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Introduction

Anisotropy is the result of optional orientation 
or geometric asymmetry caused by the position of 
particles in an object. This property of material in-
fluences convection heat transfer of objects two 
ways: hydrodynamic permeability and thermal dif-
fusion due to changes of thermal conductivity.1 
There are various applications for the effect of an-
isotropy on heat transfer, such as: nuclear indus-
tries,2 geology,3 water resource management,4,5 oil 
and gas,6 and fixed bed reactors.7 Porous beds are 
one of the very applicable research areas of the field 
of heat transfer based on anisotropy. Research on 
the effect of anisotropy on heat transfer can be cat-
egorized based on heat transfer regimes, the variety 
of materials and the applied solution methodology.8 
In terms of the type of heat transfer regimes, natural 
convection,9–11 forced convection,12–14 and mixed 
convection15,16 have been studied, where natural 
convection is more noticeable. Horizontal, vertical 
and inclined rectangular or cylindrical objects were 
studied to investigate the effect of anisotropy on 

convection heat transfer. The governing equations 
were solved by numerical or analytical methodolo-
gies.17

In early studies of convection heat transfer in 
porous beds, the term of anisotropy had been ig-
nored. The first studies examining the effects of an-
isotropy were performed by Castinel and Combar-
nous on free convection over a horizontal plane 
with anisotropic permeability.18 The anisotropic 
thermal diffusion was investigated by Epherre, who 
determined that anisotropy effects on the thermal 
properties influence the marginal stability criterion 
as the preferred width of the convection cells.19 
Their studies were completed by Kvernold and Ty-
vand to analyze the effects of anisotropy in perme-
ability on the critical Rayleigh number for the onset 
of convection and attitude of convective flow at 
slightly supercritical Rayleigh numbers.20 Tyvand 
and Storesletten studied natural convection in an 
anisotropic medium where none of the principal 
axes were vertical by considering Benard convec-
tion in a horizontal porous layer with anisotropic 
permeability.21

Recently, some research has been directed to 
the effect of anisotropy on the onset of convection 
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in porous layer.22,23 The mixed convection through a 
parallel-plate vertical porous channel, which was 
assumed to be hydrodynamically anisotropic, was 
studied by Degan and Vasseur.16 They found that for 
Da < 10–5 the viscous effects near the boundaries 
were negligible, and the permeability ratio and in-
clination of principal axes of permeability had a 
strong influence on the thermal convection. The ef-
fect of gross heterogeneity in forced convection in a 
porous media filled channel was studied by 
Kuznestsov and Nield.24 They estimated the Nusselt 
number and discovered that an increase in Nu/f (f is 
the friction factor) resulted with an increase in heat 
transfer. The mechanism of heat and fluid flow in a 
channel with internal heat generation due to viscous 
dissipation for constant heat flux boundary condi-
tions in a parallel-plate horizontal channel filled 
with an anisotropic permeability porous medium 
was analytically deliberated by Mobedi et al.12 They 
proved that the directional permeability parameter, 
which was defined to combine the effect of perme-
ability ratio and the orientation angle, had an im-
portant effect on the mechanism of heat and fluid 
flow in the channel. Hence, by increasing the direc-
tional permeability parameter, high velocity gradi-
ent appeared in the region close to the channel wall 
and caused high internal heat generation in regions 
close to the walls.

The forced convection heat transfer in two 
channel configurations (parallel plates and a circu-
lar pipe) were investigated by Poulikakos and Ren-
ken. These two channels were assumed to fill with 
porous media. By assuming constant thermal con-
ductivity, they achieved a model by governing 
equations based on the effects of flow inertia, vari-
able porosity and Brinkman friction, and finally 
solved it by a numerical method. Consequently, 
they found that the velocity field resulting from 
the solution of general momentum equation sig-
nificantly changed the heat transfer characteris-
tics compared to the systems using Darcy flow 
model.25

The fully developed laminar steady forced con-
vection inside a circular tube filled with saturated 
porous medium with uniform heat flux at the wall 
was studied by Hooman and Ranjbar-Kani. They 
described that the velocity profile depended strong-
ly on s parameter ( 1/2(1 / ( ))S M Da  , where M is 
viscosity ratio, and Da is the Darcy number). When 
s increases, the central region containing a uniform 
velocity distributes toward the wall, while if it de-
creases, the velocity tends toward the plane Poi-
seuille flow. In addition, the Nusselt number de-
pends on s magnitude and increases with its 
enhancement.26

In contrast to many investigations that consid-
ered the anisotropy effects on convection heat trans-

fer in Cartesian coordinates, few researches have 
paid attention to its effects in cylindrical coordi-
nates. Minkowycz and Cheng studied the natural 
convection heat transfer around a vertical cylinder 
immersed in porous media while its surface tem-
perature changed as a power function over the 
edge.27 Vasantha and Nath investigated the thermal 
boundary layer around an isotherm cylinder in po-
rous media numerically, and found that the thick-
ness of the thermal boundary layer increased with 
enhancement of the transverse curvature parame-
ter.13 Degan et al. investigated the effect of the 
anisotropic hydrodynamic permeability parameter 
on convection heat transfer in a vertical cylinder 
filled with porous media. They understood that both 
the anisotropic hydrodynamic permeability parame-
ter, and the orientation angle of the principal axes 
had a significant influence on the heat transfer 
rate.28 The effect of anisotropy on hydrodynamic 
permeability and thermal diffusion of natural heat 
convection in a vertical cylinder filled with porous 
media and a heat generation source, was studied by 
Dhanasekaran et al. They demonstrated that both 
the hydrodynamic permeability ratio and the ther-
mal diffusion ratio caused enhancement of heat 
transfer rate separately.10

This paper presents an analytical study of 
steady force convection heat transfer inside an 
anisotropic porous cylinder with oblique principal 
axes, using the extended Darcy-Brinkman model 
with the aim of investigating the effects of aniso-
tropic permeability. In addition, the effects of the 
presence or absence of frictional heating term, 
the heat generation in the porous channel on the 
temperature profile, and Nusselt number were stud-
ied.

This kind of problem is common with horizon-
tal cylindrical fixed bed catalytic reactors in which 
exothermic reactions occur. In fixed bed catalytic 
reactors filled with anisotropic porous media named 
heterogeneous catalysts, forced convection heat 
transfer occurs inside the reactor by gas stream 
movement. On the other hand, an exothermic reac-
tion can create a heat generation source inside the 
reactor, which rises the temperature of the reactor 
and may cause hot spots on the catalysts, and final-
ly deactivate the catalyst. Therefore, cooling heat 
flux is applied on the outside walls of the reactors 
to control this heat generation. Anisotropic proper-
ties of filled catalysts in the reactor face us with an 
anisotropic forced heat convection. Thus, tempera-
ture control and optimized heat transfer in these re-
actors, which are applied in many petrochemical 
and refinery units, seem quite important. Therefore, 
investigation of the parameters having a significant 
effect on velocity and temperature profiles, and the 
Nusselt number, could suggest applicable solutions 
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for better temperature control of these reactors and 
thus acquire high yield for products, and increase 
the useful life of catalysts.

Therefore, this paper is organized in the fol-
lowing manner: The model, and the governing 
equations and their solutions are presented in the 
next section, while the following section describes 
and discusses briefly the results of the problem, and 
last section is the conclusion of the paper.

The model and the governing equations 
and solutions

Model description and governing equations

The geometry and boundary conditions of 
two-dimensional horizontal cylinder containing po-
rous media, which is considered in this work, are 
schematically shown Fig. 1. The radius of the cylin-
der is R and fluid flows in the direction of z-axis, 
perpendicular to radial direction (r). For simplifica-
tion, the radial angle is ignored.

The porous media in the cylinder are anisotro-
pic in permeability properties. Permeability param-
eters along the two principal axes of the porous ma-
trix are denoted by K1 and K2 respectively.

As depicted in Fig. 1, the anisotropy of the po-
rous medium is characterized by the orientation an-
gle θ and the permeability ratio parameter K*= K1/ 
K2. Other assumptions for this model are as follows: 
fluid flow is one-dimensional and fully developed, 
steady state conditions, no phase changes, constant 
heat flux is applied to horizontal walls, and uniform 
heat generation exists in the cylinder.

Therefore, by mentioning problem conditions 
the governing equations for a laminar flow passing 
through this cylinder are continuity, Brinkman mo-
mentum, and energy, which are represented as fol-
lows:
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The symmetrical second order permeability 
tensor K  is defined as follows:
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In the above equations (Eqs. (1–4)) V


is the su-
perficial flow velocity vector, Vr is the velocity in 
r-direction, Vz is the velocity in z-direction, p is the 
pressure, T is the volume-averaged equilibrium 
temperature for both the solid and fluid phases of 
the porous medium, ρ is the fluid density, μ is the 
fluid viscosity, m  is the effective viscosity for 
Brinkman’s model, Cp is the specific heat at con-
stant pressure, K1 and K2 are the flow permeabilities 
along the principle axes, q’’’ is the heat generation, 
and C1, C2 and C3 are constant values (their values 
can be 0 or 1), which describes the presence or ab-
sence of viscous dissipation and heat generation pa-
rameters. The viscous dissipation effect considered 
on the right hand side of energy equation is com-
posed of two parts. The first part, namely  2

1 zK Vm , 
is the viscous dissipation in the Darcy limit (K1 → 0), 
which basically comprises the internal heating asso-
ciated with the mechanical power needed to extrude 
the fluid through the porous medium as given by 
Ingham et al.,29 while the second part, namely 
 2zV ym   , is the frictional heating term involv-

ing fluid friction due to dissipation, as given by 
Al-Hadhrami et al.15

Solution of Brinkman momentum equation

According to assumptions for 2-D fully devel-
oped fluid flow considered to be laminar flow, it 
can be assumed that the following expressions are 
acceptable.
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So, the Brinkman moment equation (Eq. (2)) 
can be simplified as follows:
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F i g .  1  – Physical model and coordinate system



304 H. SOLTANI and H. AJAMEIN, Analytical Solution of Forced Convective Heat Transfer…, Chem. Biochem. Eng. Q., 28 (3) 301–318 (2014)

By following boundary conditions:
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In these equations, M and γ are the dimension-
less viscosity parameter and negatic of the applied 
pressure gradient, respectively, defined by Hung 
and Tso,30 and A* is the directional permeability ra-
tio parameter.

The boundary conditions in differential equa-
tion (Eq. (7)) are defined by employing a no-slip 
wall boundary condition and symmetry condition at 
the centre of the cylinder. By introducing dimen-
sionless parameters such as anisotropic shape factor 
α, Darcy number Da, and dimensionless coordinate 
in r direction r* as follows:
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Eq. (6) and its boundary conditions are changed to:
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This is a second order inhomogeneous differen-
tial equation.

The analytical solution of Eq. (10) with respect 
to its boundary conditions Eq. (11) can be found as 
follows:
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Considering Eq. (12), the average velocity zV  
and the normalized dimensionless velocity * *( )V r
can be defined as follows:
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Solution for heat transfer equation

By applying the assumptions for the model in 
the porous medium, and considering that the Peclet 
number is sufficiently large so the axial conduction 
may be neglected, the heat transfer equation (Eq. 
(3)) can be simplified into the following form.
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With the following boundary conditions:
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Where qw is negative and q’’’ is positive for cooling 
process (fluid being cooled). The first boundary con-
dition comes from the symmetry condition at the 
centre of the channel and the second is defined from 
the constant wall heat flux boundary condition.

Integral method was applied to find analytical 
solutions for the temperature equation. First, the 
sides of Eq. (15) were multiplied by r and then in-
tegrated from centre of the cylinder to the diameter 
of the cylinder R.
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For the left side of Eq. (17) from definition of 
the average temperature, it would be:
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For thermally fully developed flow, the tem-
perature gradient along the axial direction z is inde-
pendent of the transverse direction r, Hung and 
Tso,30 therefore, / /T z dT dz   . According to 
boundary conditions defined in Eq. (16), the Eq. 
(17) can be applied as follows:
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where T  is the average temperature along sectional 
area of cylinder, Br* dimensionless modified Brink-
man number, β dimensionless term of heat flux and 
heat generation, η and λ dimensionless parameters 
which are a function of anisotropic shape factor α. 
By introducing the following dimensionless tem-
perature function T*(r*) as:

    * * k T T
T r

Rq
, (20)

Eq. (15) can be written as:
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This is a second order homogeneous differen-
tial equation with dimensionless boundary condi-
tions, which are defined as:
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By double integration of Eq. (21) with the 
boundary conditions Eq. (22), the analytical solu-
tion of Eq. (21) is given by:
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where t1, t2, t3, t4, t5, and t6 are defined as:
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in which t and W are the functions of α and are 
defined as:
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In this case, the Nusselt number Nu, based on 
the diameter cylinder is defined as:
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where *T  is the dimensionless average temperature 
and c1, c2, c3, c4 and c5 are:
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As it can be seen, the Nusselt number is a func-
tion of Da, M, A*, Br*and β.

Results and discussion

This section presents the investigation of the 
effects of variation of Da and A* for the cooling 
process on the velocity and temperature profile, 
when viscous dissipation and heat generation are/
are not considered, and the Nusselt number.

As can be seen from Eq. (8), A* changes de-
pend on variation of the orientation angle θ and the 
permeability ratio parameter K*. For K*<1 and every 
value of θ, A* will be less or equal to one. At zero 
degrees A*= K* and with increase θ from 0 to 90 
degrees A* values were ascending and their gradient 
rise depended on K* value. Meanwhile, in θ = 90 for 
all K*<1, A* values will equal one. Therefore, A*<1 
describes K* values less than 1, and also higher val-
ues of permeability amounts in z direction than in r 
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direction (i.e. K2>K1). In addition, whenever A* ap-
proaches 1 (i.e. θ approaches 90 degrees), permea-
bility in r direction to z direction enhances up to θ = 
90 where K1 = K2.

This interpretation can be used for K*>1 where 
for such cases A* is permanently above or equal to 
1, so permeability in r direction is higher than in z 
direction, and whenever A* approaches 1 (i.e. θ ap-
proaches 90 degree) permeability in z direction in-
creases in relation to r direction up to θ = 90, where 
it will be equal in both directions.

However, whenever K *= 1, alterations of θ 
have no influence on A* and A* always equals 1. In 
this situation, permeability in both principal axes is 
equal.

To consider the effect of variation of Da and A* 
on dimensionless normalized velocity profile and 
dimensionless temperature, some values should be 
set.

According to the inverse relation of M with po-
rosity (ε), for ε near 1, M value will be close to 1 
and for ε<1, the M value will be higher than 1.1 In 
most literature, M value is postulated as 1. Howev-
er, the research conducted by Givler and Altobelli31 
has demonstrated that the assumption of m m  in 
some cases is not in good agreement with experi-
mental results. Nevertheless, for simplification and 
easy comparison of these research results with other 
works, in this paper the M value was set as one.

In addition, some ranges were arranged for A*, 
Da and Br* to investigate the effect of variation of 
these parameters on dimensionless temperature and 
normalized velocity profiles, and Nusselt number.

Fig. 2 shows the variation of the dimensionless 
normalized velocity profiles V*(r*) for different val-
ues of Darcy number Da, and directional permea-
bility ratio parameter A*.

According to statements about variation of A* 
with K* at the beginning of this session, A*<1 indi-
cates larger permeability in z direction relative to r 
direction and vice versa. Therefore, it is expected 
that the dimensionless normalized velocity profiles, 
by increasing A* from 0.1 to 1 in constant Darcy 
(i.e. constant permeability in r direction) due to de-
crease in K2, become wider. This trend continues 
when A* increases from 1 to 10 in constant Darcy 
number. This trend may be observed in the lower 
Darcy numbers in Fig. 2.

In higher Darcy numbers, no significant varia-
tion in trend of normalized velocity profiles can be 
observed. But in constant Darcy numbers, by en-
hancing A*, the values of V*(r*) in the centre of the 
cylinder in flow direction reduce due to decrease in 
permeability.

It could be observed that in lower Darcy num-
bers and especially in higher A*, there is uniform ve-

locity distribution flows in most regions of the cylin-
der except the wall region, whereas a steep velocity 
gradient forms at the wall region. The high velocity 
gradient at the wall surface generates high rate of vis-
cous dissipation (see Eq. (3)) which has a significant 
effect on dimensionless temperature profile.

For the cooling process qw < 0, the modified 
Brinkman number as well as β is negative (see Eq. 
(19)). Also, according to cooling of the cylinder 
wall by qw and consequently T>Tw and the definition 
of dimensionless temperature in Eq. (20), it can be 

F i g .  2  – Variations of normalized velocity profile V* in the 
cylinder for different values of Da and A*
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expected that the dimensionless temperature values 
are negative.

According to definition of β in Eq. (19) its val-
ue is set as –1. Therefore, if heat generation is con-

sidered, its value in porous media will be relative to 
qw/R.

Fig. 3 illustrates the dimensionless temperature 
profile inside the cylinder for C2 = C3 = 0 condi-
tions. When the internal heating effect is only con-
sidered in temperature equation, all the temperature 
profiles have a negative trend, as expected. These 
profiles in walls and the centre of cylinder have 
zero and maximum values, respectively (according 
to the boundary conditions Eq. (22)). The absolute 
values of dimensionless temperature profile (i.e. 
temperature difference between wall and fluid) de-
crease in the centre of cylinder with the increase in 
Da number in constant A* values. Also, increasing 
A* when Da number is constant, leads to reduction 
of absolute value of dimensionless temperature pro-
file in the centre of the cylinder.

Small Darcy number features low permeability 
in the porous medium and thus induces smaller con-
vection in a more restrictive medium. Therefore, the 
internal heat generation increases and in turn the 
fluid temperature becomes higher; hence, the tem-
perature difference dramatically increases between 
cylinder wall and fluid flow.

Furthermore, for high Da (i.e. Da = 1 and 10) 
referring to Fig. 3, it can be perceived that the tem-
perature distributions are identical for the cases of 
A* = 0.1, 1, and 10, respectively. This is in agree-
ment with the results of Hung and Tso (Figs. (2a – 
2c)).30 It can be described that, for higher Da num-
bers, which are nominated as hyper-porous medium, 
the internal heating effect of viscous dissipation 
vanishes.

When the heat generation parameter is consid-
ered in addition to internal heat in energy equation, 
the trend of dimensionless temperature profiles will 
be as shown in Fig. 4. This figure illustrates the di-
mensionless temperature profile inside the cylinder 
for C2 = 0 and C3 = 1 conditions. The comparison of 
Figs. 3 and 4, leads us to conclude that, despite add-
ing the heat generation parameter to the energy 
equation, the trend of dimensionless temperature 
profile is not a significant change.

Fig. 5 illustrates the dimensionless temperature 
profile inside the cylinder for C2 = 1 and C3 = 0 con-
ditions. Compared with Fig. 3 when the viscous dis-
sipation parameter is considered in the energy equa-
tion, obvious differences are observed in the trend 
of T*(r*). In higher Da numbers, the trend of dimen-
sionless temperature compared to similar cases in 
Fig. 3 achieved negative and minimum values in 
walls, while there are positive and maximum values 
in the center of the cylinder. This trend, which is 
independent of A* values, can be observed in all 
temperature profiles of Fig. 5. In small Da numbers, 
a different trend may be observed compared to Fig. 
3, especially for A* = 1 and 10. Fig. (5B) illustrates 

F i g .  3  – Variations of dimensionless temperature profiles for 
different Darcy numbers when C2 = C3 = 0 (A: A*= 0.1, 
B: A* = 1 and C: A* = 10)
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that, for small Da number, the dimensionless tem-
perature profiles reach maximum values near the 
walls, while their minimum values occur in the 
 center of the cylinder. This trend is similar to 
the  results achieved by Hung and Tso (Fig. 9)30 be-

cause A*=1 means equal permeability in all direc-
tions.

This unusual trend of dimensionless tempera-
ture profile for higher and lower Da numbers in this 
figure (Figure (5-B)) may be investigated by analy-

F i g .  4  – Variations of dimensionless temperature profiles 
for different Darcy numbers when C2 = 0 and C3 = 1 
(A: A* = 0.1, B: A* = 1 and C: A *= 10)

F i g .  5  – Variations of dimensionless temperature profiles 
for different Darcy numbers when C2 = 1 and C3 = 0 
(A: A* = 0.1, B: A* = 1 and C: A* = 10)
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sis of the terms of viscous dissipation treatments 
during cooling process. It seems that in higher Da 
numbers, due to higher frictional heating near the 
walls compared to internal heating in the centre of 
the cylinder, in spite of cooling flux to walls, the 
temperature of the fluid near the walls is higher 
than near the centre of the cylinder. In most regions 
inside the cylinder, this causes the dimensionless 
temperature profile to become positive, which indi-
cates that the heat is transferred from walls to inter-
nal fluid. On the contrary, for lower Da number, the 
internal heating contribution in central regions is 
higher than frictional heating near the walls. How-
ever, this severe decrease in frictional heating has a 
greater influence on dimensionless temperature pro-
files than the increase in internal heating for small 
Da numbers. As may be observed from Fig. (5-B), 
fluid flows in the centre of the cylinder toward cyl-
inder walls have higher temperature.

The interesting point of Fig. (5-B) for small 
Darcy numbers is the changing of the slope of the 
dimensionless temperature near the wall, which 
changed and became positive. This is the result of 
the offsetting effect of the increasing contribution 
of internal heating and decreasing contribution of 
frictional heating, signifying the change of direction 
of heat transfer at the wall for lower Da numbers 
compared to higher ones.

When A* from 1 reaches 10 (Fig. (5-C)) for 
lower Da numbers compared to (Fig. (5-A)), the in-
tensity of enhancement of viscous dissipation 
(which is mostly by frictional heating) in cylinder 
wall is high, and on other side, internal heating in 
centre regions near the walls is lower. Therefore, 
this causes temperature of the near-wall fluid to be-
come higher than the central regions, and heat 
transfer, in spite of cooling flux, occurs from wall 
to fluid. Thus, contrary to A* = 0.1, the temperature 
profiles at A *= 10 and lower Da number take posi-
tive values. This change in direction of heat transfer 
by enhancement of Da number and A* represents 
changes in Nusselt number (Nu) sign which will be 
discussed later.

Fig. (6) illustrates the dimensionless tempera-
ture profile inside the cylinder for C2 = 1 and C3 = 1 
conditions. When the heat generation parameter is 
included in the energy equation in addition to fric-
tional heating parameter, the dimensionless tem-
perature profile undergoes no appreciable changes 
compared to that in Fig. (5). This indicates that the 
heat generation parameter, shown by β, in all cases 
has very little effect on the temperature profile.

In order to validate the accuracy of the dimen-
sionless temperature gradient trend by r* for differ-
ent Darcy numbers, it was compared with other 
works, such as reference.30 In that research, the per-
meability was considered constant and the model 

did not mention the heat generation parameter. 
Therefore, in our model the amounts of A* and C3 
were equal to 1 and 0, respectively. Fig. (7) illus-
trates the trend of dimensionless temperature gradi-
ent for different Darcy numbers, which are the same 
in both models. The difference in numerical amount 

F i g .  6  – Variations of dimensionless temperature profiles for 
different Darcy numbers when C2 = C3 = 1 (A: A *= 0.1, 
B: A* = 1 and C: A* = 10)
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of models is because of their geometric structure. (It 
is worth noting that in Fig. (7-A), the Da = 10 could 
be approximately considered Da ® ∞)

Fig. (8) shows Nusselt number variations based 
on A* for four values of Da and different changes of 
C2 and C3 for cooling process (i.e. Br* = –1).

When the frictional heating term is not consid-
ered, as observed previously in dimensionless tem-
perature profiles, the presence or absence of heat 
generation does not significantly change the trend 
of Nusselt number with A*. Figs. (8-A) and (8-C) 
show this result clearly.

For lower Da numbers (Figs. (8-A) and (8-C)), 
an increase in A* leads to enhanced Nusselt number, 
which for very small Da numbers (i.e. Da = 10–4) is 
slower, while for higher Da numbers (i.e. Da = 10–2) 
this occurs more abruptly. As illustrated in these 
figures, this increase in Da number higher than 1, is 
oriented toward a specific number, so that for very 
large Da numbers (i.e. Da = 10), the Nusselt num-
ber is constant despite A* changes. This constant 
value for the case where heat generation parameter 
is ignored, equals 5.981 (Fig. (8-A)), and equals 
6.813 (Fig. (8-C)). Such trend of Nusselt number may 
be observed in Hung and Tso work (Fig. (4-b)),32 
which for a rectangular channel in a cooling pro-
cess, the Nusselt number equalled 4.118 when heat 

F i g .  7  – Variation of dimensionless temperature in the width 
of channels when Br* = –1. A: Current study and 
B: Study.30

F i g .  8  – Variations of Nusselt number with A* for different Darcy numbers (A: C2 = C3 = 0, B: C2 = 1, C3 = 0, C: C2 = 0, C3 = 1 and 
D: C2 = C3 = 1)
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generation and frictional heating terms were ig-
nored.

When frictional heating term in the energy 
equation is considered, as expected, the Nusselt 
number sign will change. This change will happen 
in lower Da numbers. For Da = 10–4 in A* = 0.98 
and for Da = 10–2 it occurs in A*= 0.783 and 0.7675, 
respectively (see Figs. (8-B) and (8-D)).

This A* where direction of heat transfer chang-
es from wall to fluid or from fluid to wall is 
called critical directional permeability ratio parame-
ter ( *

CA ).12 For *
CA  < 0.98 when C2 = C3 = 1 and 

Da = 10–4, dimensionless temperature values be-
come negative, which represents lower temperature 
of the wall compared to fluid, and direction of 
heat transfer is from fluid to walls (Fig. (6-A) for 
A*= 0.1). However, for *

CA >0.98, dimensionless 
temperature values are positive, indicating a change 
in the direction of heat transfer. Whereas, in this 
case heat transfers from walls to fluid inside the 
channel (Figs. (6-B) and (6-C) for A*= 1, and 10).

By comparing Figs. (8-B) and (8-D) and Figs. 
(8-A) and (8-C) in high Darcy numbers, the Nusselt 
number sign changes. The reason for this sign 
change may be described by comparing dimension-
less temperature profiles in Figs. (5) and (6) with 
Figs. (3) and (4), because when the frictional heat-
ing term is ignored, the dimensional temperature 
profiles take negative values, while when consider-
ing this parameter they take positive values. This 
change in dimensional temperature profile trend is 
the reason for the sign change of Nusselt number.

The validity of the resulting model to describe 
the variation of Nusselt number with A* was veri-
fied by comparison with other models, such as the 
work in reference.12 In their investigation, they also 
applied the rectangular channel without heat gener-
ation parameter. Therefore, in the resulting model, 
the situation where C3 = 0 was selected. As Fig. (9) 
shows, the trend of variation of Nu with A* is the 
same in both models. The Nu changes for both 
models occurred in small Da numbers. For exam-
ple, when Da = 0.01, the Nu changes for the cylin-
der and rectangular model in A*

c = 0.783 and 0.895, 
respectively. The difference is because of various 
models and different Nusselt number definition.

Figs. (10), (11) and (12) illustrate Nusselt num-
ber variation with different Da and Br* for A* values 
of 0.1, 1 and 10 respectively. When A*= 0.1 and 
frictional heating is ignored (Figs. (10-A) and 
 (10-C)), all Nusselt numbers are positive and their 
trend ascends with the increase in Da number for all 
Br* values. This trend is predictable according to the 
similarity in dimensional temperature profiles for 
these two cases at A*= 0.1 (Figs. (3-A) and (4-A)). 
For cooling process, as shown in Figs. (10-A) 
and (10-C), the Nusselt number asymptotes to 

Nu∞ = 5.999 for C3 = 0 and Nu∞ = 6.856 for C3 = 1 
at higher Da number. Also, the Nusselt number ap-
proaches Nu∞ faster for smaller Br* in terms of abso-
lute value.

However, when the frictional heating term is 
considered, the Nusselt number trend changes com-
pletely. As may be seen in Fig. (10-B), for every 
Br* value except –0.1, the Nusselt number sign 
changed (for Br* = –10 and –20 in Da = 0.0375 and 
for Br* = –1 in Da = 0.0755 in Fig. (10-C), and for 
Br *= –10 and –20 in Da = 0.0375 and for Br* = –1 
in Da = 0.068 in Fig. (10-D)). The reason for this 
trend lays in the velocity and temperature profile 
treatment in especially low Da numbers. As for 
A* = 0.1 in Fig. (2), there was a steep slope for the 
dimensionless normalized velocity profile near the 
walls. By considering the frictional heating term 
and Eq. (3), this steep slope may be seen in the di-
mensionless temperature profile, leading the heat 
transfer direction to change from centre to walls to 
walls to centre. Therefore, the sign of Nusselt num-
ber changes in smaller Da numbers for Br* = –1, 
–10 and –20. For smaller modified Brinkman num-
bers (i.e. Br* = –0.1) in terms of absolute value, be-
cause of the Br* role as a measure of importance of 
the viscous dissipation term, due to decreasing its 
importance (which is the reason for its fractional 

F i g .  9  – Variation of Nusselt number with A* when Br* = –1. 
A: Cylinder model, and B: Rectangular model12
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F i g .  1 0  – Variations of Nusselt number with Da for different Br* when A* = 0.1 and different C2 and C3

F i g .  11  – Variations of Nusselt number with Da for different Br* when A* = 1 and different C2 and C3
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heating term reduction), no sign change of Nusselt 
number can be confirmed.

When A*=1, the trend of Nusselt number by in-
creasing the Da number when C2 = 0 (Figs. (11-A) 
and (11-C)) is almost similar to A* = 0.1 (this simi-
larity was expected by comparison of dimensionless 
temperature profiles for these cases). However, for 
C2 = 1 (Fig. (11-B)), significant changes occur in 
Nusselt number trend by increasing the Da number, 
except for Br* = –0.1. Other modified Brinkman 
numbers have an upward trend, while for Br* = –0.1 
this trend is descending. Also, for all Br* when Da 
number tends toward infinity, the Nusselt number 
tends toward a constant number (Nu∞ = 8.88 for 
Br* = –0.1, Nu∞ = –5.33 for Br* = –1, Nu∞ = –0.3137 
for Br* = –10 and Nu∞ = –0.1534 for Br *= –20).

In addition, when modified Brinkman number 
reaches from –0.1 to –1, the Nusselt number sign 
for all Da numbers changes, which indicates that 
the direction of heat transfer changes from wall to 
fluid or vice versa.

When A* = 10, the Nusselt number trend as-
cends with the increase in Da number for all of Br*, 
in the absence of frictional heating term in the ener-
gy equation (i.e. C2 = 0) (Figs. (12-A) and (12-C)). 
In addition, when C2 = 0, the Nusselt number tends 
toward a constant number with the increase in Da 

number, for all Br*. (Nu∞ = 6 for C3 = 0 (Fig. (12-
A)) and Nu∞ = 6.858 for C3 = 1 (Fig. (12-C)).

When C2 = 1, the sign of Nusselt number for all 
Br* except –0.1 is negative and descends with in-
crease in Da number, while for Br* = –0.1 in Da = 
0.025 (Fig. (12-B)) and in Da = 0.0267 (Fig. (12-
D)) a sign change of Nusselt number occurred. This 
trend is almost in contrariwise trend of Nu number 
depicted in Fig. (10), and it is acceptable when di-
mensionless temperature profiles for A* = 0.1 and 
10 for small Da numbers, and when C2 = 1 are com-
pared. As may be seen in Figs. (6-A) and (6-C) for 
smaller Da numbers the dimensionless temperature 
profile is negative when A* = 0.1, and positive when 
A* = 10.

The equation below was considered for better 
investigation of the effect of the presence or ab-
sence of frictional heating term in Nusselt number:30

 0Nu Nu
Nu


d  (34)

Nu0 is the Nusselt number when C2 = 0 (in case 
when frictional heating term is ignored). In fact, δ 
values represent the deviation of Nusselt number in 
the case when frictional heating term is not consid-
ered.

Fig. (13) illustrates δ charts vs. Da numbers 
for different A* and Br* for two cases of the pres-

F i g .  1 2  – Variations of Nusselt number with Da for different Br* when A* = 10 and different C2 and C3
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ence and absence of heat generation term. The 
 negative values of δ are due to cooling process 
when Br*<0. This figure indicates that, if frac-
tional heating term is not considered, the Nusselt 
number for the cooling process is estimated to be 
lower.

As these figures depict, δ variations for all Br* 
in small Da numbers are more significant. While 
for higher Da numbers, it is negligible. This trend 
of δ for this range of Da numbers, especially for 
A* = 1 is in agreement with the results of Hung and 
Tso research for rectangular channel (Fig. (10)).30

F i g .  1 3  – Variations of δ with Da for different Brinkman numbers, A* and C3
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Trend of absolute values of δ by increasing Da 
numbers when A*>1 for all Br* is descending, while 
for A* = 1 the trend of absolute values of δ by in-
creasing Da numbers for Br* = –1 is ascending, and 
for other Br* values is descending. Also, when A*<1 
this trend is ascending for Br* = –0.1 and –1, and 
for other Br* values is descending.

Furthermore, for all very small absolute values 
of Br* (Br* = –0.001, –0.0001), the absolute values 
of δ by increasing Da numbers, gradually tend to-
ward zero. This confirms that for these Br* values 
there is no significant difference between Nu and 
Nu0 while this difference is significant for higher 
absolute values of Br*. In addition, the presence or 
absence of heat generation has no impressive effect 
on trends of δ versus Da by different values of A* 
and Br*.

The results of variations of δ by Da numbers 
especially for small Darcy numbers were validated 
by the results of reference,30 which are depicted in 
Fig. (14). As mentioned before, due to the non-exis-
tence of the heat generation parameter and constant 
permeability in the model used in the reference,30 
the amount of C3 and A* were chosen as zero and 1, 
respectively. This model was suggested for a rectan-
gular channel, but the trend of variations of δ with 
Da, especially for small Da numbers, is in accor-
dance with the present model. Nevertheless, there 
are some differences between these two models, 
which originate from their different physical char-
acteristics.

Fig. (15) shows the variations of δ with A* for 
different Darcy and modified Brinkman numbers. 
As mentioned in Fig. (13), for all values of Br*, 
variations of δ in smaller Darcy numbers were more 
significant, which is also observable in Fig. (15). 
The considerable point about Fig. (15) is the coales-
cence of variations of δ for Br* = –0.1 and –1 at 
specific values of A*. This phenomenon can be de-
scribed from Fig. (13). In these charts, by increas-

ing Da, the graph related to A *= 0.1 and 1 for 
Br* = –1 is descending, which decreases by en-
hancement of A*. Meanwhile, it will be ascending 
when A* = 10. Also, for Br* = –0.1, this special A* 
value is between 0.1 and 1. This demonstrated that 
when A* values are between 1 and 10 for Br* = –1, 
and when A* values are between 0.1 and 1 for 
Br* = –0.1, variations of δ with Da are like a straight 
line. As may be observed from Fig. (15), the value 
of this A* for Br* = –1 and C3 = 0 is exactly equal 
to 2, and when C3 = 1, it is around 2.3 (see Figs. 
(15-G) and (15-H), respectively), while for Br* = –0.1 
when C3 = 0 (Fig.(15-E)) and C3 = 1 (Fig. (15-F)) is 
equal to 0.2 and 0.25, respectively.

Furthermore, as the Br* values tend toward 
zero, the special A* values ( *

VA ) also tend toward 
zero. However, the absence of δ changes with Da 
for Br*>–1 (these figures are not included in this 
paper), in terms of absolute magnitude, for larger A* 
values, confirmed that these special A* values are 
directly related to how Br* values change. This rela-
tion can be considered for C3 = 0 with good accura-
cy as follows:

 * *  - 2  VA Br  (35)

Where *
VA  is the special value of A*. These 

special A* values indicate that Nusselt number will 
not change with Da variations by taking or not tak-
ing the fractional heating parameter in energy equa-
tion (Eq. (3)) and will be a constant value.

Conclusion

In this work, the effects of anisotropic flow 
permeability on convection inducted in a cylinder 
with internal heat generation for constant cooling 
heat flux boundary conditions have been examined 
in detail for fully developed flow. This kind of 
problem may occur in a fixed bed catalytic reactor 
with an exothermic reaction.

To evaluate the effect of the presence or ab-
sence of fractional heating and heat generation, as 
well as variations of Darcy numbers, Br* and A* on 
temperature profiles, Nusselt number and velocity 
profiles, a wide range of values for these parameters 
were considered.

For normalized velocity profiles, it was consid-
ered that by increasing A*, high velocity gradient 
appeared in the region close to the cylinder wall. 
This is the reason for the high heat generation re-
sulting from viscous dissipation, which occurs at 
regions close to the wall, especially for smaller val-
ues of Da and large values of A*.

The variation of Nu with A* as well as Da for 
different values of Br* when fractional heating and 
heat generation parameters are/are not considered in 

F i g .  1 4  – Comparison of results of variations of δ with Da 
when Br* = –1 with30
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F i g .  1 5  – Variations of δ with Da when Br *= –1
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the energy equation, shows that there is singularity 
in Nu at which the sign of heat transfer changes. 
These A* values in which the direction of heat trans-
fer were changed are designated by * . CA

To investigate the effect of the presence or ab-
sence of the frictional heating term on Nusselt num-
ber, a parameter δ was defined, which described the 
deviation of Nu for the case when the frictional 
heating term is not considered. By studying the 
variations of this parameter with Darcy number for 
different A* and Br* values, it was found that in very 
small Darcy numbers, variations of δ for all A* val-
ues were significant, but when Darcy number in-
creased, the rate of these variations decreased. For 
specific values of A* which is designated as *

VA , 
variations of δ with Da were zero. These special 
values of A* are equal to the double amount of Br* 
values, especially when heat generation parameter 
is not considered in the energy equation.
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N o m e n c l a t u r e

A* – directional permeability ratio parameter
*
CA  – critical directional permeability ratio parameter
*
VA  – special directional permeability ratio parameter

Br* – modified Brinkman number
c1, c2, c3, c4, c5 – coefficients in Eq. (32)
C1, C2, C3 – constant coefficients [0 and 1] in Eq. (3)
Cp – specific heat at constant pressure, J kg–1 K–1

Da – Darcy number
K1, K2 – flow permeability along the principle axes (m2)
K* – permeability ratio parameter (K1/K2)
K  – symmetrical second order permeability tensor
M – dimensionless viscosity parameter ( m  / μ)
Nu – Nusselt number
Nu∞ – Nusselt number in higher Da
P – pressure (Pa)
qw – constant wall heat flux, W m–2

'''q  – uniform heat generation, W m–3

r – coordinate normal to the surfaces of the channel
R – diameter of cylinder, m
r* – dimensionless coordinate in r direction
t1, t2, t3, t4, t5, t6 – coefficients in Eq. (23)
T – volume-averaged equilibrium temperature for 

both solid and fluid, K
Tw – wall temperature, K
T* – dimensionless temperature
T  – average temperature, K

*T  – dimensionless average temperature
V


 – superficial flow velocity victor
Vr – velocity in r-direction, m s–1

V* – dimensionless normalized velocity
Vz – velocity in z-direction, m s–1

zV  – average velocity, m s–1

W – coefficient in Eq. (30)
z – coordinate along the axis of the channel

G r e e k  l e t t e r s

α – dimensionless anisotropy factor
β – dimensionless term of heat flux and heat genera-

tion, Eq. (19)
γ – negative of the applied pressure gradient, Pa s kg–1

d – relative deviation of Nusselt numbers
e  – porosity
η – dimensionless parameter, Eq. (19)
q – orientation angle, 0 90q 
λ – dimensionless parameter, Eq. (19)
m  – viscosity of the fluid, kg m–1 s–1

m  – effective viscosity, kg m–1 s–1

ρ – fluid density, kg m–3

τ – coefficient in Eq. (30)
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