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ON A NEW CLASS OF HARDY-TYPE INEQUALITIES
WITH FRACTIONAL INTEGRALS AND FRACTIONAL
DERIVATIVES

SAJID IQBAL, KRISTINA KRULIC HIMMELREICH AND JOSIP PECARIC

ABSTRACT. This paper is devoted to a new class of general weighted
Hardy-type inequalities for arbitrary convex functions with some applica-
tions to different type of fractional integrals and fractional derivatives.

1. INTRODUCTION

In [5], A. Cizmesija et al. recently introduced a new class of general Hardy-
type inequalities.

Let (21, %1, 1) and (Q2, Xa, 12) be measure spaces with o-finite measures
and Ay be an integral operator defined by

(L1) Aﬁ@%g%ﬁ/k@wﬁwﬂm@%
Qo

where k : Q1 X Q5 — R is measurable and nonnegative kernel, f is measurable
function on 5, and

(1.2) K@) = [ b)), o
Qo

Throughout the paper, we consider that K (z) > 0 a.e. on Q5.

THEOREM 1.1. Let 1 < p < g < oco. Let (Q1,%1, 1) and (Q2, X2, po) be
measure spaces with o-finite measures, u be a weight function on Q1, v be a
measurable pa— a.e. positive function on Qs, k be a non-negative measurable
function on Q1 x Qo, and K be defined on Qq by (1.2). Let K(x) > 0 for all
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q
x € Q1 and let the function x — u(x) (%) be integrable on 1y for each

fized y € Qa. Suppose that ® : I — [0,00) is a bijective convex function on
an interval I C R. If there exist a real parameter s € (1,p) and a positive
measurable function V : Qg — R such that

A(s,V) = F(V,v)ysg&V%(y) /U(x) (k(x’y))qdul(fc) < o0,

where

F(V,v) = /Vﬁpl(’@sil)(y)vlf”'(y)duz(y) ,

Qo
then there is a positive real constant C, such that the inequality

(1.3) / W) (A f (@) dum(x) | <C / o(y)®” (£(3)) dpiz(y)

Ql Q2

1
P

holds for all measurable functions f : Qo — R with values in I and Apf be
defined on Q1 by (1.1). Moreover, if C is the smallest constant for (1.3) to
hold, then
C < inf A(s,V).
1<s<p
V>0
Here, our aim is to construct new results related to this new class

of Hardy-type inequalities for fractional integrals of a function with re-
spect to another increasing function, Riemann-Liouville fractional integrals,
Hadamard-type fractional integrals, Canavati-type fractional derivative, Ca-
puto fractional derivative, Erdelyi-Kéber fractional integrals. Many authors
gave improvements and generalizations of Hardy-type inequalities for convex
functions as well as for superquadratic functions, (see [6], [7], [10], [11] [12],
(13, [14], [16], [17)).

We also recall important result of G. H. Hardy. Let [a,b], —c0o < a <b <
oo be a finite interval on real axis R, and 1 < p < oo, then

(1.4) & Fllp < K[ fllps 5= Fllp < Kl

holds, where
(b—a)”
INa+1)’



ON A NEW CLASS OF HARDY-TYPE INEQUALITIES 93

1% f and If* f of order a > 0 denote the Riemann-Liouville fractional inte-
grals defined by

xT

1o () = ﬁ / (x =) f(y)dy, (x> a)

~—

a

and

1

b
50 = / (v — 2 )y, (x <b),

where I is the Gamma function, i.e. I'(a) = [* ' t*~ dt.

fO<a<landl < p < é, then the operators I, and I;* are
bounded from Ly (a,b) into L4(a,b), where ¢ = lfap. This is known as Hardy-
Littlewood theorem. Later on, the inequality (1.4) is discussed and proved
by S. G. Samko et al. in [18, Theorem 2.6]. For details we refer [15, Remark

2.1](also see [18]).

G. H. Hardy proved the inequality (1.4) involving left-sided fractional in-
tegral in one of his initial paper, see [9]. The calculation for the constant K
is hidden inside the proof.

Throughout this paper, all measures are assumed to be positive, all func-
tions are assumed to be positive and measurable and expressions of the form
0-00, 2 and % are taken to be equal to zero. Moreover, by a weight u = u(x)
we mean a non-negative measurable function on the actual interval or more
general set. For a real parameter 0 # p # 1, by p’ we denote its conjugate

/I — _P_ ig L+ 1 —
exponent p’ = ==, that is st = 1.

The paper is organized in the following way: After introduction, in Section
2, we construct and discuss a new class of generalized inequalities of Hardy-
type using different kinds of fractional integrals and fractional derivatives.

2. THE MAIN RESULTS

Let us recall some facts about fractional derivatives needed in the sequel,
for more details see e.g. [1], [8].

Let 0 < a < b < c0. By C™([a,b]) we denote the space of all functions
on [a,b] which have continuous derivatives up to order m, and AC(]a,b]) is
the space of all absolutely continuous functions on [a,b]. By AC™([a,b]) we
denote the space of all functions g € C™~([a,b]) with g™~ € AC([a,b]).
For any « € R we denote by [a] the integral part of « (the integer k satisfying
k<a<k+1)and [«] is the ceiling of @ (min{n € N,n > a}). By Li(a,b)
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we denote the space of all functions integrable on the interval (a,b), and by
Loo(a,b) the set of all functions measurable and essentially bounded on (a, ).
Clearly, Loo(a,b) C L1(a,b).

We start with definitions and some properties of the fractional integrals of a
function f with respect to given function g. For details see e.g. [15, p. 99)].

Let (a,b), —0o < a < b < oo be a finite or infinite interval of the real
line R and a > 0. Also let g be an increasing function on (a,b) and ¢’ be a
continuous function on (a,b). The left- and right-sided fractional integrals of
a function f with respect to another function g in [a, b] are given by

(12, () = — / [g(g’(”f“)dt v a

T/ Tolo) — 9=
and
b
o _ 1 g'(t)f(t)dt
imof )"”)‘r(a)m/ OO
respectively.

Our first result deals with fractional integral of f with respect to another
increasing function g is given.

THEOREM 2.1. Let 1 < p < q < oo, a > 0, u be a weight function on
(a,b), v be a.e. positive function on (a,b), g be increasing function on (a, b
such that g' be continuous on (a,b), I3, . f denotes the left sided fractional
integral of f with respect to another increasing function g. Suppose that @ :
I — [0,00) is a bijective convex function on an interval I C R. If there exist a
real parameter s € (1,p) and V : (a,b) — R is a positive measurable function

such that
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then there exists a positive constant C, such that the inequality

1

Juo o (Gt itar@)| 4 ) <c( [ome o

holds. Moreover, if C is the smallest constant for (2.2) to hold, then
C < inf A(s,V).

1<s<p
V>0
PROOF. Applying Theorem 1.1 with 3 = Qo = (a,b), dui(z) =
dx, dps(y) = dy,

g'(y) '
k(z,y) ={ T@G@-g@—= <Y <z
0) T < Yy § b7

we get that K () = prabrpy (9(2) — 9(@), Anf(@) = @ pe p(a),
and the inequality given in (1.3) reduces to (2.2). This complete the proof.
0

If we choose the function ® : Rt — R defined by ®(x) = z',¢ > 1, then
the following result is obtained.

COROLLARY 2.2. Letl <p<g<oo, t >1,a>0,u bea weight function
on (a,b), v be a.e. positive function on (a b), g be increasing function on (a,b]
such that ¢’ be continuous on (a,b), I o sqf denotes the left sided fractional
integral of f with respect to another increasing function g. If there exist a real
parameter s € (1,p) and V : (a,b) — R is a positive measurable function such
that

1
b p’

A(s,V) = / V=25 ()0l (y)dy

50 /u(x)( 9' () (g(x) — (i/)) l)qu ;<oo7

Y (9(2) —g(a)*

then there exists a positive constant C, such that the inequality
(2.3)

s |-

b

/b u(z) (%m;gﬂz))mdaz o [otiswyay

a



96 S. IQBAL, K. KRULIC HIMMELREICH AND J. PECARIC

holds. Moreover, if C is the smallest constant for (2.3) to hold, then

C < inf A(s,V).
1<s<p
V>0

Here, we give a special case for the Riemman-Liouville fractional integral.
If g(x) = z, then I, f(x) reduces to Ig, f(z) left-sided Riemann-Liouville
fractional integral, so the following result follows.

COROLLARY 2.3. Let 1 < p < qg < oo, a >0,t>1, u be a weight
function on (a,b), v be a.e. positive function on (a,b), and 1%, f denotes
the left-sided Riemann-Liouville fractional integral of f. If there exist a real
parameter s € (1,p) and V : (a,b) — R is a positive measurable function such
that

b p’
(24) A(s,V) = /Vﬁpsfl)(y)vl""(y)dy

a

Q=

b

x sup V7 (y) /u(z)<Ly))al>qu < oo,

y€(a,b)
Y

then there exists a positive constant C, such that the inequality

1
P

(25) /b u() (g“—{;)”fﬁf(x))tqu o /b o) F(y)dy

holds. Moreover, if C is the smallest constant for (2.5) to hold, then

C < inf A(s,V).
1<s<p
V>0

REMARK 2.4. If we take g(z) = log, then I, ., f(x) reduces to Jg, f(z)
left-sided Hadamard-type fractional integral that is defined for o > 0 by

x

e = s [ (1g§) Koy

a
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If there exist a real parameter s € (1,p) and a positive measurable function
V:(a,b) > Rwith 1 <p<gq<oo, t>1,such that
1
b p’
—p'(s—1) ’

A(s,V) = / VR () (y)dy

a

b
. 1 —1 a—1\ 4
x sup V7 (y) /u(ac) (a(ogx ogy) ) dr | < oo,
y€(a,b) y(logx — log a)a
Yy

Q=

then there exists a positive constant C| such that the inequality

(2.6)

/b u(a) <(F(L”J <x>)tqu o [ vy

logx —loga)® °*
a a

holds. Moreover, if C' is the smallest constant for (2.6) to hold, then
C < inf A(s,V).
1<s<p
V>0

Next we give result with respect to the generalized Riemann-Liouville
fractional derivative.

Let us recall the definition, for details see [2].

Let a > 0 and n = [ + 1 where [-] is the integral part and we define the
generalized Riemann-Liouville fractional derivative of f of order a by

00w = s () / (@~ )" Fly)dy.

a

In addition, we stipulate
DOf:=f=I0f, I;“f:=D%f if a>0.

If « € N then DS f = 4°J the ordinary a-order derivative.

dxe

The space I&(L(a, b)) is defined as the set of all functions f on [a, b] of the
form f = I&p for some ¢ € L(a,b), [18, Chapter 1, Definition 2.3]. According
to Theorem 2.3 in [18, p. 43], the latter characterization is equivalent to the
condition

(2.7) I"°f € AC"[a,}],
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47
wlgia (G/):O7 j:O,l,,n—l

A function f € L(a,b) satisfying (2.7) is said to have an integrable fractional
derivative D f, [18, Chapter 1, Definition 2.4].

The following lemma help us to prove the next result. For details see [2].

LEMMA 2.5. Let 8 >a >0, n=[F]4+1, m=[a] + 1. Identity

x

D2 @) = ey [ =0 DLWy, v € o,
is valid if one of the following conditions holds:
(i) f € If (L(a,b))-
(ii) I"=Pf € AC™[a,b] and DB~Ff(a) =0 fork=1,...n.
(iii) DBk f € Cla,b] for k=1,...,n, DS~ f € AC[a,b] and D3~*f(a) =
0 fork=1,...n.
(iv) f € AC"[a,b], D2f € L(a,b), D*f € L(a,b), B—a ¢ N, D?~*f(a) =
0fork=1,...,n and D Ff(a) =0 fork=1,...,m.
(v) f € AC™[a,b], D?f € L(a,b), DXf € L(a,b), 8 —a = 1 € N,
DS=Ff(a)=0 fork=1,...,1.
(vi) f € AC™[a,b], DEf € L(a,b), D2 € L(a,b) and f(a) = f'(a) = --- =
™2 (a) = 0.
(vii) f € AC™[a,b], D?f € L(a,b), DXf € L(a,b), B ¢ N and DZ71f is
bounded in a neighborhood of t = a.

COROLLARY 2.6. Let 1 <p<g<oo,t>1,8>a>0,u bea weight
function on (a,b), v be a.e. positive function on (a,b), D f denotes the gen-
eralized Riemann-Liouville fractional derivative of f and let the assumptions
of the Lemma 2.5 be satisfied. If there exist a real parameter s € (1,p) and a
positive measurable function V : (a,b) — R such that

.
b p’

A(s,V) = / V=25 ()0l (y)dy

a

ye(ab) (x —a)f~

X sup V‘Sgl(y) /bu(:n) ((5a)(my)5a1>qu i < 00,

then there exists a positive constant C, such that the inequality
(2.8)

/b ) (=2 D vp ) e <o / o) (D2 1) "dy
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holds. Moreover, if C is the smallest constant for (2.8) to hold, then
C < inf A(s,V).
1<s<p
V>0

PROOF. Applying Theorem 1.1 with 3 = Qo = (a,b), dui(z) =
dz, duz(y) = dy,

(z—y)?= :
May)={ Tomw 0 CSYST
0, x<y<b,

we get that K(z) = el nd Apf(x) = MDgf(m). Replace f by

I'(B—a+1) — (z—a)B-=
DB f. Then the inequality (1.3) becomes
(2.9)
b . 7 b 5
r'g- 1
/ u() [@ (%Dw(w)ﬂ ar| <c / o(y)®* (DL f(y)) dy

For ¢ > 1, the function ® : Rt — R be defined by ®(z) = z', then (2.9)
becomes (2.8). QO

Now we define Canavati-type fractional derivative (v—fractional deriva-
tive of f), for details see [1] and [3]. We consider

C%([a,b]) = {f € C™([a,b]) : I' 7™ € C*([a, b))},

v >0, n=[v],[] is the integral part, and v =v —n,0 < v < 1.
For f € C¥([a,b]), the Canavati-v fractional derivative of f is defined by

D f= DI~ f™,
where D = d/dz.
LEMMA 2.7. Letv >~ >0, n=[v], m = [y]. Let f € C¥([a,}]), be such
that f(a) =0,i=m,m+1,...n—1. Then
(i)  feCi(a,b])

() (DIf)&) =ty @ — P (DL ) (D),
for every x € [a, b].

In the following Corollary, we construct new inequality for the Canavati-
type fractional derivative.

COROLLARY 2.8. Let 1 < p< g <oo, t > 1, u be a weight function on
(a,b), v be a.e. positive function on (a,b), and let the assumptions in Lemma
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2.7 be satisfied. If there exist a real parameter s € (1,p) and V : (a,b) — R is
a positive measurable function such that

b p’
—p/(s—1)

A(s,V) = / VR () (y)dy

a

X sup ngl(y) /bu(x) ((y_,y)(x_y)v—v—l)qu q < o0,

ye(a,b) (x —a)—

Y

then there exists a positive constant C, such that the inequality
(2.10)

/b u(a) (Mm(m)tqdw e /b o(y) (DEF () Py

(x —a)r=7

B =

a

holds. Moreover, if C is the smallest constant for (2.10) to hold, then
C < inf A(s,V).
P

1<s<
V>0

PROOF. Applying Theorem 1.1 with 3 = Qo = (a,b), dui(z) =
dzadMQQ” ::dya

(—y)" 7! :
Fay) =4 T @<y ST
0, x<y<hb,

we get that K(x) = % and Ay f(x) = %Dgﬂz). Replace f by

D f. Then the inequality given in (1.3) become
(2.11)

/ u(z) {@ <Mmﬂx>)] | <c / o(y)®” (D2 £(4)) dy

(z —a)=7
a a

If we take ®(x) = a',t > 1,2 € R, then (2.11) becomes (2.10). O

B =

Next, we give the result for Caputo fractional derivative, for details see
[1, p. 449]. The Caputo fractional derivative is defined as:

Let a > 0, n = [a], g € AC™([a,b]). The Caputo fractional derivative is
given by
1 ; (n)
D,(t) = [,

I(n—a) ) (z—y)orH!

a
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for all = € [a,b]. The above function exists almost everywhere for = € [a, b].

The following result cover the case of the Caputo fractional derivative.

COROLLARY 2.9. Let 1 < p < g < oo, t > 1, u be a weight function
on (a,b), v be a.e. positive function on (a,b), and DS, f denotes the Caputo
fractional derivative of f, f € AC™([a,b]). If there exist a real parameter
s€(1,p) and V : (a,b) — R is a positive measurable function such that

1
b »’
/7

(2.12) A(s,V) = /V#(y)vlfp (y)dy

a

b
. _ _ n—a—1\ 9
< s V) | fule) (BT ) ) <o,
y€(a,b) (z —a)

Y
then there exists a positive constant C, such that the inequality
(2.13)

1
b P

/b ) (02 e sw) ) < [owiswyra

a a

holds. Moreover, if C is the smallest constant for (2.13) to hold, then
C < inf A(s,V).
1 P

<s<
V>0

PROOF. Applying Theorem 1.1 with 3 = Qo = (a,b), dui(z) =
dz, duz(y) = dy,

(z—y)" = .
Kay) = Tom 0S¥
0, r<y<b

we get that K(z) = % and Ay f(z) = %Dfa]‘(m). Replace f by

f(™). Then the inequality given in (1.3) takes the form
(2.14)

/u(m) [cp (%jji)l)&ﬂm))} de| <C /v(y)ép (S ) dy

a a

If we choose ®(z) = z',t > 1,z € RT, then (2.14) becomes (2.13). a

We continue with the following lemma that is given [4].
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LEMMA 2.10. Letv >~ > 0,n=[v]+1, m=[y]+1 and f € AC"([a,]]).
Suppose that one of the following conditions hold:

(a) v,v € Ng and fi(0) =0 fori=m,...,n— 1.
(b) v € No,v & Ng and f4(0) =0 fori=m,...,n — 2.
(c) v € No,v € Ny and fi(0) =0 fori=m—1,...,n— 1.
(d) v € Nog,v € Ny and fi(0) =0 fori=m—1,...,n—2.
Then
D} 1) = i [ =0 DL
at F(V—’y) Y ot J\Y)ay

a

foralla < x <b.

COROLLARY 2.11. Let 1 <p < q < oo, t > 1, u be a weight function on
(a,b), v be a.e. positive function on (a,b), and let the assumptions in Lemma
2.10 be satisfied. Let Dz+f denotes the Caputo fractional derivative of f,
f e AC™([a,b]). If there exist a real parameter s € (1,p) and V : (a,b) = R
is a positive measurable function such that

.
b »’
/7

A(s,V) = / V=5 ()0l (y)dy

a

X sup ngl(y) /bu(:c) <(1/fy)(:cy)”_7_1>qu i < 00,

ye(a,b) (x —a)—

Y

then there exists a positive constant C, such that the inequality
(2.15)

b ¢ ) o 2 b 3
n—o+ v
Juto) (=50 s@) an| <o [z s vy

( —a)r=
a a

holds. Moreover, if C is the smallest constant for (2.15) to hold, then

C < inf A(s,V).
1<s<p
V>0
PROOF. Applying Theorem 1.1 with 3 = Qo = (a,b), dui(z) =

dzadNQ(y):::dya

(w—y)* 771 .
k(z,y) = T 0 A<YST
0, r<y<hb,
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we get that K(x) = % and Ay f(z) = MD’Q]‘( ). Replace f by

y+1) (z—a)

DY, f. Then the inequality given in (1.3) takes the form
(2.16)

b , 1 b 1

I'v—~v+1 v
[ o (=T 0 @) @) <c| [owe ozsuna

For t > 1, the function ® : Rt — R is defined by ®(z) = z', then (2.16)
becomes (2.15). O

Now we present definitions and some properties of the Erdélyi-Kober type
fractional integrals. Some of these definitions and results were presented in
Samko et al. in [18].

Let (a,b) , (0 < a < b < o0) be a finite or infinite interval of the half-axis
R*. Also let a > 0,0 > 0, and n € R. We consider the left- and right-sided
integrals of order o € R defined by

oot ] ool f(t)dt

Q17 U = T [ e

and

eIy N = [N,

respectively. Integrals (2.17) and (2.18) are called the Erdélyi-Kober type
fractional integrals.

Now, we give the following result for Erdélyi-Kober type fractional inte-
grals.

COROLLARY 2.12. Let 1 < p < g < oo, t > 1,a > 0, u be a weight
function on (a,b), v be a.e. positive function on (a b), 13, .,.nf denotes
the Erdélyi-Kober type fractional integrals of f, and oFi(a,b;c;z) denotes
the hypergeometric function. If there exist a real parameter s € (1,p) and
V : (a,b) — R is a positive measurable function such that

b D’/

A(s,V) = / V=25 ()0l (y)dy
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then there exists a positive constant C, such that the inequality
(2.19)

bum (o +1) I8 .. flx tqdm q<C’ bv P (y)d
a/ ( ><(1_(2)0)02Fl(m) o >> <c| [vwrwa

T
a

kS

holds. Moreover, if C is the smallest constant for (2.19) to hold, then
C < inf A(s,V).
1<s<p
V>0

where
a (e
2F1(z) = oF1 (*77,04;04+ ;11— (E) )

b o
2F1(y) = 2 F1 <77,a;a+1;1 (;) >

ProoF. Applying Theorem 1.1 with Q3 = Qo = (a,b), dui(z) =
dlE, dHQ(y) = dya

1 M on+o—1 .
k(z,y) = { M) (er =y ==Y , a<y<a;

and

0, r<y<hb,
we get that K(z) = m (1 - (%)U)a oFi(—m, a5 + 151 — (%)0) and
Apf(x) = %Lﬁmmﬂx), then inequality (1.3) becomes
(2.20) 1
b q q b
T(a+1)
(] g, ... d. <C PP d

/U(x) [ <(1_ ©)) A a+,a,nf(x)>‘| ] < /v(y) (f(v) dy

If we choose ®(z) = 2',t > 1,2 € RT, then (2.20) becomes (2.19). O

REMARK 2.13. Similar result can be obtained for the right sided frac-
tional integral of f with respect to another increasing function g, right sided
Riemann-Liouville fractional integral, right sided Hadamard-type fractional
integrals, right sided Erdélyi-Kober type fractional integrals, but here we omit
the details.
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O novoj klasi nejednakosti Hardyjeva tipa s razlomljenim
integralima i razlomljenim derivacijama

Sajid Iqbal, Kristina Kruli¢ Himmelreich i Josip Pecarié¢

SAZETAK. Ovaj rad posveéen je novoj klasi opéenitih
tezinskih nejednakosti Hardyjeva tipa za proizvoljnu konveksnu
funkciju s primjenama na razne vrste razlomljenih integrala i ra-
zlomljenih derivacija.
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