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ABSTRACT 

While many water management tools exist, these systems are not usually interconnected 

and therefore cannot communicate between one another, preventing Integrated Water 

Resources Management to be fully achieved. This paper presents the solution proposed 

by WatERP project
*
 where a novel solution enables better matching between water 

supply and demand from holistic perspective. Subsystems that control the production, 

management and consumption of water will be interconnected through both information 

architecture and intelligent infrastructure. The main outcome will consist of, a web-based 

Open Management Platform integrating near real-time knowledge on water supplies and 

demand, from sources to users, across geographic and organizational scales and 

supported by a knowledge base where information will be structured in water 

management ontology to ensure interoperability and maximize usability. WatERP will 

thus provide a major contribution to: 1) Improve coordination among actors, 2) Foster 

behavioural change, 3) Reduce water and energy consumption, 4) Optimize water 

accountability. 

KEYWORDS 

SOA-MAS, Water management, Ontology, Agents, WaterML2.0, IWRM, Logical models. 

INTRODUCTION 

Water domain situation 

In recent years, water shortage has become an increasing concern, with a growing 

imbalance between water demand and availability reaching critical levels. As cities grow 

and environmental problems escalate, managing human demand for fresh water presents 

an increasing challenge [1]. Increasing scarcity of supply, pollution, over-exploitation of 

resources and climate change are placing increasing stress on water supply systems. 

Meanwhile land use changes affect groundwater bodies and surface water ecosystems, 

putting more pressure on water reserves [2]. With ever-growing demand reaching 

ecological and economic limits, the need for innovative water management is acute. The 

worldwide gap between water demand and availability is projected to grow significantly 

in the next 20 years, reaching nearly 40% by 2030. In Europe, climate change is causing 

increased water shortages and more frequent, more severe droughts, especially in 

Mediterranean countries [2]. Under mid-range assumptions on temperature and 
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precipitation changes, water availability is expected to decline in southern and 

south-eastern Europe by 10% or more in some river basins by 2030. The sectorial profile 

of water abstraction is also expected to change [3]. Meanwhile, water demand is 

increasing as a result of population growth, changing consumer patterns and growing 

industrial use [4]. In order to secure water supplies into the future, there is an urgent need 

to transition towards a more water-smart society and develop water-wise solutions to 

improve water and energy efficiency, reduce water consumption and preserve water 

resources [2]. 

Water resource management situation 

Water resource management involves a wide array of actors, from water authorities to 

water regulators, water utilities and finally the end-users. While many optimization, 

planning and monitoring tools have been developed and are currently used, such as hydro 

meteorological forecasting and hydrologic and hydraulic models, decision support 

systems for reservoir and hydraulic infrastructure operations, and real-time monitoring 

and control systems for water treatment and distribution, these systems cannot 

communicate between one another and currently no framework is available for 

integrating all of these applications [5]. Yet water management is becoming increasingly 

more complex, with continual changes in human and natural systems affecting water 

availability, access, affordability and quality [4] and therefore, there is a need for more 

integrated and adaptive management approaches based on reliable monitoring systems 

and a solid knowledge base [2]. 

Although water and energy savings have been achieved in various sectors, these 

improvements are localized and uncoordinated. Each entity currently acts independently 

without much knowledge regarding the needs, constraints or operations of the others and 

information is not easily accessible. Yet net water savings and environmental 

improvements can only be realized if the water saved in one area is not used elsewhere by 

others or downstream [6]. In order to achieve wide scale improvements, there is a need 

for enhanced coordination, cooperation between water supply actors across different 

scales, in order to address both long-term water imbalances (water scarcity), and enhance 

resilience to drought [7]. 

In parallel, there is a need for increased information sharing. If information were 

shared among the various decision-makers and stakeholders, operations could be 

coordinated, better decisions could be made, water supplies could be prioritized 

according to needs and changing conditions, overall water use efficiency could be 

improved, and water shortages and energy waste could be reduced. 

Why this is the right moment to go a step forward? 

Over the past decades, Europe has made important progress in regards to 

infrastructure, technologies and water management. However, despite substantial efforts 

and improvements related to water resources management, the 2010 European 

Environment State and Outlook Report revealed that many of the water bodies will fail to 

meet the Water Framework Directive (WFD) objectives of achieving good status by 2015. 

Meanwhile, freshwater systems are still under pressure, demand often exceeds 

availability, and drought and water stress are expected to increase as a result of climate 

change. There is a need for a more sustainable approach for water resources management 

to improve water demand management more widely across Europe and to avoid 

mismanagement of water resources, especially in areas of water scarcity [8]. 

While the WFD river basin management plans will remain the primary framework for 

managing water resources in Europe, a new demand-side management approach is 
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needed, including measures such as water pricing and efficiency in order to secure water 

for all essential uses. This new water paradigm is what the upcoming Blueprint is set out 

to accomplish. In parallel, the 2011 Flagship initiative on resource efficiency under the 

EU 2020 Strategy makes water saving measures and increasing water efficiency a 

priority. 

One of the most innovative elements of the WFD is its integrative approach to water 

management, bringing together different water management issues within a unified 

framework. Recent ICT technological advances make sharing information and such 

integration all the more possible. Information systems are now being called upon to 

support knowledge management and not just to process data or information. Today, 

information can be exchanged in real-time, very large amounts of data can be processed 

in automated manners and web-based internet services enable information to be collected, 

processed and shared in ways that were not possible before. With the upcoming next 

generation of semantic applications, data can become more machine-interpretable by 

developing ontologies that can support the development of integrated software systems, 

and by aligning the ontologies of different applications, information can be shared, 

resulting in increased interoperability [9]. A framework providing interoperability 

between loosely coupled software applications and data sources, as is being proposed in 

WatERP project, will enable integrated water resources management to be achieved. 

Indeed with new applications and web-based services supplementing existing tools 

within a joint collective network, current water resource management capabilities can be 

greatly enhanced. 

One of the first ICT water management resource planning concepts was adopted by 

Visseman ad Welty [10] in 1985 and the next year, the first water resource planning tool 

was implemented and integrated into a Decision Support System called StateMod [11], it 

is capable of making a comparative analysis for the assessment of various historic and 

future water management policies, simulating water flows, allowing reservoirs to be 

operated with multiple accounts serving multiple users, and estimating natural stream 

flows and reservoir data. During following years, the interest in the “systems” approach 

grew with the advent of much more user friendly PC-based software. The evolution of PC 

optimization and mathematical tools permitted the application of these technologies in 

the water resource management planning framework. However, the process of translating 

a water resources problem into a mathematical problem causes much of the reality of the 

problem to be lost. As a result, analysts turned their attention to more user-focused 

descriptive approaches. Expert systems and emerging artificial intelligence techniques 

offered the promise of a more user-centred approach. User-defined heuristic decision 

rules [12] were developed, the resulting advantage of this architecture being the inclusion 

of the clients in the problem definition to solve and adapt the water resource planning 

management according to their necessity. Early on, the experience with experts systems 

indicated that the most important need for decision support systems was a user-friendly 

database management system. 

In the last decade, ICT management architectures for complex installations (water 

deposit, water treatment plants, waste water treatment plants, water distribution, etc.) 

have become widespread, focusing on concrete and specific applications. These 

infrastructures provide information about the status and performance of the installation, 

integration of sensors, media and databases [13-17]. Numerous efforts in artificial 

intelligence were made to solve problems of conventional processes by applying 

different knowledge-based systems. Related to the water supply distribution chain, 

knowledge techniques have been developed as isolated support systems for monitoring, 

diagnosis, design, process optimization, etc., [14, 18-20] among others. These systems 
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are becoming more and more sophisticated, advanced and have enabled significant water 

management improvements. However, in today’s complex installations, the information 

is treated as a local resource and is not shared between systems. 

THE SOLUTION 

Holistic view, basin scale approach 

Water resources management is extremely complex, related not only to the 

environment but also to the numerous human activities that are carried out within this 

environment. Water availability and usage depend on the timing and manner of its arrival 

(rainfall intensity, rain or snow, duration, frequency), the physical setting of the region 

(climate and weather, topography, geology), the engineering structures in place, the 

environmental constraints (existing ecosystems), as well as the legal regulatory context 

and institutional policies. 

Traditional approaches to water resources management have typically been based on 

black-box optimization models, handled by technical people and developed for very 

specific purposes. They do not include interactions with the end users or stakeholders 

involved and have not been able to include in their computations the full variety of 

important factors that must be considered by decision makers, or in ways that are 

transparent to the public. 

The water industry lacks an adequate holistic understanding of water supply, its use, 

and how it flows. A common subject across the entire water chain is the need for 

improved data collection and the transformation of that data to generate actionable 

information and knowledge. Moreover, the Water industry is under pressure to take a 

more holistic perspective of water, considering its whole life cycle from abstraction to 

treatment, distribution, use and end treatment. This also means a stronger recognition of 

the role of green infrastructure. 

The potential for service integration between water sectors is enabling companies 

operating in the water industry to examine mechanisms by which technology and its 

usage can bring holistic improvements to the water network and bring potential 

reductions to their operating costs. 

Therefore, there is an urgent need for more holistic approaches that can address the 

complex coupled human and physical system interactions at the basin scale. Furthermore, 

new integrative approaches must include multi-resolution capacity so that findings and 

information can be transferred and used across models and users, based on an 

agreed-upon conceptual model of the system. Doing so will help stakeholders and 

decision-makers understand what are the main issues and challenges at the system level, 

but also for each stakeholder. 

Scope 

The WatERP solution focuses on the different actors involved in water supply 

distribution chain and on obtaining, from each one of these, the necessary parameters 

required for enabling demand to be matched with supply across the entire cycle. For this 

purpose, WatERP will provide standard interfaces to integrate the necessary information 

from each supply management step, either through direct interaction with control or 

management systems.  

Ultimately, WatERP will result in a web-based Open Management Platform (OMP) 

tool that integrates near real-time knowledge on available water supplies and demand, 

from water sources to users, and across geographic and organizational scales, so the 

information from each step of the process can be exchanged and accessed and the entire 
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water supply distribution network can be viewed, understood and improved in an 

integrated and collaborative manner. This platform will be integrated in an intelligent 

ICT architecture that interconnects different management tools (or building blocks) 

available in the supply distribution network and will be supported by an ontology driven 

knowledge base on water supplies and water usage providing a continuous flow of 

information including historical, current, and forecasted values. 

Description 

The OMP will provide water resource managers inferred information regarding water 

supplies, flows, water consumption patterns, water losses, distribution efficiency, and 

water supply and demand forecasts, within an intelligent unified framework based on 

open standards. This information will be stored using semantics and common language 

which will be defined in the water management ontology to ensure interoperability and 

maximize usability. External linkages to costs, energy factors, control systems, data 

acquisition systems, external models, forecasting systems and new data sources will be 

made possible for easy integration into the system. The main purpose of this information 

interaction and processing will be to improve the matching between supply and demand. 

To achieve this final goal, tools will be developed to support coordination of actions 

throughout the entire water supply distribution chain, prioritization of water uses, 

distribution efficiency improvements, and water, energy and cost savings. In addition to 

the openly extensible technology platform, WatERP will provide end-to-end consulting 

and systems integration services that include: 

 Operational dashboards for continuous monitoring of time-sensitive key 

indicators and metrics; 

 Advanced rules management, constraint-based optimization, and visualization 

tools to more effectively manage and automate the water management decision 

making processes; 

 Integrated high-resolution local weather predictions that will enable optimizing 

weather sensitive water management operations to improve availability; 

 Innovative capabilities for standards-based, secure data exchange; 

 Analytical demand-management and decision-support tools as well as access to 

information from other sources; 

 Ensuring appropriate information is available at the right time, place and scale. 

To accomplish its function, WatERP will develop the following building blocks:  

 Decision Support System (DSS); 

 Demand Management System (DMS);  

 Water Data Warehouse (WDW).  

The information produced for these building blocks and others systems (external 

systems) will be interconnected through a specific ICT architecture, the knowledge 

structured and managed by the water management ontology and the interaction of the 

information and knowledge with the water resource manager performed in the OMP. The 

following sections of this paper are focused on the last three systems. 

The ICT architecture 

The communication architecture will focus on providing intelligent and near 

real-time linkage between the various water supply distribution chain management tools 

or building blocks (Data Management Systems, Decision Support systems, Demand 

Management Systems, Weather Forecast Systems, etc.) and the OMP that will support 

water management decisions, enabling knowledge-based water governance to be 

achieved throughout the water supply distribution chain. 
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A combined Service Oriented Architecture (SOA) with Multi-Agent System (MAS) 

is being designed to: 

 Link each decisional/informational system to help the integration in a 

collaborative framework; 

 Provide near real-time information flow;  

 Distributed intelligence to generate actions and alerts related to management 

processes;  

 Procedure to perform orchestration of existing and new management tools 

throughout the whole architecture. 

Nowadays, SOA architecture is a booming technology with a high level of maturity 

and success. It is widely used to exchange information between systems that are located 

remotely and managed by third-parties (e.g., legacy systems, systems with unknown 

codification and exploitations, etc.). This architecture permits the orchestration and 

automation of critical processes using a distributed architecture that exchanges the 

information in a standardised way, XML being the format most typically used. Thanks to 

this concept, the internet provides millions of services and resources around the world. A 

good example in the water domain was developed by CUAHSI (http://www.cuahsi.org/), 

providing hydrological information via Web Services. 

Nowadays, the problem is not the lack of information, but rather its integration with a 

common goal. With the aim of integrating and reusing knowledge provided by different 

services and resources, techniques such as BPEL engines [21] or matchmaking 

multi-agent systems [22] are used. The BPEL engine allows creating static business 

processes with the services to orchestrate those [22-24]. Alternatively, the MAS are used 

for their flexibility and dynamicity in matchmaking problems. The MAS can solve 

conflicts, adapt to changes and is highly scalable [25]. 

Water supply management involves a very large quantity of control and management 

systems (services) that must be interconnected and orchestrated, along with the 

emergence of new services. WatERP’s SOA-MAS architecture is based on a pool of 

services provided by the building blocks and ontological instantiation. These services 

should be orchestrated with the purpose of integrating all information and facilitating the 

decision making to improve water resource management and energy efficiency. Different 

alternatives exist for this purpose such as previously-mentioned BPEL and MAS. In spite 

of its extended application, BPEL presents a well-known disadvantage, its stiffness [26]. 

This disadvantage limits its application in the WatERP project, mainly because of its lack 

of flexibility and inconvenience for easy integration of new services or the modification 

of existing ones.  

To overcome this challenge, one of the most applied solutions by the scientific 

community is, the implementation of a matchmaking process by using agents which 

auto-manages services in order to fit the needs [22-24]. The MAS orchestrator is flexible 

to integrate new services at any time which is essential in the water management. This 

flexibility is provided by the auto-organization of the agents which manages the needs of 

the platform and the knowledge of the provided services. Moreover, the use of MAS 

provides numerable intrinsic benefits such as fault tolerance, scalability and flexibility. 

Therefore, MAS is the piece of the puzzle which best fits the different services because it 

provides two important benefits to the orchestration which are not provided by the BPEL. 

These benefits are: flexibility and scalability. 

In order to ensure interoperability all the ICT architecture is designed following 

standardization principles. The WatERP MAS is therefore being designed by following 

standardized languages to communicate among agents such as: FIPA-ACL and KQML.  
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Once the MAS orchestration identifies the service provided by a building block that 

satisfies the requirement, the involved agent need to interact with the deployed services 

to transfer the information/knowledge required. To do so, agents and building blocks 

must accomplish an open interface based on a standard layer to provide its 

functionalities. This standard layer facilitates the discovering of service functionalities 

and is based on Open Geospatial Consortium (OGC
®
, http://www.opengeospatial.org/) 

WPS/WFS specifications. Moreover, with the aim to standardize the exchange 

information between the MAS and services, OGC
®

’s WaterML 2.0 will be used as the 

common transport format. 

Figure 1 depicts the ICT architecture design. The three main building blocks 

represented (DMS, DSS and External Systems) interchange information with the MAS 

through an open interface based on WPS (or WFS) standard schema. The integration of 

MAS with WPS/WFS conforms the SOA-MAS architecture that enables interoperability 

by connecting each of the building blocks according its requirements and needs 

(matchmaking process). Furthermore, the figure shows how the information from water 

operators (Authorities/Utilities) is gathered, transformed and published on an OGC-SOS 

server towards feeding the Water Data Warehouse (WDW). The WDW offer the 

data/information to the visualization and decisional systems such as DMS, DSS, External 

systems and the OMP by using the same architecture. Transversally to this architecture 

where the information flows continuously, the WatERP ontology permit to enhance 

semantically the water domain knowledge by adding metadata information related with 

water domain decisional, observation and measurement process. This semantically 

definition stored in the ontology is able to improve the interoperability by enhancing data 

provenance (by categorising it measurement process) and data fusing (by understanding 

the measurement nature).  
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Figure 1. ICT architecture initial design 
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The water management ontology 

The WatERP ontology (Figure 2) will provide easy access to information and will 

support decision-making and water resource planning. All of the decision making 

processes will be vertically integrated using universal standards in such a way that 

different multilevel inferences can be made:  

 In each step of the water supply distribution chain; 

 From the interactions among functions involved in each step of the water 

transport from the hydrometeorological data to the final user; 

 From the interplay between currently separated control and optimization systems 

such as reservoir or hydroelectric plant decision support systems or water 

treatment and distribution management tools; 

 From analysis of the impact of water savings on energy savings. 

 

 

 

Figure 2. WatERP ontology general overview 

 

The water management ontology contains corresponding ontologies, as well as 

multi-level data regarding:  

 Water resource availability; 

 Ecological, cultural and social functions of water resources and potential 

impacts of changes on hydrological regimes; 

 Current water infrastructure/assets and the economic value of water; 

 Administrative, policy or regulatory issues of relevance; 

 Sectorial use and water hierarchy. 

Existing ontologies such as those developed by CUAHSI and the OGC
®
 have tried to 

model the hydrologic cycle from the hydrological and environmental perspective. 

Following a different approach, the National Aeronautics and Space Administration 

(NASA) tried to give a definition of the hydrological cycle with the perspective of the 

earth/environment science connection (NASA-SWEET ontology). On the one hand, the 
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knowledge base such as the one developed by CUAHSI was done by merging the 

hydrological and environmental fields in a way as to provide sensor information of the 

water environment and correlate it with environmental data. However, CUAHSI’s 

application does not show linked information semantically or link it with the web to 

create a certain meaning for each data. On the other hand, ontologies such as SWEET, 

OGC
®
 (Onto Sensor and more) and W3C-Semantic Incubator Group (SSN ontology) 

provide mechanisms that support information retrieval from sensors (case of Onto Sensor 

and SSN ontology) and also provide an environment where multiple fields and sciences 

are linked semantically and are defined by a trustworthy organization (case of SWEET). 

However, there is no ontology that encompasses the water cycle from its management 

perspective with the aim to establish recommendations and alerts regarding actions taken 

or decisions made concerning its various elements. Such harmonization could provide the 

water field the possibility of an enhanced understanding, and in an automatic way, of 

water resource management systems. The novelty of the WatERP ontology over previous 

developments lies in its inclusion of man-made infrastructure elements. Doing so enables 

them to be linked to the natural water flow processes such that the interactions among 

natural and human made entities can be better understood, along with their effects on 

water resources management. These human made modifications of the natural 

hydrological cycle flow paths have been defined in WatERP as human-altered paths. As a 

result, the WatERP ontology can semantically represent both the human-altered and 

natural paths to discover new interrelations (hidden knowledge) among water resource 

elements, ultimately enabling improvements and new strategies for water resource 

management (Figure 3). 

 

Figure 3. WatERP ontology decisional process representation (logical models) and the linkage with 

the observation and measurement process 

 

This knowledge representation is supported by a data provenance mechanism in order 

to define a process towards observation understanding and standardization of the 

ontology including concepts and standard terms provided by other ones, such as the 

NASA, CUAHSI, OGC
®
 and World Wide Web Consortium (W3C) ontologies. 

Moreover, the WatERP ontology has been constructed following the principles of Linked 

Open Data Cloud (LODC) contributing to the aim of achieving interconnectivity within 

the WatERP solution. LODC permits resources to be accessed by an URI and linked with 

other elements enabling automatic understanding (human-readable). From this, 

ontological information can be integrated and accessed, the terms of different 

vocabularies can be mapped, and data fusion supported. All of these features contribute 

to resolve data conflicts by integrating data from different sources into an entity. 
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The Open Management Platform (OMP) 

The WatERP Open Management Platform will be a water supply distribution chain 

information hub, which will support decision making at different stages such as water 

supply and demand (and forecasting), determining water consumption patterns, water 

allocation decisions, etc., all of which will help improve overall water governance. The 

OMP will integrate the outcomes of the existing building blocks and modules in a 

graphical way which will empower local and global management. Along this line of 

improvement, a business intelligence tool will also be provided including predefined 

dashboards and reports according to the needs. These dashboards and reports will be 

defined in a way that they can be easily extended or modified according to specific needs. 

It is important to remark that WatERP innovates with respect to the existing 

hydrological systems knowledge representations by defining an ontology that 

encompasses all of the elements and knowledge involved in water management. The 

Water Management Ontology is specified using logical models, which constitutes the 

basis for the analyses performed by the water resource manager. A logical model is the  

representation of the managed water supply system components and relations that acts as 

interface between the water manager and the water management ontology. As such, the 

user can obtain information from specific ontology as well as recommendations based on 

applying a rule-based analysis based on expert experience. This will allow two kinds of 

abstractions to be made: one regarding to the elements’ interactions and other regarding 

to the specific information available in each of the physical elements involved. In the 

OMP, the abstraction of the geographical environment is achieved by the inclusion of the 

logical model. 

In practice, the inclusion of logical models allows parts of the water supply 

distribution system to be grouped or detailed as needed in function of the quantity and 

quality of existing information and the decisions that must be made. Thus, it is possible to 

include in the platform all decision groups (one or various elements grouped) of the 

system with the same level of knowledge than the users, so that the system can grow over 

time as the user gains more knowledge about the physical environment. The introduction 

of logical models does not mean that the system removes any reference to geographic 

elements or temporal scope of decision, but rather, that each of them are defined 

according to the type of logic element to which they relate: 

 Each element of the logical model corresponds to one or a set of physical 

elements; 

 Each element of the logical model has its corresponding temporal scope. It should 

be noted that there may be other logical elements containing the same information 

but with a different temporal scale. 

Logical models (Figure 4) define each use case which is managed by the resource 

manager. Therefore, it is essential that the OMP implements a Graphical User Interface 

(GUI) for handling, creation and editing of the logical models. In addition to allowing 

visualization of the water management chain where decisions are being made, the GUI 

has to permit access to the information contained in each entity of the model. 

For interoperability of logical models in the field of hydrology, the only significant 

existing effort is HY_Features, However, at present there is not yet an OGC
®
 standard 

(under Discussion Paper state) for this and its technology is not enough mature to use it at 

this moment. Because of this, logical models are actually instantiated entities of the 

WatERP management ontology; and the proposed encoding and exchange language of 

logical models is the same used for the actual design of the ontology (typed in an OWL 

format). It is important to mention that OGC
®
 is currently working on the development of 

a future standard for semantic representation in the water domain (HY_Features). This 
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initiative is in its early stages of development; nevertheless, it is being considered and 

will be tracked during the design of the WatERP management ontology. 

Any logical model has a correspondence to a physical model. A physical model is a 

collection of real elements that match a structure consisting of a geographical positioning 

component and other associated information (geodata). These elements define how 

things work in real life. Therefore, they have to be also managed by the OMP facilitating 

interaction with their information. As the standard language for interoperability with 

geodata, the use of Geography Markup Language (GML) is used, both standard Open 

Geospatial Consortium and ISO 19136:2007.  

Logical and physical models contain information to be provided through OMP to the 

water resource manager, such as observational data that will be used as input to 

decision-making processes. This information is based on time series, and these series are 

within the scope of hydrology. There have been several efforts to standardize the 

exchange of this kind of information, these efforts have concluded in the specification of 

WaterML2.0, which is an OGC
®
 encoding standard for the representation of hydrological 

observations data with a specific focus on time series structures. WaterML2.0 is 

implemented as an application schema of the Geography Markup Language version 3.2.1 

(GML), making use of the OGC
®

 Observations and Measurements standards. 

WaterML2.0 transports can be made in any form: email, ftp, file-copy, arbitrary http or 

standardized http transfer (as OGC
®
 Sensor Observation Service or Web Feature 

Service), this constitutes a very important characteristic for information exchange. 

In summary, the GUI concerning the decision making process exploits ontological 

resources defined in the specific ontology (using logical models) to give the user 

information linked semantically and associated with its geographical location and 

temporal scale. This linkage between concepts (ontological resources), temporal scale 

and geographical information renders graphically understandable measured variables and 

facilitates decision making and permits to implement practically the holistic approach. 

 

 
Figure 4. Logical model representation inside the OMP 
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CONCLUSIONS 

The combination of SOA and MAS architectures and particularly the matchmaking 

use of agents, provides the whole architecture with: 

 The capacity of selecting the most appropriate and required information for the 

water resource manager (via OMP) and the rest of modules interconnected; 

 Conflict resolution between information providers; 

 Orchestration of the architecture modules in order to manage the knowledge 

provisioning according to the desired business process goals (e.g., energy 

efficiency, matching supply with demand, etc.); 

 Common and standardized language that permits the communication between 

agents (e.g., using FIPA language; KQML) and with the building blocks of 

WatERP’s architecture that have a service behavior (e.g., WaterML2.0). Given 

the interoperable nature of the proposed system and the use of open standards, 

additional data sources, such as future smart metering expansions, can be easily 

discovered and added as they become available. 

The ontology driven knowledge-management has been designed with the aim to 

support domain expert users in their decision making process and enhance the 

comprehension of the water supply systems upon which it is applied.  The Water 

Management Ontology has been based on defining the necessary ontological resources 

that describe water managers’ expertise related to managing water supply and demand. 

As previously pointed out, the WatERP project extends existing hydrological ontologies 

by including man-made infrastructure elements and enabling semantic representations of 

the human-altered water flow paths and therefore permitting new discoveries to be made 

for water resources management.  

Until now, water supply and distribution management has been limited to isolated, 

uncoordinated solutions. The WatERP Open Management Platform will empower these 

existing solutions while at the same time offer a new water supply distribution 

management tool. This management tool, holistic in its approach, will enable global 

benefits (in terms of water optimization and reducing water and energy consumption) 

instead of only local ones. This is very much in line with the WFD objective of attaining 

integrated water resources management (IWRM). As the information will be treated from 

a higher point of view, it will facilitate the coordination between the different 

stakeholders, making them participants in the global situation, and recommending correct 

actions to be taken. 

At the river basin level, the OMP will help improve water supply allocations among 

users and needs, by making information regarding available water supplies and demand 

more accessible. From this, water usage hierarchies could be established, available water 

supply sources could be prioritized, river basin scale water balances could be made, 

sectorial water usage could be better quantified, and illegal abstractions could be 

identified. In addition, the platform will enable greater cooperation among water 

regulators, operators and users which will lead to significant water savings. 

At the distribution-network level, the information provided by the WatERP Open 

Management Platform will enable real-time tracking of water supplies, flows and 

distribution efficiency across the entire distribution network. This will enable daily 

operations to be better coordinated, water energy savings to be identified, ultimately 

resulting in water savings and increased overall efficiency. Regarding short-term 

benefits, a better demand prediction as well as demand and network monitoring in (near) 

real-time, combined with more accurate supply data and forecasts, will allow for a more 
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energy-efficient distribution-network operation (helping determine which reservoirs or 

tanks should be filled and when, which pumps should be started and when, etc.). 

Finally, the proposed WatERP Open Management Platform encourages open data 

policies and supports current standardization efforts to develop both European and 

international standards for water data sharing by fuelling further developments and by 

providing valuable feedback from the testing of existing standards in real-life scenarios, 

including how to address data security and data quality issues as well as how to properly 

track the treatment processes applied to the data, in particular, hydro-meteorological data. 
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