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Maintenance of metallurgical equipment is very complex and demanding job. Condition Based Maintenance
(CBM) is used for complex and significant equipment. The paper shows element selection that will be used in
CBM planning as a location on which will be applied neural network. The paper presents few different neural
network algorithms that have been used for different prediction problems and review of achieved results. Data
structure that has been used in researching problem is part of Information System and its Equipment Mainte-
nance subsystem that was developed for enterprise Aluminij d.d. Mostar.
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Primjena neuronskih mreza u planiranju odrzavanja metalurske opreme. Odrzavanje metalurskih postrojenja
predstavlja slozen i zahtjevan posao. Strategija odrzavanja po stanju predstavlja strategiju koja se primjenjuje
za slozeniju i znacajniju opremu. U radu se daje jedan od pristupa odabira elementa za koji se provodi istrazivanje
s ciljem primjene neuronskih mreza u planiranju odrzavanja po stanju. Istrazivano je nekoliko razli€itih algoritama
neuronskih mreza za rjeSavanje problema predikcije, te se u radu daje pregled ostvarenih rezultata istrazivanja.
Kao pretpostavka za istrazivanje koristeni su podaci iz podsustava odrzavanja postrojenja Informacijskog sustava
razvijenog za potrebe poduzec¢a Aluminij d.d. Mostar.

Kljucne rijeci: odrzavanje, neuronske mreze, informacijski sustav odrzavanja

INTRODUCTION

Maintenance as the function of production system pre-
sents complex process. The basic task is to define goals that
have to be fulfilled through the maintenance function. Ac-
cording to goals maintenance strategies and organization
that depends on integrated Information System will be de-
fined [1]. Result that is achieved through organization of
maintenance function is maintenance plan which implements
following strategies: corrective, preventive and Condition
Based Maintenance (CBM). In progressive organization plan
will be achieved through the implementation of many oth-
ers strategies like: Total Productive Maintenance (TPM),
Reliability Centered Maintenance (RCM) etc.

To react before the failure is imperative for maintainer.
To collect information from the system, arrange and analyse
them has to show conditions of the system. To act accord-
ing to conditions is strategy well known as Condition Based
Maintenance. The most important thing for this strategy is
diagnostic control of selected system parameters. Param-
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eters selection is very complex and could be realized
through: observing of functions, ways and work conditions
of technological system and/or its subsystems; parameters
and factors cause-consequence relations that have influ-
ence on work capability of technological system; analyze
of damages and failures.

Proper definition of preventive and condition based
maintenance intervals is baseline for plan definition and
implementation of different strategies (TPM, RCM etc.).

DEFINITION
OF PROBLEM AND RESEARCHING GOAL

One of the most important decisions in a way of mainte-
nance plan performing is to identify critical resources with
the aim to dose activities of certain strategy or combination
of strategies for technological systems or its parts. The first
suggestion is result of TPM approach that is described in
[2, 3], applied and implemented in module Technological
data that is part of Equipment Maintenance subsystem [1]
through the expression for critical equipment (KO):

KO=PO+PP+PZ+QP+SI1+UC+UO (1)
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where:

PO - maintainability,

PP - productivity growth,
PZ - reliability,

QP - product quality,

S'1 - safety,

UC - cost,

UO- environment.

Aluminium production process is analyzed. Critical
equipment in production process is defined according to
expression (1). One of the most important resources (evalu-
ation according to maintainer and people from production
process) in aluminium production process is crane for elec-
trolyze which structural form is given (Figure 1.), and also
defined and described in Information System [4]. Through
the system analysis was ascertain that significant number

s w as  —

= WA= ] [ |

Figure 1. Structural form from module Technical data
Slikal.  Strukturnasastavnicaizmodula Tehnickih podataka

represent rolling bearings. Propriety and condition moni-
toring of bearings are key elements for crane availability.
From the heuristic analysis, observation and element his-
torical data in exploitation it can be concluded that ele-
ment is under direct or indirect impact of different influ-
ences (in further text: variables). These variables have in-
fluence on intensity and dynamic of tribological system.
Maintenance function has to provide high availability and
reliability of maintenance elements equipment and plants
so, the logical conclusion according to previous mentioned
is that influence on element life cycle is multivariable.
The main goal that wants to be achieved through this
article is to research possible applicability of neural net-
work especially in defining work frequency in equipment
conditional monitoring. As a research subject, the rolling
bearings are chosen because of the following reasons:
- important group of machines elements,
- it changes states in time,
- bearing state depends on different factors,
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- depend on process type damages and detriments in work
could cause serious consequences.

Different factors decrease the life cycle of rolling bear-
ings [5]. There are four dominant factors: poor lubrica-
tion, as a result of preventive maintenance changing of
bearing is too often, different types of incompatibility
(electro-erosion, non-adequate assembly, starts and sus-
pends etc.) and different types of contamination.

During the exploitation on maintenance elements, dif-
ferent factors can affect (directly or indirectly):

- project-construction attributes,

attributes that are connected for exploitation,
- conditions and maintenance types,

- environmental condition etc.

According to previous mentioned the researching goal
could be defined. The goal is to predict conditional param-
eters that will allow dynamic planning of following condi-
tion monitoring cycles and reserve of bearing appliance.
The purpose is to determine proper and opportune activi-
ties for equipment maintenance.

Shock Pulse Method is vibration method that is used
for measuring of bearing state. This method defines pulses,
which are results of permanent impacts, and whose energy
is presented through vibrations. So, these mechanical im-
pacts are presented in every rolling bearing. Characteris-
tics of these impacts are amplitude and frequency. The
nature of these pulses is stochastic and they have very short
life time. The pulse can be defined as impulsive transfer
of kinetic energy on system. Mechanical impacts are in
close relation with bearing damages.

For bearing damage, identification of two measured
values will be used: maximum value of shock pulses and
carpet values. According to bearing damage progress both
of previous mentioned values would increase and the dif-
ference between them, as well. As a function of these
changes are measure intervals that depend on:

- stability of measured values,
- momentary bearing condition,
- bearing damage progress.

If the knowledge about problem available in the form
of discrete values set of element vector states and output
measures from process, the natural choice is selection of
neural network for analysis and researching of problem.

The reason why the model is proposed lays in fact that
in the literature does not exist similar researches of such
kinds of model, which goal is to connect influences of dif-
ferent parameters that act on research object. Some au-
thors have used different approaches [6 - 9], usually model
based on Back-Propagation neural network [10 - 12].

For suggested problem, the following model is defined.
It has three variables: control intervals of bearing state,
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maximum value of shock pulses and carpet values. These
variables are chosen from the following reasons: to en-
able efficient dynamical planning of successive control
cycle, to define possible reserve in bearing utilization with
the main goal to achieve proper maintenance of equip-
ment. As input variables are defined variables that “cover”
different influence factors, which react on bearing in ex-
ploitation and measured set of values for each of output
variables (nine measured values and one that is used for

reduction. Table 2. shows some of attributes that are used
for model reduction. The following step is algorithm and
neural network structure definition. Criterion for algorithm
selection was availability of programmes solution. Three

Table 2. Some of neural network attributes necessary for model
reduction

Tablica2. Neki od atributa neuronske mreZe za ispitivanje reduk-
cije modela

control of calculated output values of neural network). The No Attribute title Accepted features
variables and values are given in Table 1. 1 Number of input neurons 3
Tablel.  Variables and values for suggested model 2 Number of output neurons 3
Tablical. Varijables vrijednostimaza predloZeni model 3 Number of hidden neurons 12
Field 4 Learning rule Ext DBD rule
No Variable name Min | Max 5 Transfer function Sigmoid
1 Bearing manufacturer 1 4 6 Epoha 20
2 Axle diameter /mm 10 100 7 Momentum 0,40
3 Rotation number /(o/min) 100 | 5000 8 Learning coefficient 0,50
4 | Measured place 1 2 9 F'Offset 0,1
5 Bearing type 1 2 10 Number of learning iteration 50000
6 Type of loading 1 2 11 Connect P Enabled
7 Bearing work 1 4 12 MinMax Table Enabled
8 Type of assembly 1 10 13 | RMS 0,0328
9 | Performing type of assembly 1 4 14 | Correlation factor 0,9842
10 | Environment condition - moisture 1 3
11 | Environment condition - dust 1 3 algorithms for prediction problem were selected: Back-
12| Environment condition - temperature | 1 4 Propagatiop neural petwork, Modular neural network and
Radial Basis Function neural network. After that for se-
13 | Transferred power ! 3 lected neural network architectures progressive optimiza-
14 | Type of lubrications 1 2 tion techniques have been used.
15 | Type of lubricant 1 2
16 | Conditions on measured place 1 2 EXPERIMENTAL RESULTS AND DISCUSSION
17 - 25| Measured max. pulse /dB 1 65
26 - 34| Measured carpet value /dB 1 s Results achieved by Back-Propagation Neural Network
35-43 E::ﬁ?ﬁigﬁﬁ?? d(:; s 0 45 Table 3. shows experimental results given by different

The next task is to explore and define the structure
with the lowest level (threshold) of error. This structure is
accepted for researching. Proceedings of research process
are done through steps. For each step, new data pattern for
specific variable is defined and date learning and testing
patterns are specified, as well. Reduced data model has
contained 42 input and 3 output variables. Neural network
has learned with reduced data model, and after that given
results have been analyzed. The research process has 43
steps, which generated 43 neural network structure.

The given error in each step is higher then error for
start model. That means that removing of any variable from
model will cause higher error. Apropos, the researching is
continued with complete set of variable model without
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back-propagation neural network architectures. The best
result is achieved through the combination of Sigmoid trans-
fer function and Extended Delta-Bar-Delta learning rule.
As a criterion for evaluation, Root Mean Squared Error —
RMSE (%) is taken. Experimental work is realized on previ-
ously researched and accepted neural network with the best
architecture shown in Table 2. Table 2. also presents num-
ber of hidden neurons, which are 12. Number of hidden
neurons is also confirmed theoretically and calculated ac-
cording to geometric-pyramid rule [13], for one hidden layer:

Ng, = /My - My (2)
where:
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n

un

- number of neurons in input layer,

m, - number of neurons in output layer.

ers learning rule in combination with transfer function re-
alize wider distribution of results. Combination of Sinus

Table 3. The review of RMSE results that are achieved by Back-Propagation neural network
Tablica3. Pregled rezultata RMS gre$aka ostvarenih istraZivanjem mrezZa Sirenja unazad
Case Neural network phases
No| Transfer function Learning rule Learning Test |Validation
1 | Linear Delta - Bar - Delta 0,0569 0,0833 0,0905
2 | Sigmoid Delta - Bar - Delta 0,0481 | 0,0432 | 0,0455
3 | Sinus Delta - Bar - Delta 0,0632 0,0860 0,0923
4 | Hyperbolic-tangent | Delta - Bar - Delta 0,0625 | 0,0848 | 0,0913
5 | Sigmoid Delta 0,0394 | 0,0370 | 0,0392
6 | Sinus Delta 0,7858 | 0,8493 | 0,8148
7 | Hyperbolic-tangent | Delta 0,0431 0,0883 | 0,0972
8 | Linear Ext. Delta - Bar - Delta 0,0619 0,0786 0,0905
9 | Sigmoid Ext. Delta - Bar - Delta 0,0328 | 0,0328 | 0,0355
10 | Sinus Ext. Delta - Bar - Delta 0,0516 0,0775 0,0867
11 | Hyperbolic-tangent | Ext. Delta - Bar - Delta 0,0507 | 0,0789 | 0,0921
12 | Sigmoid Normalised cumulative Delta| 0,0458 | 0,0407 | 0,0422
13| Sinus Normalised cumulative Delta| 0,0475 | 0,0717 | 0,0842
14 | Hyperbolic-tangent | Normalised cumulative Delta| 0,0490 0,0740 | 0,0847

Calculation according to
expression (2) is n = 11,36,
round on the first main number.
That number represents the nu-
mber of hidden neurons, which
is the same as number of neu-
rons earlier given in Table 2.

Through further analysis of
results can be concluded that
the best results are achieved by
Sigmoid transfer function for
Back-Propagation neural net-
work. The second place is re-
served for Hyperbolic-tangent
transfer function. Expectation
was that Sigmoid transfer func-
tion has better results than Hy-
perbolic-tangent transfer func-
tion. The reason is that Sigmoid
transfer function is defined for
positive values until Hyper-
bolic tangent transfer function
is defined for positive and
negative values.

Applying of Normalized
cumulative Delta learning rule
gives the best results in a way
of results distribution. All oth-
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transfer function and Delta learning
rule (case 6.) generates RMSE in
sum of 78,58 %.

Optimization of selected struc-
ture (case 9) gives optimal Back-
Propagation neural network archi-
tecture through applying certain te-
chniques like: simulated annealing,
procedure “Save Best” and avoid-
ing of neurons saturation.

RMSE in learning phase for this
case is 2,78 %. Figures 2., 3. and 4.
show realized predicted values and
real values of neural network.

Results achieved
by Modular Neural Network

Table 4. shows results achieved
by Modular neural network. Case 11
(defined in Table 4.) is chosen for
structure optimization.

After the optimization of se-
lected architecture, RMSE is 2,61%
in learning phase.

Table4. The review of RMSE results that are achieved by Modular neural network
Tablica4. Pregled rezultata RMS gresaka ostvarenih istraZivanjem modularnih neuronskih mreza
Case Neural network phases
No| Transfer function Learning rule Learning | Test |Validation
1 | Linear Delta - Bar - Delta 0,0710 0,0799 0,0886
2 | Sigmoid Delta - Bar - Delta 0,0585 | 0,0647 | 0,0598
3 | Sinus Delta - Bar - Delta 0,0741 0,0810 0,0890
4 | Hyperbolic-tangent | Delta - Bar - Delta 0,0778 | 0,0813 | 0,0892
5 | DNNA Delta - Bar - Delta 0,0542 | 0,0694 | 0,0659
6 | Sigmoid Delta 0,0329 | 0,0372 | 0,0391
7 | Sinus Delta 0,0706 | 0,0737 | 0,0811
8 | Hyperbolic-tangent | Delta 0,0720 | 0,0757 | 0,0824
9 | DNNA Delta 0,0521 | 0,0632 | 0,0689
10 | Linear Ext. Delta - Bar - Delta 0,0687 0,0767 0,0818
11 | Sigmoid Ext. Delta - Bar - Delta 0,0303 0,0324 0,0349
12 | Sinus Ext. Delta - Bar - Delta 0,0650 0,0777 0,0822
13 | Hyperbolic-tangent | Ext. Delta - Bar - Delta 0,0606 | 0,0767 | 0,0823
14 | DNNA Ext. Delta - Bar - Delta 0,0449 0,0504 0,0509
15| Sigmoid Normalised cumulative Delta 0,0348 | 0,0400 | 0,0410
16 | Sinus Normalised cumulative Delta 0,0630 | 0,0719 | 0,0813
17 | Hyperbolic-tangent | Normalised cumulative Delta 0,0657 | 0,0722 | 0,0832
18 | DNNA Normalised cumulative Delta 0,0424 | 0,0496 | 0,0479
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Figure2. Thereal and predicted values of neural network for maxi-

mum value of shock pulses

Slika2.  Prikaz stvarnihipredvidenih vrijednosti neuronske mre-

Ze za maksimalne vrijednosti udarnog impulsa

Realized results confirm theory that results achieved
by Modular neural network are better than Back-Propaga-
tion neural network results.

Results
achieved by Radial Basis Function Neural Network

Table 5. shows RMSE achieved by Radial Neural Net-
work and structure defined in Table 2. The best net architec-
ture is combination of Sigmoid transfer function and Ex-
tended Delta-Bar-Delta learning rule that is chosen for
optimisation. After the optimi-
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Figure3. The real and predicted values of neural network for car-

petvalue

Slika3.  Prikaz stvarnih i predvidenih vrijednosti neuronske mre-

Ze za tepih vrijednosti

To generate dynamic conditional based maintenance plan
the following subsystems are used: Common database, Tech-
nical data, Material Purchasing and Stocks, Preventive main-
tenance in interaction with the suggested prediction model
based on neural network. Such generated plans contain re-
placement period (terms) for monitored elements.

Efficient planning and maintenance realization, and in
the same time avoiding and decreasing of unplanned delays
caused by corrective maintenance will be enabled to main-
tenance function. Dynamic plan and information about ele-
ment condition have to provide the rational material man-

: : Table 5. The review of RMSE results that are achieved by Radial Basis Function neural network
sation ijse]eCteod a_rchltectqre, Tablica5. Pregled rezultata RMS gre§aka ostvarenih istraZivanjem mreZza sa radijalnim baznim
RMSE is 3,71% in learning funkcijama
phase.

Case Neural network phases
Intzg.rzt\.tlon ofd ] No | Transfer function | Learning rule Learning | Test |Validation
rediction mode
P 1 | Linear Delta - Bar - Delta 0,1520 0,1565 0,1420
based on neural . .
network in Equipment 2 | Sigmoid Delta - Bar - Delta 0,0739 | 0,0730 | 0,0688
maintenance subsystem 3 | Sinus Delta - Bar - Delta 0,1518 0,1541 0,1413
4 | Hyperbolic-tangent | Delta - Bar - Delta 0,1499 | 0,1501 0,1394

Organization of data from |5 | pNNA Delta - Bar - Delta 0,0746 | 0,0662 | 0,0644
Equipment Maintenance sub- 6 | Sigmoid Delta 0.0635 | 00622 | 0.0578
system developed for enter- S Del o154 T 01295 T o.1166
prise Aluminij d.d. Mostar is 7 | Swnus clta ’ ’ ’
defined [4] with the goal to 8 | Hyperbolic-tangent | Delta 0,1155 | 0,1275 | 0,1168
apply model of failure predic- 9 | DNNA Delta 0,0635 | 0,0586 | 0,0554
tion based on neural network. | 10 | Linear Ext. Delta - Bar - Delta 01171 | 0,1355 | 0,1190
F;gure 5] ' prese‘;:_s ‘;tegra“,on 11| Sigmoid Ext. Delta - Bar - Delta 0,0544 | 0,0562 | 0,0510
ofneural network in Preventive

. 12 | Sinus Ext. Delta - Bar - Delta 0,1071 0,1192 0,1167
Maintenance subsystem. Pre- :
ventive Maintenance subsys- 13 | Hyperbolic-tangent | Ext. Delta - Bar - Delta 0,0984 | 0,1069 | 0,1067
tem is developed as support in 14 | DNNA Ext. Delta - Bar - Delta 0,0621 | 0,0585 | 0,0550
realization: preventive mainte- 15| Sigmoid Normalised cumulative Delta 0,0651 0,0630 | 0,0586
nance t9wards Wo_rk param- 16 | Sinus Normalised cumulative Delta 0,1174 | 0,1326 | 0,1188
eters (tlm_ef working hgurs 17| Hyperbolic-tangent | Normalised cumulative Delta 0,1088 | 0,1153 | 0,1105
etc.), condition based mainte- - : 00629 | 0.0587 | 0.0552
nance and inspections. 18 | DNNA Normalised cumulative Delta ) ) ,
METALURGIJA 44 (2005) 2, 107-112 111
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Figure4. The real and predicted values of neural network for evo-
lution of conditional monitoring interval

Slika4.  Prikaz stvarnih i predvidenih vrijednosti neuronske mre-
Ze za procjenu intervala nadzora stanja

agement. Based on plan the list of spare parts with due dates
or implementation terms will be created and delivered to
the purchasing function. Thanks to previous mentioned the
costs would be taken into consideration, as well.

COMMON DATA BASE

MATERIAL PURCHASING
RIAL PURCHS TECHNICAL DATA
Yy v ¥ CONDITION
PREVENTIVE .| BASED
MAINTENANCE MAINTENANCE
p PLAN

PREDICTION MODEL
BASED ON NEURAL NETWORKS

Figure5. Integration of neural network model in Preventive Main-

tenance subsystem

Slika5.  Integracija modela neuronskih mreZa u podsustav pre-
ventivnog odrZzavanja

CONCLUSION

The paper shows research results that have been done
with the main goal to extend possibility of preventive main-
tenance. Defined prediction model is based on different
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neural network architectures. Given output results of opti-
mal structures for mentioned architectures had few per-
cent deviations. Through this the verification of applying
different neural network architectures for suggested pre-
diction model is done.

Suggested model has to be verified in exploitation and
to increase availability of metallurgical equipment because
of aluminium process production continuity.

Further researching has to manage:

- Cost analysis of suggested model and possible optimi-
zations according to minimal costs,

- Integration of suggested neural network model with ex-
pert system and implementation in Management Infor-
mation Maintenance.

System with the main goal to improve decision sup-
port maintenance system.
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