{2}\right) \leq 2 T m+4 \cdot 0.75 m^{2}<
$$

$$
<0.99(B C+4)^{0.5} B^{-0.5} C^{0.5}+0.736 B^{-1} C<C
$$

which gives us contradiction again, so we must have $m>0.495 B^{-0.5} C^{0.5}$.
(i) Here we combine this lower bound on m together with Lemma 6, Lemma 7 and the proof of Proposition 1 from [1]. The only difference is that we have

$$
0.00325 a\left(a^{\prime}\right)^{-1} b^{-1}(b-a)^{-2} c>0.00325 a(4 b)^{-1} b^{-3} c>0.0008125 b^{-4} c
$$

It implies

$$
\frac{0.495 b^{-0.5} d^{0.5}}{2}<\frac{\log \left(128.08 b^{6} d^{2}\right) \log \left(0.00041 b^{2} d^{2}\right)}{\log (b d) \log \left(0.0008125 b^{-4} d\right)}
$$

From $d>b^{5}$, and using that the right hand side is decreasing in d for $d>b^{5}$, we get

$$
0.495 b^{2}<\frac{2 \log \left(128.08 b^{16}\right) \log \left(0.00041 b^{12}\right)}{\log \left(b^{6}\right) \log (0.0008125 b)}
$$

which cannot be satisfied for $b>10^{4}$, so this case cannot appear.
In the cases $(i i)-(i v)$ we get the upper bound

$$
\frac{2 m}{\log (2 m+1)}<6.543 \cdot 10^{15} \log ^{2} C
$$

as it was done in $[8$, Lemma 7$]$.
(ii) Here we have $d=C>B^{2}$ which implies

$$
2 m>0.99 \cdot C^{-0.25} C^{0.5}=0.99 C^{0.25}
$$

Then we have

$$
\frac{0.99 d^{0.25}}{\log \left(0.99 d^{0.25}+1\right)}<6.543 \cdot 10^{15} \log ^{2} d
$$

or $d<10^{89}$. That also yields, using $b^{2}<d, b<3.17 \cdot 10^{44}$.
In (iii) it is easy to see that $d=c_{3}^{-}>b^{4} / 16>b^{3}$ which implies $2 m>$ $0.99 d^{1 / 3}$. Then we have

$$
\frac{0.99 d^{1 / 3}}{\log \left(0.99 d^{1 / 3}+1\right)}<6.543 \cdot 10^{15} \log ^{2} d
$$

which gives us $d<10^{66}$ and $b<6.33 \cdot 10^{16}$.
In the case of $(i v)$ from $d=c_{3}^{+}>b^{5} / 16>b^{4}$ we have $2 m>0.99 d^{3 / 8}$. Then we have

$$
\frac{0.99 d^{3 / 8}}{\log \left(0.99 d^{3 / 8}+1\right)}<6.543 \cdot 10^{15} \log ^{2} d
$$

which gives us $d<10^{59}$ and $b<1.1 \cdot 10^{12}$.

3. Counting the number of Quintuples

In this section we will prove Theorem 1.1. To prove this we will use mostly the methods from [5] where it was introduced the more efficient way of counting using divisor sums. Here we can use lemmas exactly the same (Lemma 3.1) or similar to Lemma 3.5 from [5] because there are at most $2^{\omega(n)+2}$ solutions of the congruence $x^{2} \equiv 4(\bmod n)$ satisfying $0<x<n$ (see $[9$, Chapter $5,4 \mathrm{~g}]$). Here the $\omega(n)$ denotes the number of distinct prime factors of n.

Lemma 3.1. If $N \geq 3$, then

$$
\sum_{n=1}^{N} 2^{\omega(n)}<N(\log N+1)
$$

Lemma 3.2.

$$
\sum_{n=3}^{N} d\left(n^{2}-4\right)<4 N\left(\log ^{2} N+4 \log N+2\right)
$$

where $d(n)$ is the number of positive divisors of n.
The last Lemma can be used in the case when we get an upper bound N on $r=\sqrt{a b+4}$, because it implies that the number of $D(4)$-pairs $\{a, b\}$ with $a<b$ is less than $2 N\left(\log ^{2} N+4 \log N+2\right)$.

We will count the number of possible quintuples $\{a, b, c, d, e\}$ such that $a<b<c<d<e$ considering the cases of standard triples from the previous section. As we said before, we will use that $\{a, b, c, d\}$ is a regular quadruple, that there are at most 4 ways to extend it to a quintuple with a larger element and that $b>10^{4}$.
(ii) Let now $\{a, b, c, d\}$ contains a triple of the second kind. Then we know that $d<10^{89}$ and $b<3.17 \cdot 10^{44}$. Here we will consider two possibilities from [3, Lemma 1] where authors proved that $c=a+b+2 r$ or $c>a b$ but we will also consider the subcases $a b<c \leq a^{2} b^{2}$ and $c>a^{2} b^{2}$.

First if $c>a^{2} b^{2}$ we have $d>a b c>a^{3} b^{3}>0.99 r^{6}$ which yields $r<6.83 \cdot 10^{14}=N_{1}$. Then the number of pairs $\{a, b\}$ with $a<b$ is less than $2 N_{1}\left(\log ^{2} N_{1}+4 \log N_{1}+2\right)$ from Lemma 3.2. For a fixed pair $\{a, b\}$, the element c which extends it to a triple $\{a, b, c\}$ belongs to the union of finitely many binary recurrent sequences, and the number of those sequences is less than or equal to the number of solutions of the congruence $t_{0}^{2} \equiv 4(\bmod b)$ with $\left|t_{0}\right|<b$. The number of this is less than $8 \cdot 2^{\omega(b)}$. In every sequence we have $t_{\nu}=\sqrt{b c_{\nu}+4}>2(r-1)^{\nu-1}$ which with the upper bound on $c_{\nu}<d<10^{89}$ and $b>10^{4}$ gives us $\nu \leq 24$. So in each sequence we can have at most 24 elements. Because the product of the first 30 primes is greater than $3.17 \cdot 10^{44}$ we have
that the number of sequences is less than $8 \cdot 2^{2} 9<4.3 \cdot 10^{9}$. So the number of possible quintuples in this case is less than

$$
2 N_{1}\left(\log ^{2} N_{1}+4 \log N_{1}+2\right) \cdot 4.3 \cdot 10^{9} \cdot 24 \cdot 4<7.37 \cdot 10^{29}
$$

Secondly, if $a b<a b \leq a^{2} b^{2}$, we have $d>a b c>a^{2} b^{2}>0.99 r^{4}$ which yields $r<1.79 \cdot 10^{22}=N_{2}$. Then the number of pairs $\{a, b\}$ with $a<b$ is less than $2 N_{2}\left(\log ^{2} N_{2}+4 \log N_{2}+2\right)$. For a fixed pair $\{a, b\}$ as before we have at most $8 \cdot 2^{\omega(b)}$ sequences. Again the product of the first 30 primes exceeds $3.17 \cdot 10^{44}$ and therefore the number of sequences is less than $8 \cdot 2^{2} 9<4.3 \cdot 10^{9}$. But now, from $c \leq a^{2} b^{2}$ we get that in every sequence we can have at most 4 elements. So the number of possible quintuples in this case is less than

$$
2 N_{2}\left(\log ^{2} N_{2}+4 \log N_{2}+2\right) \cdot 4.3 \cdot 10^{9} \cdot 4 \cdot 4<6.98 \cdot 10^{36}
$$

In the last subcase when $c=a+b+2 r$, we have $d>a b c>$ $\left(r^{2}-4\right)(3 r+1)$ which implies $r<3.22 \cdot 10^{29}=N_{3}$. Because c and d are unique here we have that the number of quintuples is less than

$$
2 N_{3}\left(\log ^{2} N_{3}+4 \log N_{3}+2\right) \cdot 4<1.26 \cdot 10^{34}
$$

(iii) If $\{a, b, c, d\}$ contains a triple of the third kind we have from Proposition 2.3 that $b<6.33 \cdot 10^{16}=N_{4}$. Since c and d are unique here, we have from Lemma 3.1 that the number of quintuples is less than

$$
4 N_{4}\left(\log N_{4}+1\right) \cdot 4<4.02 \cdot 10^{19}
$$

(iv) Finally, if $\{a, b, c, d\}$ contains a triple of the third kind we have $b<$ $1.1 \cdot 10^{12}=N_{5}$. Since c and d are again unique in this case, from Lemma 3.1 we have that the number of quintuples is less than

$$
4 N_{5}\left(\log N_{5}+1\right) \cdot 4<5.06 \cdot 10^{14}
$$

If we sum up everything, we have just proved that the number of $D(4)$ quintuples is less than

$$
7.37 \cdot 10^{29}+6.98 \cdot 10^{36}+1.26 \cdot 10^{34}+4.02 \cdot 10^{19}+5.06 \cdot 10^{14}<7 \cdot 10^{36}
$$

which finishes the proof of Theorem 1.1.

Acknowledgements.

This work has been supported by Croatian Science Foundation under the project no. 6422.

References

[1] Lj. Baćić and A. Filipin, On the extendibility of D(4)-pairs, Math. Communn., 18 (2013), 447-456.
[2] A. Dujella, Diophantine m-tuples,
http://web.math.pmf.unizg.hr/~duje/dtuples.html.
[3] A. Dujella and M. Mikić, On the torsion group of elliptic curves induced by $D(4)$ triples, An. Stiint. Univ. "Ovidius" Constanta Ser. Mat. 22 (2014), 79-90.
[4] A. Dujella and A. M. S. Ramasamy, Fibonacci numbers and sets with the property $D(4)$, Bull. Belg. Math. Soc. Simon Stevin 12(3) (2005), 401-412.
[5] C. Elsholtz, A. Filipin and Y. Fujita, On Diophantine quintuples and $D(-1)$ quadruples, Monatsh. Math. 175 (2014), 227-239.
[6] A. Filipin, There does not exist a D(4)-sextuple, J. Number Theory 128 (2008), 15551565.
[7] A. Filipin, An irregular $D(4)$-quadruple cannot be extended to a quintuple, Acta Arith. 136 (2009), 167-176.
[8] A. Filipin, There are only finitely many $D(4)$-quintuples, Rocky Mountain J. Math. 41 (2011), 1847-1860.
[9] I. M. Vinogradov, Elements of number theory, Dover, New York, 1954.
[10] W. Wu and Bo He, On Diophantine quintuple conjecture, Proc. Japan Acad. A Math. Sci. 90 (2014), 84-86.

O broju $D(4)$-petorki

Ljubica Baćić i Alan Filipin

SAžETAK. Elegantnom primjenom rezultata iz [1] i efikasnijom metodom prebrojavanja m-torki predstavljenoj u [5], u ovom članku značajno smo poboljšali najbolju prethodno poznatu ogradu za broj $D(4)$-petorki, Točnije, dokazali smo da postoji najviše $7 \cdot 10^{36} D(4)$-petorki.

Ljubica Baćić
Primary School Nikola Andrić
32000 Vukovar
Croatia
E-mail: ljubica.bacic@skole.hr
Alan Filipin
Faculty of Civil Engineering
University of Zagreb
10000 Zagreb
Croatia
E-mail: filipin@master.grad.hr
Received: 2.3.2014.

[^0]: 2010 Mathematics Subject Classification. 11D09, 11J68.
 Key words and phrases. Diophantine tuples, simultaneous Diophantine equations.

