
RAD HAZU. MATEMATIČKE ZNANOSTI
Vol. 18 = 519 (2014): 125-143

CLASSIFICATION OF CONIC SECTIONS IN PE2(R)

Jelena Beban-Brkić and Marija Šimić Horvath

Abstract. This paper gives a complete classification of conics in
P E2(R). The classification has been made earlier (Reveruk [5]), but it
showed to be incomplete and not possible to cite and use in further studies
of properties of conics, pencil of conics, and of quadratic forms in pseudo-
Euclidean spaces. This paper provides that. A pseudo-orthogonal ma-
trix, pseudo-Euclidean values of a matrix, diagonalization of a matrix in
a pseudo-Euclidean way are introduced. Conics are divided in families
and by types, giving both of them geometrical meaning. The invariants of
a conic with respect to the group of motions in P E2(R) are determined,
making it possible to determine a conic without reducing its equation to
canonical form. An overview table is given.

1. Pseudo-Euclidean plane

The pseudo-Euclidean plane is a real affine plane where the metric is
introduced by the absolute figure (ω,Ω1,Ω2) consisting of the line ω at infinity
and the points Ω1,Ω2 ∈ ω. Any line passing through Ω1 or Ω2 is called an
isotropic line and any point incident with ω is called an isotropic point.
Let T = (x0 : x1 : x2) denote any point in the plane presented in homogeneous
coordinates. In the affine model, where

x =
x1

x0
, y =

y1

y0

the absolute figure is determined by w: x0 = 0; Ω1 = (0 : 1 : 1) and Ω2 = (0 :
1 : −1).
In the pseudo-Euclidean plane the scalar product for two vectors, e.g. v1 =
(x1, y1) and v2 = (x2, y2), xi, yi ∈ R, i = 1, 2 is defined as

(1.1) v1 · v2 = (x1, y1) · (x2, y2) = x1x2 − y1y2.

Hence, the norm of the vector v = (x, y) is of the form

(1.2) |v| =
√

v · v =
√

(x, y) · (x, y) =
√
x2 − y2.
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Since (1.2) may not always be real, one can distinguish three types of vectors
in the pseudo-Euclidean plane:

(1.3)
1. spacelike vectors if v · v > 0;
2. timelike vectors if v · v < 0;
3. lightlike vectors (isotropic vectors) if v · v = 0.

As a consequence there are 3 types of straight lines: spacelike lines, timelike
lines, lightlike lines.
Apparently, for two points T1 = (x1, y1) and T2 = (x2, y2)

(1.4) d(T1, T2) :=
√

(x1 − x2)2 − (y1 − y2)2

defines the distance between them. Comparing (1.4) and (1.2), for v =
−−→
T1T2

we have |v| = d(T1, T2). We will use the following notation: d(T1, T2) =
|T1T2|.
If 0 = (0, 0) is the origin, the vectors

−−→
OT1 and

−−→
OT2, being both spacelike or

both timelike, form an angle defined by

(1.5) coshα :=
x1x2 − y1y2√

x1
2 − y1

2
√
x2

2 − y2
2
.

The transformations that keep the absolute figure invariant and preserve the
above given metric quantities of a scalar product, distance, angle, are of the
form

(1.6)
x = x coshϕ+ y sinhϕ+ a
y = x sinhϕ+ y coshϕ+ b.

The transformations (1.6) form a group B3, called the motion group. Hence,
the group of pseudo-Euclidean motions consists of translations and pseudo-
Euclidean rotations, that is

x = x+ a
y = y + b

and
x = x coshϕ+ y sinhϕ
y = x sinhϕ+ y coshϕ.

With the geometry of the pseudo-Euclidean plane (also known as Minkowski
plane and Lorentzian plane) one can get acquainted through, for example, [4]
and [3].

2. Conic equation

General second-degree equation in two variables can be written in the
form

(2.1) F (x, y) ≡ a11x
2 + 2a12xy + a22y

2 + 2a01x+ 2a02y + a00 = 0

where a11 . . . a00 ∈ R and at least one of the numbers a11, a12, a22 6= 0. All the
solutions of the equation (2.1) represent the locus of points in a plane which
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is called a conic section or simply, a conic.
Using the matrix notation, we have

(2.2)
F (x, y) ≡

[
1 x y

]


a00 a01 a02

a01 a11 a12

a02 a12 a22






1
x
y


 =

=
[
x y

] [ a11 a12

a12 a22

] [
x
y

]
+ 2

[
a01 a02

] [ x
y

]
+ a00 = 0

where

(2.3) A :=



a00 a01 a02

a01 a11 a12

a02 a12 a22


 and σ :=

[
a11 a12

a12 a22

]

are real, symmetric matrices. In the sequel we will use the following functions
of the coefficients aij , i, j = 0, 1, 2

(2.4)

I1 := a11 − a22, I2 := detσ =

∣∣∣∣
a11 a12

a12 a22

∣∣∣∣,

I3 := detA =

∣∣∣∣∣∣

a00 a01 a02

a01 a11 a12

a02 a12 a22

∣∣∣∣∣∣
,

I4 :=

∣∣∣∣
a00 a01

a01 a11

∣∣∣∣−
∣∣∣∣
a00 a02

a02 a22

∣∣∣∣ , I5 := a00.

The aim is to determine the invariants of conics with respect to the motion
group B3 in the pseudo-Euclidean plane. For that purpose, let’s first apply
on the conic equation (2.1) the “pseudo-Euclidean rotation” from (1.6) given
by:

(2.5)
x = x coshϕ+ y sinhϕ
y = x sinhϕ+ y coshϕ.

Using matrix notation, (2.5) can be represented as

(2.6)

[
x
y

]
=

[
coshϕ sinhϕ
sinhϕ coshϕ

] [
x
y

]
, R :=

[
coshϕ sinhϕ
sinhϕ coshϕ

]
.

Let’s focus on the properties of the matrix R given in (2.6):

a) detR =

∣∣∣∣
coshϕ sinhϕ
sinhϕ coshϕ

∣∣∣∣ = cosh2 ϕ− sinh2 ϕ = 1

b) R−1 =

[
coshϕ − sinhϕ

− sinhϕ coshϕ

]

c) RT = R
d) Denoting columns of R by v1 = (coshϕ, sinhϕ), v2 = (sinhϕ, coshϕ)

we get

v1 · v2 = (coshϕ, sinhϕ) · (sinhϕ, coshϕ) = coshϕ sinhϕ− sinhϕ coshϕ = 0.
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Computing norms of the vectors v1,v2, that is

|v1| =
√

v1 · v1 =
√

(coshϕ, sinhϕ) · (coshϕ, sinhϕ) =

=
√

cosh2 ϕ− sinh2 ϕ =
√

1 = 1

|v2| =
√

v2 · v2 =
√

(sinhϕ, coshϕ)(sinhϕ, coshϕ) =

=
√

sinh2 ϕ− cosh2 ϕ =
√−1 = i,

we conclude the columns of R are orthonormal in the pseudo-Euclidean
sense.

Because of the aforementioned properties of the matrix R, we will say
that R is a pseudo-orthogonal matrix.
Hence, applying (2.6) on the conic equation (2.1),

[
x y

] [ coshϕ sinhϕ
sinhϕ coshϕ

] [
a11 a12

a12 a22

] [
coshϕ sinhϕ
sinhϕ coshϕ

] [
x
y

]
+

+2
[
a01 a02

] [ coshϕ sinhϕ
sinhϕ coshϕ

] [
x
y

]
+ a00 = 0

one gets

(2.7) F (x, y) ≡
[

1 x y
]


a00 a01 a02

a01 a11 a12

a02 a12 a22






1
x
y


 = 0,

where

(2.8)

a11 = a11cosh2 ϕ+ a22sinh2 ϕ+ 2a12 coshϕ sinhϕ

a12 = (a11 + a22) coshϕ sinhϕ+ a12(cosh2 ϕ+ sinh2 ϕ)

a22 = a11sinh2 ϕ+ a22cosh2 ϕ+ 2a12 coshϕ sinhϕ
a01 = a01 coshϕ+ a02 sinhϕ
a02 = a01 sinhϕ+ a02 coshϕ
a00 = a00.

This yields I1, I2, I3, I4, I5 are invariant with respect to the rotations (2.5).
For example,

I3 =

∣∣∣∣∣∣

a00 a01 a02

a01 a11 a12

a02 a12 a22

∣∣∣∣∣∣
= −a00a12

2 + 2a01a12a02 − a11a02
2 − a01

2a22 + a00a11a22

= −a00a12
2 cosh4 ϕ+2a01a12a02 cosh4 ϕ−a11a02

2 cosh4 ϕ−a01
2a22 cosh4 ϕ

+ a00a11a22 cosh4 ϕ+ 2a00a
2
12 cosh2 ϕ sinh2 ϕ− 4a01a12a02 cosh2 ϕ sinh2 ϕ

+ 2a11a02
2 cosh2 ϕ sinh2 ϕ+ 2a2

01a22 cosh2 ϕ sinh2 ϕ

− 2a00a11a22 cosh2 ϕ sinh2 ϕ− a00a12
2 sinh4 ϕ+ 2a01a12a02 sinh4 ϕ

− a11a02
2 sinh4 ϕ− a01

2a22 sinh4 ϕ+ a00a11a22 sinh4 ϕ
= −a00a

2
12 + 2a01a12a02 − a11a

2
02 − a2

01a22 + a00a11a22 = I3.
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The same can be proved for I1, I2, I4 and I5, as well.
Taking translations from (1.6) given by

(2.9)
x = x+ x0

y = y + y0

the equation (2.1) turns into (2.7) where

(2.10)

a11 = a11

a12 = a12

a22 = a22

a01 = a11x0 + a12y0 + a01

a02 = a12x0 + a22y0 + a02

a00 = a11x0
2 + 2a12x0y0 + a22y0

2 + 2a01x0 + 2a02y0 + a00.

It is easy to show that I1, I2, I3 are invariants under (2.9). One concludes that
I1, I2, and I3 are invariants of conics with respect to the group of motions
B3.
The observation given above regarding the invariants I1, I2, I3, I4, I5 can be
found in [5]. In addition, Reveruk [5] defines conics with respect to their
relationship to the absolute figure, relying on the fact that the focus points
(foci) are the points of intersection of the isotropic tangents at the conic. The
paper, however, showed to be incomplete (see Tables 1-5, where the conics
added from us are written in italic) and not possible to cite in further studies
of the properties of conics in the pseudo-Euclidean plane.

3. Diagonalization of the quadratic form

In the chapters that follows, based on the methods of linear algebra, we
give a complete classification of conic sections, divide them into families and
define types, giving both of them geometrical meaning.
The quadratic form within the equation (2.1) is a second degree homogenous
polynomial

(3.1) Q(x, y) := a11x
2 + 2a12xy + a22y

2 =
[
x y

] [ a11 a12

a12 a22

] [
x
y

]
.

The question is whether and when it is possible to obtain a12 = 0 using
transformations of the group B3. It can be seen from (2.8) that a12 = 0
implies

(3.2)

(a11 + a22) coshϕ sinhϕ+ a12(cosh2 ϕ+ sinh2 ϕ) = 0,
1

2
(a11 + a22) sinh 2ϕ+ a12 cosh 2ϕ = 0,

i.e. tanh 2ϕ = − 2a12

a11 + a22
, a11 + a22 6= 0.

From (3.2) we read:
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(i) −1 < tanh 2ϕ < 1,−∞ < 2ϕ < ∞ is fulfilled when |a11 +a22| > 2|a12|;
(ii) tanh 2ϕ = 1, 2ϕ = ∞ is fulfilled when a11 + a22 = −2a12,

tanh 2ϕ = −1, 2ϕ = −∞ is fulfilled when a11 + a22 = 2a12,
(iii) tanh 2ϕ < −1 and tanh 2ϕ > 1 is impossible. This follows when

|a11 + a22| < 2|a12|.

So, under the condition (i) one obtains

(3.3) Q(x, y) =
[
x y

] [ a11 0
0 a22

] [
x
y

]
,

where a11 − a22 = I1, a11 · a22 = I2.

Definition 3.1. Let A :=

[
a11 a12

a12 a22

]
be any real symmetric matrix.

Then the values λ1, λ2,

λ1 − λ2 = a11 − a22, λ1 · λ2 = a11a22 − a12
2

are called pseudo-Euclidean values of the matrix A.

Definition 3.2. We say that the real symmetric 2 × 2 matrix A allows
the pseudo-Euclidean diagonalization if there is a matrix

R =

[
coshϕ sinhϕ
sinhϕ coshϕ

]

such that RAR is a diagonal matrix, i.e.

RAR =

[
λ1 0
0 λ2

]
,

where λ1, λ2 are the pseudo-Euclidean values of the matrix A. We say that
the matrix R diagonalizes A in a pseudo-Euclidean way.

From the results obtained in Section 2 related to the invariants (2.4) it
follows:

Proposition 3.3. The difference λ1 −λ2 of the pseudo-Euclidean values
as well as their product λ1 · λ2 are invariant with respect to the group B3 of
motions in the pseudo-Euclidean plane.

Out of (3.1), (i), (ii), (iii), and (3.3), Propositions 3.4 and 3.5 are valid:

Proposition 3.4. Let A be a matrix from Definition 3.1. Then there is

a matrix R =

[
coshϕ sinhϕ
sinhϕ coshϕ

]
with tanh 2ϕ = − 2a12

a11 + a22
which under

the conditions a11 + a22 6= 0 and |a11 + a22| > 2|a12| diagonalizes A in the
pseudo-Euclidean way.
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Proposition 3.5. It is always possible to reduce the quadratic form (3.1)
by a pseudo-Euclidean motion to the canonical form (3.3) except for: (ii) and
(iii).

Next we divide the conics in the pseudo-Euclidean plane in four families
according to their geometrical properties. First, we define the families:

Definition 3.6. 1st family conics in the pseudo-Euclidean plane are con-
ics with no real isotropic directions while their isotropic points are spacelike
or timelike.
2nd family conics are conics having one real isotropic direction.
3rd family conics are conics with two real isotropic points, one being spacelike
and the other being timelike.
4th family conics are ones incident with both absolute points.

Taking in consideration the range of angles in the pseudo-Euclidean plane
[4], [6], the significance of the conditions (i), (ii), (iii) as well as that of the
equality a11 + a22 = 0 is given in the proposition that follows.

Proposition 3.7. Any conic that satisfies the condition (i) within its
equation (2.1) represents a conic with no real isotropic directions while their
isotropic points are spacelike or timelike. When one of the conditions (ii) is
fulfilled, (2.1) represents a conic having one real isotropic direction. For (iii)
(2.1) represents a conic with two real isotropic points, one being spacelike and
the other being timelike. Finally, when a11 + a22 = 0 is fulfilled, (2.1) is a
conic incident with both absolute points.

Let us now discuss the geometrical meaning of the invariants as follows:

1. I3 6= 0 represents a proper conic while I3 = 0 represents a degenerate
conic.

2. I2 6= 0 represents a conic with center and I2 = 0 a conic without center.
As it is well known 1. and 2. are affine conditions for conics.

3. Conics belonging to the 1st family with I1 6= 0 are conics without real
isotropic directions while those with I1 = 0 have imaginary isotropic
directions.

4. Conics belonging to the 2nd family with I1 6= 0 are conics with one
isotropic direction. If I1 = 0 is valid the considered conic is a conic
with double isotropic direction.

5. Conics belonging to the 4th family with I1 6= 0 are conics with two
isotropic directions. If I1 = 0 is valid the considered conic is a conic
consisting of an absolute line and one more line.

Furthermore, for conics with isotropic points of the same type we have intro-
duced the following notations:
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- first type conic is a conic with spacelike isotropic points;
- second type conic is a conic with timelike isotropic points.

4. Pseudo-Euclidean classification of conics

In anticipation of classifying conics based on their isometric invariants, we
give the pseudo-Euclidean classification based on families and types of conics
in the projective model, in order to point out the need for our investigation.
The projective representations of conics from [5] are given in black, while the
ones we have completed Reveruk’s classification with are drawn in gray (see
Figures 1, 2, and 3).

Figure 1. 1st family conics

4.1. 1st family conics. Let’s assume that it is possible to reduce the quadratic
form in the conic equation (2.1) to the canonical form (3.3). This implies
according to Propositions 3.4 and 3.5 that |a11 + a22| > 2|a12|, and that it is
possible to write down the conic equation (2.1) in the form

(4.1) F (x, y) ≡ a11x
2 + a22y

2 + 2a01x+ 2a02y + a00 = 0.

Let’s consider conics with center (I2 6= 0).
After a translation of the coordinate system in x-and y-direction we have

(4.2) F (x, y) ≡ a11x
2 + a22y

2 + a00 = 0.
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Figure 2. 2nd family conics

Figure 3. 3rd and 4th family conics
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One computes

(4.3) I1 = a11 − a22, I2 = a11 · a22, I3 = a11 · a22 · a00 ⇒ a00 =
I3

I2
.

Let’s introduce:

(4.4) a :=

√∣∣∣∣
a00

a11

∣∣∣∣, b :=

√∣∣∣∣
a00

a22

∣∣∣∣.

The values a and b shall be called pseudo-Euclidean semiaxes.
In Table 1 we give the possibilities for the conic sections with equation (4.2)
depending on the signs of the coefficients. The italic cases are those we added
to Reveruk’s classification.

Table 1

a11a22a00 canonical form conic

+ + +

− − −

x2

a2
+

y2

b2
= −1

first type imaginary ellipse (a > b)

second type imaginary ellipse (a < b)

special imaginary ellipse (a = b)

+ + −

− − +

x2

a2
+

y2

b2
= 1

first type real ellipse (a > b)

second type real ellipse (a < b)

special real ellipse (a = b)

+ − −

− + +

x2

a2
−

y2

b2
= 1

first type hyperbola I (a > b)

second type hyperbola IV (a < b)

− + −

+ − +
−

x2

a2
+

y2

b2
= 1

second type hyperbola I (a < b)

first type hyperbola IV (a > b)

+ + 0

− − 0
a11x2 + a22y2 = 0

first type pair of imaginary straight lines (|a11| < |a22|)

second type pair of imaginary straight lines (|a11| > |a22|)

special pair of imaginary straight lines (|a11| = |a22|)

+ − 0

− + 0
a11x2 + a22y2 = 0

first type pair of intersecting straight lines (|a11| < |a22|)

second type pair of intersecting straight lines (|a11| > |a22|)

The question that naturally arises is why the curves with the canonical
equations given in Table 1 in the pseudo - Euclidean plane are called as it is
given in the same table and what is the connection between the signs of the
coefficients and the conditions based on the invariants (2.4). We answer by
demonstrating on the case of hyperbola I the procedure conducted for all the
curves from this family.

4.1.1. First and second type hyperbola I.

Definition 4.1. The locus of points in the pseudo-Euclidean plane for
which the difference of their distances from two different fixed points (foci) in
this plane is constant will be called hyperbola I.
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We distinguish two cases: first and second type hyperbola I.
Let F1 = (c, 0), F2 = (−c, 0), F3 = (0, c), F4 = (0,−c), c 6= 0 be the given
points. For any point M = (x, y) for which

−−−→
F1M and

−−−→
F2M are spacelike

vectors, according to definition 4.1

(4.5) |F1M | − |F2M | = 2a, a ∈ R, a 6= 0,

(4.6) i.e.
√

(x − c)2 − y2 −
√

(x+ c)2 − y2 = 2a.

After computing (4.6) we get

(4.7)
x2

a2 − y2

b2 = 1, b2 = a2 − c2, a > b, a > c.

Out of which, according to the affine classification of the second order curves,
because of a11a22 − a2

12 = −a2b2 < 0, a4b4 6= 0, we conclude that the consid-
ered conic is a hyperbola. The symbol I denotes that the foci are real points,
i. e., the points (0 : 1 : 1) and (0 : 1 : −1) are lying outside the hyperbola. It
is easy to check that the isotropic points are spacelike points, being property
of a first type conic and achieved when a > b.
Equation (4.7) can be obtained in much the same way carrying out a calcula-

tion for the points F3 and F4,
−−−→
F3M and

−−−→
F4M being again spacelike vectors,

i. e. |F3M | − |F4M | = 2b, b ∈ R, b 6= 0.
It is easy to show the opposite direction of the above statement as well, i.e.,
for any point M(x, y) whose coordinates fulfill the equation (4.7) the equality
|F1M | − |F2M | = 2a is valid, i.e. the point M is incident to the hyperbola I.

Let’s presume next
−−−→
F1M and

−−−→
F2M are timelike vectors,

(4.8) |F1M | − |F2M | = 2ai, a ∈ R, a 6= 0,

(4.9) i.e.
√

(x− c)2 − y2 −
√

(x+ c)2 − y2 = 2ai

From (4.9) we get

(4.10) −x2

a2 +
y2

b2 = 1, a2 + c2 = b2, b > a,

being a hyperbola I, of the second type.

The connection between the signs of the coefficients in the canonical forms
of the discussed conics and the (meeting) conditions based on the invariants
I1, I2, I3 is given next:
For first type hyperbola I the signs of the coefficients a11, a22, a00 are +, −,
− or −, +, +, respectively, and a > b. This results in

I2 < 0 ∧ ((I1 > 0 ∧ I3 > 0) ∨ (I1 < 0 ∧ I3 < 0)) ∧ |a11| < |a22|

i.e. I2 < 0 ∧ I1I3 > 0 ∧ |a11| < |a22|.
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The opposite direction holds as well.
For second type hyperbola I the signs for a11, a22, a00 are −, +, − or +, −,
+, and a < b. This results in

I2 < 0 ∧ ((I1 > 0 ∧ I3 < 0) ∨ (I1 < 0 ∧ I3 > 0)) ∧ |a11| > |a22|

i.e. I2 < 0 ∧ I1I3 < 0 ∧ |a11| > |a22|.
Conics of the 1st family with I2 = 0 may be considered in a similar way. They
are included in Table 5. If it is deemed necessary, those cases can be discuss
as well.
We conclude subsection 4.1 with the following proposition:

Proposition 4.2. In the pseudo-Euclidean plane there are 23 (12 proper
+ 11 degenerate) different types of conic sections of the 1st family to distin-
guish with respect to the group B3 of motions (see Tables 5 and 6).

4.2. 2nd family conics. Let’s assume furtheron that it is not possible to diago-
nalize the quadratic form in the conic equation. Then according to Proposition
3.5 we have to distinguish (ii) |a11 +a22| = 2|a12| and (iii) |a11 +a22| < 2|a12|,
that is 2nd and 3rd family conics.

The conditions |a11 + a22| = 2|a12| and a12 6= 0 imply a11 + a22 6= 0. The
conic equation is of the initial form (2.1).

Let’s consider conics with center (I2 6= 0).
After a translation of a coordinate system in x- and y- direction we have

(4.11) F (x, y) ≡ a11x
2 + 2a12xy + a22y

2 + a00 = 0.

One computes

a00 =
I3

I2
.

The possibilities for the conic sections with equation (4.11) are given in Table
2.

We point out that Reveruk makes difference by name but not by the
invariants between the degenerate conics from Table 2, as well as between
hyperbolas II and III from the same table.

4.2.1. First and second type hyperbola II. Let us next turn our attention
to, for example, hyperbolas II. We will demonstrate how their names has
been derived from their canonical equations. In addition we provide a link
between the signs of the coefficients within their canonical equations and the
conditions based on the invariants (2.4) for a conic to represent first, i. e.
second type hyperbola II.
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Table 2

a11a12a22a00 canonical form conic

+ + −−

− − ++

+ − −−

− + ++

x2(a2 − c2) + 2xyc2 − y2(a2 + c2) − a4 = 0

x2(a2 − c2) − 2xyc2 − y2(a2 + c2) − a4 = 0

first type hyperbola II

+ − −+

− + +−

+ + −+

− − +−

x2(a2 + c2) − 2xyc2 − y2(a2 − c2) + a4 = 0

x2(a2 + c2) + 2xyc2 − y2(a2 − c2) + a4 = 0

second type hyperbola II

+ + −+

− − +−

+ − −+

− + +−

x2(a2 − c2) + 2xyc2 − y2(a2 + c2) + a4 = 0

x2(a2 − c2) − 2xyc2 − y2(a2 + c2) + a4 = 0

first type hyperbola III

+ − −−

− + ++

+ + −−

− − ++

x2(a2 + c2) − 2xyc2 − y2(a2 − c2) − a4 = 0

x2(a2 + c2) + 2xyc2 − y2(a2 − c2) − a4 = 0

second type hyperbola III

+ + −0

− − +0
x2(a2 − c2) + 2xyc2 − y2(a2 + c2) = 0

pair of lines, one isotropic

and one spacelike

+ − −0

− + +0
x2(a2 + c2) − 2xyc2 − y2(a2 − c2) = 0

pair of lines, one isotropic

and one timelike

Definition 4.3. The locus of points in the pseudo-Euclidean plane for
which the difference from two fixed points (foci) lying on one of the isotropic
lines is constant is called hyperbola II.

We distinguish 2 cases: first and second type hyperbola II.
Let F1 = (c, c), F2 = (−c,−c) be the given points. For any point M = (x, y)

for which
−−−→
F1M and

−−−→
F2M are spacelike vectors,

(4.12) |F1M | − |F2M | = 2a, a ∈ R, a 6= 0,

(4.13) i.e.
√

(x − c)2 − (y − c)2 −
√

(x+ c)2 − (y + c)2 = 2a.

After computing (4.13) we get

(4.14) x2(a2 − c2) + 2xyc2 − y2(a2 + c2) − a4 = 0, a > c.

Out of (4.14), according to the affine classification of the second order curves
a11a22−a12

2 = −(a2−c2)(a2+c2)−c4 = −a4 < 0, (a11a22−a12
2)a00 = a8 6= 0;

it is a matter of a hyperbola [1]. Further, Ω1 = (0 : 1 : 1) is lying on while
Ω2 = (0 : 1 : −1) is lying outside the hyperbola, being properties of II. As
the second isotropic point of the curve belongs to the spacelike area, it is a
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matter of a first type curve.
Carrying out a calculation for the points F1 = (−c, c), F2 = (c,−c), lying on
the isotropic line x+ y = 0, one gets

(4.15) x2(a2 − c2) − 2xyc2 − y2(a2 + c2) − a4 = 0, a > c,

being again first type hyperbola II.

Presuming that for F1 = (c, c), F2 = (−c,−c) and M = (x, y)
−−−→
F1M and

−−−→
F2M

are timelike vectors, we start from

(4.16) |F1M | − |F2M | = 2ai

which leads to

(4.17) x2(a2 + c2) − 2c2xy − y2(a2 − c2) + a4 = 0, a > c.

The equation (4.17) represents a second type hyperbola II.
Repeating the calculation for F1 = (−c, c), F2(c,−c) we get

(4.18) x2(a2 + c2) + 2c2xy − y2(a2 − c2) + a4 = 0,

being again a second type hyperbola II.
Same as in the case of hyperbolas I, the opposite direction holds as well.
If we discuss the signs of the coefficients for first type hyperbola II we get:
there are two possibilities for the signs of the coefficients a11, a12, a22, a00

(
+ + −−
− − ++

or
+ − −−
− + ++

) and |a11| < |a22|.

Both combinations of signs yield

I2 < 0 ∧ ((I1 > 0 ∧ I3 > 0) ∨ (I1 < 0 ∧ I3 < 0))

which result in
I2 < 0, I1I3 > 0, |a11| < |a22|.

For second type hyperbola II we start from

(
+ − −+
− + +− or

+ + −+
− − +− ) and |a11| > |a22|,

which leads to
I2 < 0, I1I3 > 0, |a11| > |a22|.

The opposite direction is valid in both cases. In a very similar way conics of
the 2nd family with I2 = 0 are considered. We conclude the analysis within
this family with

Proposition 4.4. In the pseudo-Euclidean plane there are 10 (5 proper +
5 degenerate) different types of conic sections of the 2nd family to distinguish
with respect to the group B3 of motions (see Tables 5 and 6).
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4.3. 3rd family conics. Conic sections of the 3rd family are those with two
real isotropic points, one being spacelike and the other being timelike. Due
to this property conics has to be with a center, of hyperbolic type, which
is provided by I2 < 0. Apart from that according to Proposition 3.7 the
condition |a11 + a22| < 2|a12| has to be fulfilled within equation (2.1).
After a translation

x = x− a12a02 − a22a01

a11a22 − a12
2 , y = y − a12a01 − a11a02

a11a22 − a12
2

of the coordinate system in x− and y−direction, obtained from
∂F

∂x
= 0 and

∂F

∂y
= 0, for the conic equation (2.1) we have

(4.19) F (x, y) ≡ a11x
2 + 2a12xy + a22y

2 + a00,

where a00 =
I3

I2
.

The possibilities for the conic sections with the equation (4.19), according to
[5] are given in Table 3.

Table 3

a11a12a22a00 canonical form conic

+ − +−

− + −+
(a2 − c2)x2 − 2(a2 + c2)xy + (a2 − c2)y2 − a4 = 0 hyperbola V

+ − +0

− + −0
(a2 − c2)x2 − 2(a2 + c2)xy + (a2 − c2)y2 = 0

pair of lines, one spacelike

and one timelike

As we didn’t have to interfere in Reveruk’s classification concerning con-
ics of the 3rd family, for details on obtaining the canonical forms in Table 3
one can consult [5].
However, we note that in this case the foci of a hyperbola are complex con-
jugate, and in order to comply the canonical form of a hyperbola with those
of the hyperbolas of the 1st and 2nd family for the asymptotes were selected
straight lines of the form

(4.20) x(a− c) − y(a+ c) = 0, x(a+ c) − y(a− c) = 0.

For the conditions based on the invariants (2.4) to represent conics of this
family see Tables 5 and 6.

Proposition 4.5. In the pseudo-Euclidean plane there are 2 (1 proper +
1 degenerated) different types of conic sections of the 3rd family to distinguish
with respect to the group B3 of motions (see Table 5).
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4.4. 4th family conics. For a complete classification of conic sections in the
pseudo-Euclidean plane it is necessary to take into account the conic sections
incident with both absolute points. According to Definition 3.6, such curves
belong to the 4th family. On the other hand, according to Proposition 3.7,
the condition a11 + a22 = 0 has to be fulfilled within the conic equation (2.1).
The conic section equation in homogeneous coordinates (x0 : x1 : x2) is of the
form
(4.21)
F (x0, x1, x2) ≡ a11x1

2+2a12x1x2+a22x2
2+2a01x1x0+2a02x2x0+a00x0

2 = 0.

From the requirement that the conic with equation (4.21) is incident with the
absolute points Ω1 = (0 : 1 : 1) and Ω2 = (0 : 1 : −1) is easy to show that,
apart from a11 + a22 = 0, a12 = 0 holds as well. The equation (2.1) now turns
into

(4.22) F (x, y) ≡ a11x
2
1 + a22y

2 + 2a01x+ 2a02y + a00 = 0

Presuming that I2 6= 0, both linear terms can be eliminated by a translation
in direction of the x− and y− axes, which gives us

(4.23) F (x, y) ≡ a11x
2 + a22y

2 + a00 = 0.

One computes

(4.24) I1 = a11 − a22, I2 = a11a22, I3 = a11a22a00 ⇒ a00 =
I3

I2
.

The possibilities for the conic sections with equation (4.23) are given in Table
4.

Table 4

a11a22a00 canonical form conic
+ − +
− + − x2 − y2 + a2 = 0 second type hyperbolic circle

+ − −
− + +

x2 − y2 − a2 = 0 first type hyperbolic circle

+ − 0
− + 0

x2 − y2 = 0 pair of isotropic lines

Links among the canonical equations and the corresponding names of
conics from Table 4 are obvious. For the conditions based on the invariants
(2.4) to represent those conics see Tables 5 and 6.

We continue our study by analyzing conics consisting of two straight lines
including the absolute line ω. This is achieved when I2 = 0. Indeed, a11 +
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Table 5

Family Conditions on invariants Conic

I1I3 < 0 a11I1 < 0 first type imaginary ellipse

I1I3 > 0 a11I1 > 0 second type imaginary ellipse

I2 > 0 I1 = 0 a11I3 > 0 special imaginary ellipse

I1I3 > 0 a11I1 < 0 first type real ellipse

I1I3 < 0 a11I1 > 0 second type real ellipse

I3 6= 0 I1 = 0 a11I3 < 0 special real ellipse

1
st

:
|a

11
+
a

22
|>

2
|a

12
|

I1I3 > 0 |a11| < |a22| first type hyperbola I

I2 < 0 I1I3 < 0 |a11| > |a22| second type hyperbola I

I1I3 < 0 |a11| < |a22| first type hyperbola IV

I1I3 > 0 |a11| > |a22| second type hyperbola IV

I2 = 0 I1I3 > 0 first type parabola I

I1I3 < 0 second type parabola I

a11I1 < 0 first type pair of imaginary straight lines

I2 > 0 a11I1 > 0 second type pair of imaginary straight lines

I1 = 0 special pair of imaginary straight lines

I2 < 0 |a11| < |a22| first type pair of intersecting straight lines

|a11| > |a22| second type pair of intersecting straight lines

I3 = 0 I4 > 0 first type pair of parallel lines

I4 < 0 |a11| < |a22| first type pair of imaginary parallel lines

I2 = 0 I4 = 0 first type two coinciding parallel lines

I4 < 0 second type pair of parallel lines

I4 > 0 |a11| > |a22| second type pair of imaginary parallel lines

I4 = 0 second type two coinciding parallel lines

a22 = 0 and I2 = a11 · a22 = 0 entails a11 = a22 = 0.
The conic section equation (4.21) turns into
(4.25)
F (x0, x1, x2) ≡ 2a01x1x0+2a02x2x0+a00x0

2 =x0(2a01x1+2a02x2+a00x0) = 0,

out of which we read the invariants (2.4):

I1 = 0, I2 = 0, I3 = 0, I4 = −a01
2 + a02

2, I5 = a00.

According to (1.2) and (1.3) the possibilities for the other line, besides ω
(x0 = 0), are the following:

• I4 > 0 yields the second line in (4.25) is spacelike;
• I4 < 0 yields it is a timelike straight line;
• I4 = 0, a01 6= 0 reveals the line is isotropic.

To end this subsection, for

• I4 = 0, a01 = 0, I5 6= 0 (4.25) represents a double absolute line ω;
• I4 = 0, a01 = 0, I5 = 0 yields from (4.25) a zero polynomial.
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Table 6

Family Conditions on invariants Conic

I1I3 > 0 |a11| < |a22| first type hyperbola II

2
n

d
:

|a
11

+
a

22
|=

2
|a

12
|

I2 < 0 I1I3 < 0 |a11| > |a22| second type hyperbola II

I3 6= 0 I1I3 < 0 |a11| < |a22| first type hyperbola III

I1I3 > 0 |a11| > |a22| second type hyperbola III

I2 = 0 I1 = 0 parabola II

I2 < 0 I1 6= 0 |a11| < |a22| pair of lines, one isotropic + one spacelike

|a11| < |a22| pair of lines, one isotropic + one timelike

I3 = 0 I5 < 0 pair of parallel isotropic lines

I2 = 0 I1 = 0 I4 = 0 I5 > 0 pair of imaginary parallel isotropic lines

I5 = 0 two coinciding isotropic lines

3
rd

:
|a

1
1

+
a

2
2
|

<
2|

a
1

2
| I3 6= 0 I2 < 0 hyperbola V

I3 = 0 I2 < 0 pair of lines, one spacelike + one timelike

I3 6= 0 I2 < 0 I1I3 > 0 first type hyperbolic circle

4
th

:
a

11
+
a

22
=

0

I1I3 < 0 second type hyperbolic circle

I2 < 0 pair of intersecting isotropic lines

I4 > 0 spacelike straight line + ω

I3 = 0 I4 < 0 timelike straight line + ω

I2 = 0 I1 = 0 a01 6= 0 isotropic line + ω

I4 = 0 a01 = 0 I5 6= 0 double ω

I5 = 0 all points in PE2

Proposition 4.6. In the pseudo-Euclidean plane there are 8 (2 proper +
6 degenerated) different types of conic sections of the 4th family to distinguish
with respect to the group B3 of motions (see Tables 5 and 6).

We conclude with

Theorem 4.7. In the pseudo-Euclidean plane there are 43 (20 proper +
23 degenerated) different types of conic sections to distinguish with respect to
the group B3 of motions (see Tables 5 and 6).
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Klasifikacija konika u PE2(R)

Jelena Beban-Brkić i Marija Šimić Horvath

Sažetak. U članku se prikazuje potpuna klasifikacija

konika u P E2(R). Iako je klasifikacija napravljena i ranije

(Reveruk [5]), pokazala se nepotpunom i kao takva neadekvat-

na u daljnjem proučavanju konika, pramena konika te kvadrat-

nih formi u pseudo-Euklidskim prostorima. Ovaj članak upravo

to omogućava. Uvode se pojmovi pseudo-ortogonalne matrice,

pseudo-Euklidskih svojstava matrice te dijagonalizacija matrice

na pseudo-Euklidski način. Dajući im geometrijsko značenje,

konike se dijele po obiteljima i po tipovima. Odreduju se i invari-

jante konika s obzirom na grupu gibanja u P E2(R) što omogućava

da se odredi konika bez prevodenja njezine jednadžbe u kanonski

oblik. Dana je i pregledna tablica.
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