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ON POTENTIAL INEQUALITY FOR THE ABSOLUTE
VALUE OF FUNCTIONS

Neven Elezović, Josip Pečarić and Marjan Praljak

Abstract. Potential inequality was introduced in [4] and later
extended to the case of general convex and concave functions in [1]. The
main goal of this paper is to derive the potential inequality for the case
where the function at which the potential is evaluated is replaced by its
absolute value. The results obtained, together with methods from [2], are
used to construct new families of exponentially convex functions.

1. introduction

Rao and Šikić [4] introduced the potential inequality for kernels and func-
tions that satisfy the maximum principle (see below), but they proved it only
for a special class of convex and concave functions. Elezović, Pečarić and
Praljak [1] generalized the potential inequality to the class of naturally de-
fined convex functions on (0,+∞) , which enabled them to generate certain
exponentially convex functions that were used to refine some of the known
inequalities and to derive new ones.

In this article, we will look at the same class of kernels and functions
and extend the results to the case where the function is replaced by its ab-
solute value. Furthermore, we will generate more families of exponentially
convex functions by applying methods from [2] that make use of the divided
differences.

We will start off by introducing notation and the setup. We say that
N(x, dy) is a positive kernel on X if N : X × B(X) → [0,+∞] is a mapping
such that, for every x ∈ X , A 7→ N(x,A) is a σ-finite measure, and, for every
A ∈ B(X), x 7→ N(x,A) is a measurable function. For a measurable function
f , the potential of f with respect to N at a point x ∈ X is

(Nf)(x) =

∫

X

f(y)N(x, dy),
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whenever the integral exists. The class of functions that have the potential
at every point is denoted by POT (N).

For a measure µ on (X,B(X)) and a measurable set C ∈ B(X) we will
denote by N̂Cµ the measure defined by

(N̂Cµ)(dy) =

∫

C

N(x, dy)µ(dx).

If C = X we will omit the subscript, i. e. N̂µ will denote the measure N̂Xµ.

Definition 1.1. Let N be a positive kernel on X and R ⊂ POT (N).
We say that N satisfies the strong maximum principle on R (with constant
M ≥ 1) if

(1.1) (Nf)(x) ≤ Mu+N [f+1{(Nf)≥u}](x)

holds for every x ∈ X, f ∈ R and u ≥ 0.

The main result from [1] is the following theorem

Theorem 1.2 (The potential inequality for convex functions). Let Φ :
(0,+∞) → R be a convex function and N(x, dy) a positive kernel on X which
satisfies the strong maximum principle on R with constant M . Let f ∈ R,
x ∈ X and z > 0 be such that z ≤ (Nf)(x)/M and denote by Bz the set

Bz =
{
y ∈ X : (Nf)(y) ≥ z

}
.

Then

Φ
( 1

M
(Nf)(x)

)
− Φ(z) ≤ 1

M
N [f+ϕ(Nf)1Bz

](x)

+
1

M
ϕ(z)N [f − f+1Bz

](x) − zϕ(z).

2. Potential Inequality for Absolute Values

Let N be a kernel that satisfies the strong maximum principle. If both f
and −f belong to R, then a property similar to (1.1) holds for |f | (see Lemma
2.1 bellow).

First, notice that condition (1.1) is equivalent to

(2.1) (Nf)+(x) ≤ Mu+N [f+1{(Nf)+≥u}](x).

Indeed, the two conditions are equivalent for u > 0 since the right hand
sides of (1.1) and (2.1) are equal because the sets {Nf > u} and {(Nf)+ >
u} are equal. Furthermore, the left hand sides are also equal on the set
{Nf > 0} = {(Nf)+ > 0}, while the inequalities (1.1) and (2.1) are trivially
satisfied on the set {Nf ≤ 0} = {(Nf)+ = 0} since the right hand sides
are nonnegative. Finally, for u = 0 the condition (2.1) holds trivially since
{(Nf)+ ≥ 0} = X and (Nf)+ ≤ N(f+).
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On the other hand, when (2.1) holds for every u ≥ 0, letting u ց 0 we
get

(Nf)(x) ≤ (Nf)+(x) ≤ M · 0 +N [f+1{(Nf)+>0}] ≤ N [f+1{(Nf)≥0}].

The following lemma was proven in [4].

Lemma 2.1. Let N be a positive kernel that satisfies the strong maximum
principle on R. If f and −f belong to R, then

(2.2) |Nf | ≤ 2Mu+N
[
|f | · 1{|Nf |≥u}

]

holds for every u ≥ 0.

Proof. Since (Nf)− = [N(−f)]+, applying (2.1) for both f and −f we
get

|(Nf)(x)| = (Nf)+(x) + (Nf)−(x) ≤
2Mu+N [f+1{(Nf)+≥u}] +N [f−1{(Nf)−≥u}].

Finally, since f+ ≤ |f |, f− ≤ |f | and {(Nf)+ ≥ u} ∪ {(Nf)− ≥ u} =
{|Nf | ≥ u}, the claim of the lemma follows from the last inequality.

Theorem 2.2 (The Potential Inequality for the Absolute Value of Func-
tions). Let Φ : (0,+∞) → R be a convex function and let ϕ = Φ′

+ be the
right-continuous version of its derivative. Let N(x, dy) be a positive kernel on
X which satisfies the strong maximum principle on R with constant M , let
f,−f ∈ R, x ∈ X and z > 0 be such that 2Mz ≤ |Nf(x)| and denote by Bz

the set

Bz =
{
y ∈ X : |Nf(y)| ≥ z

}
.

Then the following inequality holds

Φ
( 1

2M
|Nf(x)|

)
− Φ(z) ≤ 1

2M
N [|f |ϕ(|Nf |)1Bz

](x)

− 1

2M
ϕ(z)

(
N [|f |1Bz

](x) − |Nf(x)|
)

− zϕ(z).

Proof. Let τ(x) = 1
2M |Nf(x)|. Integration by parts gives

Φ(τ(x)) − Φ(z) =

∫ τ(x)

z

ϕ(u)du = uϕ(u)
∣∣∣
τ(x)

z
−
∫ τ(x)

z

udϕ(u)

= τϕ(τ(x)) − zϕ(z) −
∫ τ(x)

z

(u± τ(x))dϕ(u)

=

∫ τ(x)

z

(τ(x) − u)dϕ(u) + ϕ(z)(τ(x) − z).
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Since dϕ(u) is a positive measure and τ(x) ≥ z, using (2.2) we get

Φ(τ(x)) − Φ(z) ≤
∫ τ(x)

z

1

2M
N [|f |1{|Nf |≥u}]dϕ(u) + ϕ(z)(τ(x) − z).

Applying Fubini’s theorem and the fact that |f |1{|Nf |≥u} is a nonnegative
function, we further get

∫ τ(x)

z

N [|f |1{|Nf |≥u}] dϕ(u)

=

∫ τ(x)

z

∫

X

|f(y)|1{|Nf(y)|≥u}N(x, dy) dϕ(u)

=

∫

X

[∫ τ(x)

z

1{|Nf(y)|≥u}dϕ(u)

]
|f(y)|N(x, dy)

≤
∫

X

[∫ +∞

z

1{|Nf(y)|≥u}dϕ(u)

]
|f(y)|N(x, dy)

=

∫

X

|f(y)|
(
ϕ(|Nf(y)|) − ϕ(z)

)
1Bz

(y)N(x, dy)

= N [|f |ϕ(|Nf |)1Bz
](x) − ϕ(z)N [|f |1Bz

](x).

Now the inequality from the theorem follows from the two inequalities
above and linearity of potential.

Let us further denote the set

B = lim
zց0

Bz =
{
x ∈ X : |Nf(x)| 6= 0

}
.

By integrating the potential inequality from Theorem 2.2 with respect to
the variable x we can get the following, integral version of the inequality.

Corollary 2.3. Let the assumptions of Theorem 2.2 hold for a function
z : B → (0,+∞), i. e. 2Mz(x) ≤ |Nf(x)| for x ∈ B. Then, for C ⊂ B and
a measure µ on (X,B(X)), the following inequality holds

∫

C

(
Φ
( 1

2M
|Nf(x)|

)
− Φ(z(x))

)
µ(dx)

≤ 1

2M

∫

C

∫

Bz(x)

|f(y)|ϕ(|Nf(y)|)N(x, dy)µ(dx)

− 1

2M

∫

C

ϕ(z(x))
(
N [|f |1Bz

](x) − |Nf(x)|
)
µ(dx) −

∫

C

z(x)ϕ(z(x))µ(dx).
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In particular, for C = Bz and a constant function z(x) ≡ z, if the measure
µ is σ-finite, we get
∫

Bz

Φ
( 1

2M
|Nf(x)|

)
µ(dx) − Φ(z)µ(Bz)

≤ 1

2M

∫

Bz

|f(x)|ϕ(|Nf(x)|)(N̂Bz
µ)(dx)

+
1

2M
ϕ(z)

∫

Bz

(
N [|f |1Bz

](x) − |Nf(x)|
)
µ(dx) − zϕ(z)µ(Bz).

Proof. Integrating the potential inequality with respect to the measure
µ we get
∫

C

(
Φ
( 1

2M
|Nf(x)|

)
− Φ(z(x))

)
µ(dx) ≤ 1

2M

∫

C

N [|f |ϕ(|Nf |)1Bz(x)
]µ(dx)

− 1

2M

∫

C

ϕ(z(x))
(
N [|f |1Bz

](x) − |Nf(x)|
)
µ(dx) −

∫

C

z(x)ϕ(z(x))µ(dx),

which is the first inequality.
The second inequality follows by taking C = Bz and z(x) ≡ z and by

applying Fubini’s theorem on the first integral of the right-hand side.

Let us denote by Φp the following class of functions

(2.3) Φp(τ) =





τ p

p(p−1) , p 6= 0, 1

− log τ, p = 0
τ log τ, p = 1

Corollary 2.4. Under the assumptions of Corollary 2.3, for p ∈
R\{0, 1} the following inequality holds

1

p(p− 1)

∫

Bz

|Nf(x)|pµ(dx) ≤ (2M)p−1

(p− 1)

∫

Bz

|f(x)||Nf(x)|p−1(N̂Bz
µ)(dx)

− (2Mz)p−1

(p− 1)

∫

Bz

(
N [|f |1Bz

](x) − |Nf(x)|
)
µ(dx) − (2Mz)pµ(Bz)

p
.

Furthermore, for q = p/(p− 1) the following inequality holds

1

p(p− 1)

∫

Bz

|Nf |pdµ ≤ (2M)p−1

(p− 1)

[∫

Bz

|f |pd(N̂Bz
µ)

] 1
p
[∫

Bz

|Nf |pd(N̂Bz
µ)

] 1
q

− (2Mz)p−1

(p− 1)

∫

Bz

(
N [|f |1Bz

](x) − |Nf(x)|
)
µ(dx) − (2Mz)pµ(Bz)

p
.

Proof. Applying the second inequality from Corollary 2.3 for convex
functions Φp, p ∈ R\{0, 1}, and rearranging we get the first inequality. The
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second inequality follows from the first by applying Hölder’s inequality on the
first integral of the right-hand side.

Corollary 2.5. Under the assumptions of Theorem 2.2, if Bz = X and
ϕ(z) ≥ 0, then for every x ∈ X the following inequality holds

Φ(
1

2M
|Nf(x)|) − Φ(z) ≤ 1

2M
N [|f |ϕ(|Nf |)](x) − zϕ(z).

Furthermore, for a σ-finite measure µ on (X,B(X)), the following in-
equality holds
∫

X

Φ(
1

2M
|Nf(x)|)µ(dx) − Φ(z)µ(X) ≤

1

2M

∫

X

|f(x)|ϕ(|Nf(x)|)(N̂µ)(dx) − zϕ(z)µ(X).

Proof. Under the assumptions of the corollary, the second term on the
right hand side of the potential inequality from Theorem 2.2 is nonpositive,
so the first inequality follows.

The second inequality follows by integrating the first with respect to the
measure µ over the set X and applying Fubini’s theorem on the right hand
side integral.

Corollary 2.6. Under the assumptions of Corollary 2.5, the following
inequality holds for p > 1
∫

X

|Nf(x)|pµ(dx) ≤

p(2M)p−1
∫

X

|f(x)|Nf(x)|p−1(N̂µ)(dx) − (p− 1)(2Mz)pµ(X).

Furthermore, for q = p/(p− 1) the following inequality holds
∫

X

|Nf(x)|pµ(dx) ≤

p(2M)p−1

[∫

X

|f |pd(N̂µ)

] 1
p
[∫

X

|Nf |pd(N̂µ)

] 1
q

− (p− 1)(2Mz)pµ(X).

Proof. Applying Corollary 2.5 for convex functions Φp, p > 1, and re-
arranging we get the first inequality. The second inequality follows from the
first by applying Hölder’s inequality on the right-hand side integral.

If Theorem 2.2 or Corollary 2.5 hold for z > 0, then they hold for every
z′, 0 < z′ ≤ z. Letting z′ → 0 we can get further inequalities.

In the following corollaries we will assume that either ϕ is nonnegative,
or that for every x ∈ B there exists a function gx ∈ L1(N(x, ·)) such that
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|fϕ(|Nf |)| ≤ gx. In either case, by the monotone convergence theorem in the
former and by the dominated convergence theorem in the latter, we have

lim
zց0

N [|f |ϕ(|Nf |)1Bz
] = N [|f |ϕ(|Nf |)1B ]

since |f |ϕ(|Nf |)1Bz
→z→0 |f |ϕ(|Nf |)1B pointwise.

Corollary 2.7. Under the assumptions of Theorem 2.2, if ϕ(0+) is
finite, then for every x ∈ X we have

(2.4) Φ
( 1

2M
|Nf(x)|

)
− Φ(0+) ≤ 1

2M
N [|f |ϕ(|Nf |)1B](x)

− 1

2M
ϕ(0+)

(
N [|f |1B](x) − |Nf(x)|

)
.

Furthermore, if µ is a σ-finite measure on (X,B(X)), then the following
inequality holds
∫

B

Φ(
1

2M
(|Nf(x)|)µ(dx) − Φ(0+)µ(B)

≤ 1

2M

∫

B

|f(x)|ϕ(|Nf(x)|)(N̂Bµ)(dx)

− 1

2M
ϕ(0+)

∫

B

(
N [|f |1B](x) − |Nf(x)|

)
µ(dx).

Proof. Since limz→0 zϕ(z) = 0·ϕ(0+) = 0, letting z → 0 in the potential
inequality from Theorem 2.2, the last term on the right hand side disappears
and inequality (2.4) follows.

The second inequality of the corollary follows by integrating the first with
respect to the measure µ and applying Fubini’s theorem on the first integral
of the right hand side.

Corollary 2.8. Under the assumptions of Corollary 2.7, for p > 1 the
following inequality holds

∫

B

|Nf(x)|pµ(dx) ≤ p(2M)p−1
∫

B

|f(x)||Nf(x)|p−1(N̂µ)(dx).

Furthermore, for q = p/(p− 1) the following inequality holds

∫

B

|Nf |pdµ ≤ p(2M)p−1

[∫

B

|f |pd(N̂µ)

] 1
p
[∫

B

|Nf |pd(N̂µ)

] 1
q

.

Proof. The first inequality holds since convex functions Φp, p > 1, sat-
isfy the assumptions of Corollary 2.7 with Φp(0+) = ϕp(0+) = 0. The second
inequality follows from the first by applying Hölder’s inequality on the right-
hand side integral.
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When one or both of the measures µ and N̂Cµ is bounded by the other
up to a multiplicative constant, then we can state further inequalities. In that
regard, let K1 and K2 be positive constants, if they exist, such that

(2.5) K1µ ≤ N̂Cµ

and

(2.6) N̂Cµ ≤ K2µ.

Corollary 2.9. Let the assumptions of Corollary 2.4 hold. If N and µ
satisfy (2.6) with C = Bz, then for p > 1

∫

Bz

|Nf |pdµ ≤ pK2(2M)p−1

[∫

Bz

|f |pdµ
] 1

p
[∫

Bz

|Nf |pdµ
] 1

q

− p(2Mz)p−1
∫

Bz

(
N [|f |1Bz

](x) − |Nf(x)|
)
µ(dx) − (p− 1)(2Mz)pµ(Bz).

When N and µ satisfy both (2.5) and (2.6) with C = Bz, then for 0 < p < 1

∫

Bz

|Nf |pdµ ≥ pK
1/p
1 K

1/q
2 (2M)p−1

[∫

Bz

|f |pdµ
] 1

p
[ ∫

Bz

|Nf |pdµ
] 1

q

− p(2Mz)p−1
∫

Bz

(
N [|f |1Bz

](x) − |Nf(x)|
)
µ(dx) − (p− 1)(2Mz)pµ(Bz),

while for p < 0

∫

Bz

|Nf |pdµ ≤ pK
1/q
1 K

1/p
2 (2M)p−1

[∫

Bz

|f |pdµ
] 1

p
[ ∫

Bz

|Nf |pdµ
] 1

q

− p(2Mz)p−1
∫

Bz

(
N [|f |1Bz

](x) − |Nf(x)|
)
µ(dx) − (p− 1)(2Mz)pµ(Bz).

Proof. The inequalities follow directly from (2.5), (2.6) and Corollary
2.4.

Corollary 2.10. Let the assumptions of Corollary 2.8 hold. If N and
µ satisfy (2.6) with C = B, then for p > 1

[ ∫

B

|Nf |pdµ
] 1

p

≤ pK2(2M)p−1

[∫

B

|f |pdµ
] 1

p

and [ ∫

B

|Nf |pdµ
] 1

p

≤ pK
1/q
2 (2M)p−1

[∫

B

|f |pd(N̂µ)

] 1
p

.

Proof. The inequalities follow directly from (2.6) and Corollary 2.8.
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Remark 2.11. Concave case: When Φ is concave, dϕ(u) is a nega-
tive measure and the inequalities in Theorem 2.2, Corollaries 2.3 and 2.7 are
reversed. The reversed inequality in Corollary 2.5 holds if ϕ(z) ≤ 0.

3. Exponential Convexity

Using the potential inequality from the previous section we will construct
linear functionals that are nonnegative for convex functions. This will enable
us to construct new families of exponentially convex functions by applying a
method from [2].

Let us define linear functionals A1 = A1;f,N,z,x and A2 = A2;f,N,z,µ with

A1(Φ) =
1

2M
N [|f |ϕ(|Nf |)1Bz

](x) − 1

2M
ϕ(z)

(
N [|f |1Bz

](x) − |Nf(x)|
)

− Φ(
1

2M
|Nf(x)|) + Φ(z) − zϕ(z)

A2(Φ) =
1

2M

∫

Bz

|f(x)|ϕ(|Nf(x)|)(N̂Bz
µ)(dx)

− 1

2M
ϕ(z)

∫

Bz

(
N [|f |1Bz

](x) − |Nf(x)|
)
µ(dx)

−
∫

Bz

Φ(
1

2M
|Nf(x)|)µ(dx) + Φ(z)µ(Bz) − zϕ(z)µ(Bz).

Linear functionals Ak, k = 1, 2, depend on function f , kernel N , measure
µ and points x and z, but if these choices are clear from context, we will omit
them from the notation.

Similarly, we define linear functionals A3 = A3;f,N,x and A4 = A4;f,N,µ

with

A3(Φ) =
1

2M
N [|f |ϕ(|Nf |)1B](x) − 1

2M
ϕ(0+)

(
N [|f |1B](x) − |Nf(x)|

)

− Φ(
1

2M
|Nf(x)|) + Φ(0+),

A4(Φ) =
1

2M

∫

B

|f(x)|ϕ(|Nf(x)|)(N̂Bµ)(dx)

− 1

2M
ϕ(0+)

∫

B

(
N [|f |B](x) − |Nf(x)|

)
µ(dx)

−
∫

B

Φ(
1

2M
|Nf(x)|)µ(dx) + Φ(0+)µ(B).
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We will first give mean value theorems for the linear functionals Ak, k =
1, ..., 4.

Theorem 3.1. Let k ∈ {1, ..., 4} and let there exist a constant b such that
|(Nf)(x)| ≤ b for every x ∈ X. Furthermore, define the constant a as:

(i) a = z for k = 1 and k = 2, where z > 0 is the number from the
definition of the linear functionals A1 and A2, respectively

(ii) a = 0 for k = 3 and k = 4.

If Ψ ∈ C2[a, b], then there exists ξk ∈ [a, b] such that

Ak(Ψ) = Ψ′′(ξk)Ak(Φ2),

where Φ2 is given by (2.3).

Proof. Let

m = min
τ∈[a,b]

Ψ′′(τ) and M = max
τ∈[a,b]

Ψ′′(τ).

The function MΦ2 − Ψ is convex since

d2

dτ2

(
M
τ2

2
− Ψ(τ)

)
= M − Ψ′′(τ) ≥ 0.

From the statement and proofs of the inequalities from Theorem 2.2 and
Corollaries 2.3 and 2.7 it is clear that they are meaningful for convex functions
defined on the interval [a, b]. Since, by the assumptions of the theorem, the
convex function MΦ2−Ψ satisfies the assumptions of Theorem 2.2 (for k = 1),
Corollaries 2.3 (for k = 2) and 2.7 (for k = 3 or 4) we have

0 ≤ Ak

(
MΦ2 − Ψ

)
, k = 1, ..., 4,

i. e.

(3.1) Ak(Ψ) ≤ MAk(Φ2), k = 1, ..., 4.

Similarly, the inequality

(3.2) mAk(Φ2) ≤ Ak(Ψ), k = 1, ..., 4

holds since Ψ −mΦ2 is convex.
Since Φ2 is a convex function we have Ak(Φ2) ≥ 0. If Ak(Φ2) = 0, then

Ak(Ψ) = 0 and for ξk we can take any point in [a, b]. If Ak(Φ2) > 0, then
from from (3.1) and (3.2) we conclude

m ≤ Ak(Ψ)

Ak(Φ2)
≤ M,

so the existence of ξk, k = 1, ..., 4, follows from continuity of Ψ′′.
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Theorem 3.2. Let k ∈ {1, ...4} and let N , f , a and b be as in Theorem
3.1. If Ψ, Ψ̃ ∈ C2[a, b] and Ak(Φ2) 6= 0, then there exists ξk ∈ [a, b] such that

(3.3)
Ψ′′(ξk)

Ψ̃′′(ξk)
=
Ak(Ψ)

Ak(Ψ̃)
.

Proof. Let us define the function φ by

φ(τ) = Ψ(τ)Ak(Ψ̃) − Ψ̃(τ)Ak(Ψ).

The function φ satisfies the assumptions of Theorem 3.1 and, hence, there
exists ξk ∈ [a, b] such that Ak(φ) = φ′′(ξk)Ak(Φ2). Since Ak(φ) = 0 and
Ak(Φ2) 6= 0, it follows that 0 = φ′′(ξk) = Ψ′′(ξk)Ak(Ψ̃) − Ψ̃′′(ξk)Ak(Ψ), so
equality (3.3) follows.

We will continue this section with few basic notions and results on expo-
nential convexity that will be used here.

Definition 3.3. A function ψ : I → R is n-exponentially convex in the
Jensen sense on I if

n∑

i,j=1

ξiξjψ
(xi + xj

2

)
≥ 0

holds for all choices ξi ∈ R and xi ∈ I, i = 1, ..., n.
A function ψ : I → R is n-exponentially convex if it is n-exponentially

convex in the Jensen sense and continuous on I.

Definition 3.4. A function ψ : I → R is exponentially convex in the
Jensen sense on I if it is n-exponentially convex in the Jensen sense for
every n ∈ N.

A function ψ : I → R is exponentially convex if it is exponentially convex
in the Jensen sense and continuous on I.

Definition of positive semi-definite matrices and some basic algebra gives
us the following proposition

Proposition 3.5. If ψ is an n-exponentially convex in the Jensen sense

on I, then for every choice of xi ∈ I, i = 1, ..., n, the matrix
[
ψ
(

xi+xj

2

)]k

i,j=1
is a positive semi-definite matrix for all k ∈ N, k ≤ n. In particular, for all

k ∈ N, det
[
ψ
(

xi+xj

2

)]k

i,j=1
≥ 0 for all k ≤ n.

Remark 3.6. It is known that ψ : I → R is log-convex in the Jensen
sense if and only if

α2ψ(x) + 2αβψ
(x+ y

2

)
+ β2ψ(y) ≥ 0

holds for every α, β ∈ R and x, y ∈ I. It follows that a function is log-convex
in the Jensen sense if and only if it is 2-exponentially convex in the Jensen
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sense. Moreover, a function is log-convex if and only if it is 2-exponentially
convex.

We will also make use of the divided differences.

Definition 3.7. The second order divided differences of a function Ψ :
I → R, where I is an interval in R, at mutually different points τ0, τ1, τ2 ∈ I
is defined recursively by

[τi, ; Ψ] = Ψ(τi), i = 0, 1, 2,

[τi, τi+1; Ψ] =
Ψ(τi+1) − Ψ(τi)

τi+1 − τi
, i = 0, 1,

[τ0, τ1, τ2; Ψ] =
[τ1, τ2; Ψ] − [τ0, τ1; Ψ]

τ2 − τ0
.(3.4)

Remark 3.8. The value [τ0, τ1, τ2; Ψ] is independent of the order of the
points τ0, τ1, τ2. This definition may be extended to include the case in which
some or all of the points coincide by taking limits. If Ψ′ exists, then by taking
the limit τ1 → τ0 in (3.4) we get

lim
τ1→τ0

[τ0, τ1, τ2; Ψ] = [τ0, τ0, τ2; Ψ] =
Ψ(τ2) − Ψ(τ0) − Ψ′(τ0)(τ2 − τ0)

(τ2 − τ0)2 , τ2 6= τ0.

Furthermore, if Ψ′′ exists, then by taking the limits τi → τ0, i = 1, 2 in (3.4)
we get

lim
τ2→τ0

lim
τ1→τ0

[τ0, τ1, τ2; Ψ] = [τ0, τ0, τ0; Ψ] =
Ψ′′(τ0)

2
.

Notice that Ψ 7→ [τ0, τ1, τ2; Ψ] is a linear functional that is nonnegative
for a convex function Ψ.

The following theorem will enable us to construct families of n-expo-
nentially and exponentially convex functions by applying the linear functionals
Ak on a family of functions with the same property.

Theorem 3.9. Let Ω = {Ψp : p ∈ J}, where J is an interval in
R, be a family of functions Ψp : (0,+∞) → R such that the function
p 7→ [τ0, τ1, τ2; Ψp] is n-exponentially convex in the Jensen sense on J for
every three mutually different points τ0, τ1, τ2 ∈ (0,+∞). Then:

(i) for k = 1 or 2, the mapping p 7→ Ak(Ψp) is an n-exponentially convex
function in the Jensen sense on J . If the function p 7→ Ak(Ψp) is
continuous on J , then it is n-exponentially convex on J .

(ii) if Ψp(0+) is finite for every p ∈ J , then the same conclusions as in (i)
hold for k = 3 and 4.

Proof. For ξi ∈ R and pi ∈ J , i = 1, ..., n, we define the function

Ψ(τ) =

n∑

i,j=1

ξiξjΨ pi+pj
2

(τ).
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Due to the linearity of the divided differences and the assumption that the
function p 7→ [τ0, τ1, τ2; Ψp] is n-exponentially convex in the Jensen sense we
have

[τ0, τ1, τ2; Ψ] =

n∑

i,j=1

ξiξj [τ0, τ1, τ2; Ψ pi+pj
2

] ≥ 0.

This implies that Ψ is a convex functions and, due to the assumptions, it
satisfies the assumptions of Theorem 2.2 (for k = 1 or 2) and Corollary 2.7
(for k = 3 or 4). Hence, by the potential inequality,

0 ≤ Ak(Ψ) =

n∑

i,j=1

ξiξjAk

(
Ψ pi+pj

2

)
, k = 1, ..., 4

so the function p 7→ Ak(Ψp) is n-exponentially convex in the Jensen sense on
J . If it is also continuous on J , then it is n-exponentially convex by definition.

Corollary 3.10. Let Ω = {Ψp : p ∈ J}, where J is an interval in
R, be a family of functions Ψp : (0,+∞) → R such that the function p 7→
[τ0, τ1, τ2; Ψp] is 2-exponentially convex in the Jensen sense on J for every
three mutually different points τ0, τ1, τ2 ∈ (0,+∞). Then for k = 1 and k = 2
the following statements hold:

(i) If the function p 7→ Ak(Ψp) is continuous on J , then it is 2-
exponentially convex and, thus, log-convex.

(ii) If the function p 7→ Ak(Ψp) is strictly positive and differentiable on J ,
then for every p, q, r, s ∈ J , such that p ≤ r and q ≤ s, we have

µk
p,q(Ω) ≤ µk

r,s(Ω),

where

(3.5) µk
p,q(Ω) =





(
Ak(Ψp)
Ak(Ψq)

) 1
p−q

, p 6= q

exp
( d

dp
Ak(Ψp)

Ak(Ψp)

)
, p = q

for Ψp,Ψq ∈ Ω.

If, additionally, Ψp(0+) is finite for every p ∈ J , then statements (i) and (ii)
hold for k = 3 and 4 as well.

Proof. (i) This is an immediate consequence of Theorem 3.9 and Re-
mark 3.6

(ii) By (i), the function p 7→ Ak(Ψp) is log-convex on J , that is, the
function p 7→ logAk(Ψp) is convex. Therefore

(3.6)
logAk(Ψp) − logAk(Ψq)

p− q
≤ logAk(Ψr) − logAk(Ψs)

r − s
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for p ≤ r, q ≤ s, p 6= r, q 6= s, which implies that

µk
p,q(Ω) ≤ µk

r,s(Ω), k = 1, ..., 4.

The cases p = r and q = s follow from (3.6) by taking limits p → r or q → s.

Remark 3.11. The results from Theorem 3.9 (Corollary 3.10) still hold
when two of the points τ0, τ1, τ2 ∈ (0,+∞) coincide, say τ0 = τ1, for a family
of differentiable functions Ψp such that the function p 7→ [τ0, τ0, τ2; Ψp] is
n-exponentially convex in the Jensen sense (2-exponentially convex in the
Jensen sense) and, furthermore, they still hold when all three points coincide
for a family of twice differentiable functions with the same property.

We will end this sections with several examples of families of functions
that satisfy the assumptions of Theorem 3.9 and Corollary 3.10 (and Remark
3.11), which, as a consequence, gives us large families of exponentially convex
functions.

Example 3.12. Consider a family of functions Ωk
1 = {Φp : p ∈ Jk},

where Φp are the power functions defined by (2.3) and J1 = J2 = R and
J3 = J4 = (1,+∞).

We have d2

dτ 2 Φp(τ) = τp−2 > 0 which shows that Φp are convex on
(0,+∞). Similarly as in the proof of Theorem 3.9, let us, for ξi ∈ R and
pi ∈ Jk, i = 1, ..., n, define the function

Φ(τ) =

n∑

i,j=1

ξiξjΦ pi+pj
2

(τ).

Since the function p 7→ d2

dτ 2 Φp(τ) = τp−2 = e(p−2) ln τ is exponentially convex
(by definition), it follows that

Φ′′(τ) =
n∑

i,j=1

ξiξjΦ′′
pi+pj

2

(τ) =

( n∑

i=1

ξie
(pi−2) ln τ

)2

≥ 0

is a convex function. Therefore

0 ≤ [τ0, τ1, τ2; Φ] =

n∑

i,j=1

ξiξj [τ0, τ1, τ2; Φ pi+pj
2

],

so p 7→ [τ0, τ1, τ2; Ψp] is n-exponentially convex in the Jensen sense. Now,
by Theorem 3.9, it follows that the mappings p 7→ Ak(Φp) are exponentially
convex in the Jensen sense. It is straightforward to check that these mappings
are continuous, so they are exponentially convex.
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For these families of functions, µk
p,q(Ωk

1) from (3.5), for k = 1 and k = 2,
are equal to

µk
p,q(Ωk

1) =





(
Ak(Φp)
Ak(Φq)

) 1
p−q

, p 6= q

exp
(

1−2p
p(p−1) − Ak(Φ0Φp)

Ak(Φp)

)
, p = q 6= 0, 1

exp
(

− 1 − Ak(Φ0Φ1)
2Ak(Φ1)

)
, p = q = 1

exp
(

1 − Ak(Φ2
0)

2Ak(Φ0)

)
, p = q = 0

while for k = 3 and k = 4 they have the same form, but are only defined for
p, q > 1.

Furthermore, if a linear functional Ak and the functions Ψ = Φp and
Ψ̃ = Φq are such that the assumptions of Theorem 3.2 are satisfied, we can
define a two-parameter family of means. Indeed, since (Ψ/Ψ̃)−1(τ) = τ1/(p−q),
the number Ek

p,q(Ωk
1) = µk

p,q(Ωk
1) satisfies

0 ≤ Ek
p,q(Ωk

1) ≤ K.

Example 3.13. Let Ω2 = {Ψp : p ∈ R} be a family of functions defined
by

Ψp(τ) =

{ 1
p2 e

px, p 6= 0,
1
2τ

2, p = 0.

We have d2

dτ 2 Ψp(τ) = epτ > 0 which shows that Ψp are convex and p 7→
d2

dτ 2 Ψp(τ) is exponentially convex (by definition). Arguing as in Example 3.12
we get that the mappings p 7→ Ak(Ψp), k = 1, ..., 4, are exponentially convex.
In this case, the functions (3.5) are equal to

µk
p,q(Ω2) =





(
Ak(Ψp)
Ak(Ψq)

) 1
p−q

, p 6= q

exp
(

Ak(id·Ψp)
Ak(Ψp) − 2

p

)
, p = q 6= 0

exp
(

Ak(id·Ψ0)
3Ak(Ψ0)

)
, p = q = 0,

where id(τ) = τ is the identity function.
Again, if a linear functional Ak and the functions Ψ = Ψp and Ψ̃ =

Ψq are such that the assumptions of Theorem 3.2 are satisfied, then, since
(Ψ/Ψ̃)−1(τ) = ln(τ)/(p− q), we have

0 ≤ Ek
p,q(Ω2) = lnµk

p,q(Ω2) ≤ K,

so Ek
p,q(Ω2) are means.

Example 3.14. Consider a family of functions Ω3 = {Ψp : p ∈ (0,+∞)}
given by

Ψp(τ) =

{
p−τ

ln2 τ
, p 6= 1,

1
2τ

2, p = 1.
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Since d2

dτ 2 Ψp(τ) = p−τ is the Laplace transform of a nonnegative function
(see [5]), it is exponentially convex. Arguing as in Example 3.12 we get that
p 7→ Ak(Ψp), k = 1, ..., 4, are exponentially convex functions.

For this family of functions, µk
p,q(Ω3) from (3.5) becomes

µk
p,q(Ω3) =





(
Ak(Ψp)
Ak(Ψq)

) 1
p−q

, p 6= q

exp
(

− Ak(id·Ψp)
pAk(Ψp) − 2

p ln p

)
, p = q 6= 1

exp
(

− 2Ak(id·Ψ1)
3Ak(Ψ1)

)
, p = q = 1.

If the assumptions of Theorem 3.2 are satisfied for the linear functional
Ak and the functions Ψ = Ψp and Ψ̃ = Ψq, then

Ek
p,q(Ω3) = −L(p, q) lnµk

p,q(Ω3)

satisfies 0 ≤ Ek
p,q(Ω3) ≤ K, i. e. Ek

p,q(Ω3) is a mean. Here, L(p, q) is the
logarithmic mean defined by L(p, q) = (p− q)/(ln p− ln q), p 6= q, L(p, p) = p.

Example 3.15. Consider a family of functions Ω4 = {Ψp : p ∈ (0,+∞)}
given by

Ψp(τ) =
e−τ

√
p

p
.

Since d2

dτ 2 Ψp(τ) = e−τ
√

p is the Laplace transform of a nonnegative function
(see [5]), it is exponentially convex. Arguing as before, we get that p 7→
Ak(Ψp), k = 1, ..., 4, are exponentially convex functions.

For this family of functions, µk
p,q(Ω4) from (3.5) becomes

µk
p,q(Ω3) =





(
Ak(Ψp)
Ak(Ψq)

) 1
p−q

, p 6= q

exp
(

− Ak(id·Ψp)
2

√
pAk(Ψp) − 1

p

)
, p = q.

If the assumptions of Theorem 3.2 are satisfied for the linear functional
Ak and the functions Ψ = Ψp and Ψ̃ = Ψq, then

Ek
p,q(Ω4) = −

(√
p+

√
q
)

lnµk
p,q(Ω4)

satisfies 0 ≤ Ek
p,q(Ω4) ≤ K, which shows that Ek

p,q(Ω4) is a mean.
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O potencijalnoj nejednakosti za apsolutne vrijednosti funkcija

Neven Elezović, Josip Pečarić i Marjan Praljak

Sažetak. Potencijalna nejednakost izvedena je u [4] i kas-

nije proširena na opću klasu konveksnih i konkavnih funkcija u

[1]. Glavni cilj ovog članka je izvesti potencijalnu nejednakost u

slučaju kada funkciju u kojoj se računa potencijal zamijenimo s

apsolutnom vrijednošću te funkcije. Dobiveni rezultati, zajedno s

metodama iz [2], koriste se pri konstrukciji novih klasa eksponen-

cijalno konveksnih funkcija.
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