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In the first part of this paper it is shown how to use ear decomposition techniques in proving

existence and establishing lower bounds to the number of perfect matchings in lattice animals.

A correspondence is then established between perfect matchings in certain classes of benze-

noid graphs and paths in the rectangular lattice that satisfy certain diagonal constraints. This

correspondence is used to give explicit formulas for the number of perfect matchings in hexag-

onal benzenoid graphs and to derive some identities involving Fibonacci numbers and bino-

mial coefficients. Some of the results about benzenoid graphs are also translated into the con-

text of polyominoes.
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INTRODUCTION

A lattice animal is a 1-connected collection of congruent

regular polygons arranged in a plane in such a way that

two polygons are either completely disjoint or have a

common edge. In other words, lattice animals are 1-con-

nected subsets of regular tilings of the plane consisting

of finite unions of basic polygonal tiles where any two

tiles are either completely disjoint or share a whole

edge. Obviously, the three different regular tilings of the

plane give rise to three different classes of lattice ani-

mals. In this paper we are concerned with two of the

three classes, namely with the animals consisting of squ-

ares and of regular hexagons. The square animals are also

known as polyominoes, and the hexagonal ones, due to

their obvious ressemblance to benzenoid hydrocarbons,

as benzenoid systems.

To each lattice animal we can assign a correspond-

ing animal graph taking the vertices of polygons as the

vertices of the graph, and the sides of polygons as the

edges of the graph. The resulting graph is simple, planar,

and in the case of square and hexagonal animals, also bi-

partite. The non-bipartiteness of the graphs correspond-

ing to triangular animals is the main reason for leaving

them out of the scope of this paper, since the techniques

used here do not work for non-bipartite graphs. The ver-

tices of an animal graph lying on the border of the infi-

nite face are called external; other vertices (if any) are
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called internal. Borrowing a term from the chemistry of

aromatic hydrocarbons, we call the animal graphs with-

out internal vertices catacondensed. Otherwise, the graph

is pericondensed. In the rest of this paper, when refer-

ring to lattice animals we will, in fact, be referring to the

corresponding animal graphs.

In the following sections our attention will be (not

always fairly) divided between the hexagonal and the

square lattice animals. In section Lattice Animals and

Ear Decompositions we use certain decomposition tech-

niques to establish the existence of perfect matchings in

certain classes of lattice animals and to derive simple

lower bounds on their number. Then we proceed, in sec-

tion Benzenoid Parallelograms, by demonstrating a cor-

respondence between perfect matchings in some special

classes of hexagonal animals and lattice paths in rectan-

gular lattices. The correspondence is then used to obtain

explicit formulas for the number of perfect matchings in

some classes of hexagonal animals in terms of some well-

-known combinatorial sequences, and to establish cer-

tain identities involving Fibonacci numbers. We conclude

with a section on polyominoes, using the corresponden-

ce with lattice paths to show how Catalan, Schröder and

Delannoy numbers appear as the enumerating sequences

of perfect matchings in some special polyominoes.

LATTICE ANIMALS AND EAR DECOMPOSITIONS

A perfect matching in a graph G is a collection M of

edges of G such that every vertex of G is incident with

exactly one edge from M. An edge e of G which appears

in some perfect matching of G is called allowed; other-

wise, it is forbidden. A graph G is elementary if its al-

lowed edges form a connected subgraph of G. For bipar-

tite graphs, elementarity is equivalent to the fact that all

its edges are allowed.10

There are many criteria for deciding if a given lat-

tice animal possesses a perfect matching. We present

here some results that follow from the ear decomposi-

tion techniques. We refer the reader to Ref. 10 for a full

description of these techniques.

Let G be a bipartite graph and G' subgraph of G. An

ear of G relative to G' is any odd-length path in G hav-

ing both endpoints – but no interior point – in G'. A bi-

partite ear decomposition of G starting with G' is a rep-

resentation of G in the form G = G'+P1+…+Pk, where P1

is an ear of G'+P1 relative to G', and Pi is an ear of

G' + P1+ … +Pi relative to G'+P1+…+Pi–1 for 2 � i � k.

An ear decomposition of a given graph is not uni-

que.

Proposition 2.1

Every catacondensed lattice animal has a bipartite ear

decomposition starting with any edge.

Proof

Every catacondensed benzenoid graph with h hexagons

can be constructed starting from an arbitrary edge, add-

ing an ear of length five to obtain the first hexagon and

then adding one hexagon at every further step. But add-

ing a hexagon means adding only five new edges to the

graph already constructed. It is obvious that these edges

make an ear in the above sense. So, every catacondensed

benzenoid has a bipartite ear decomposition starting from

any of its edges. Similarly, every catacondensed polyo-

mino can be constructed starting from a single edge and

adding ears consisting of three edges, one at a time.

Hence, the claim is also valid for polyominoes. �

We refer the reader to the p. 124 of Ref. 10 for the

proof of the fact that a graph is elementary bipartite if

and only if it has a bipartite ear decomposition. Since

each ear in a bipartite ear decomposition contributes at

least one new perfect matching, we get a lower bound

for the number of perfect matchings in a catacondensed

lattice animal.

Corollary 2.2

There are at least h + 1 perfect matchings in a catacon-

densed lattice animal with h basic polygons. �

The lower bound from the Corollary 2.2 is a sharp

one, in the sense that there are catacondensed benzeno-

ids for which this bound is attained. Namely, it is easy to

see that a straight linear chain of h hexagons contains

exactly h+1 perfect matchings. In the case of polyomi-

noes, the lower bound is attained for the class of zig-zag

polyominoes, like the one shown in Figure 1.

There is a vast literature on the subject of enumera-

tion of perfect matchings in benzenoid graphs. For a re-

view, the reader should consult Ref. 3. The polyominoes

have so far attracted much less attention.

Elementary benzenoid graphs are also called normal

in chemical literature. If we adopt the same terminology

for the polyominoes, it is easy to show that the result

and the lower bound of Corollary 2.2 remain valid also

for the case of normal lattice animals. According to The-

orem 7.6.2 of Ref. 10, any elementary bipartite graph on

p vertices and q edges contains at least q–p+2 different

perfect matchings. The claim now follows using Euler

formula q+1 = p+h. Hence, we have the following result.
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Corollary 2.3

There are at least h+1 different perfect matchings in a

normal lattice animal with h polygons. �

This result is a generalization of Theorem 13 of Ref. 3.

Non-elementary benzenoid graphs are, in chemical

literature, called essentially disconnected. They contain

edges that do not appear in any perfect matching. The

linear lower bound of Corollary 2.3 is not valid for the

case of non-normal benzenoids. In Figure 2 we show an

essentially disconnected benzenoid with 11 hexagons and

only 9 perfect matchings. From this example it is easy to

see that there are essentially disconnected benzenoids

with arbitrary many hexagons and no more than 9 per-

fect matchings.

BENZENOID PARALLELOGRAMS

Let us now consider one simple class of benzenoid graphs,

benzenoid parallelograms.

A benzenoid parallelogram Bm,n consists of m � n

hexagons, arranged in m rows, each row containing n

hexagons, shifted for half a hexagon to the right from

the row immediately below.

Benzenoid parallelograms are not catacondensed,

but we can still use the ear decomposition technique to

show that they have perfect matchings.

Proposition 3.1

Every benzenoid parallelogram Bm,n is an elementary

graph, and it contains at least mn + 1 perfect matchings.

Proof

We shall display a bipartite ear decomposition of Bm,n

with exactly mn +1 ears. Starting from the rightmost

hexagon in the lower-most row, add the hexagons to the

left of it, one at a time. Each of them will contribute one

5-edge ear to the already constructed graph. After com-

pleting the lower-most row, start adding hexagons in the

row immediately above it, again from the right to the

left. The rightmost one will contribute a 5-edge ear, and

every other will add a 3-edge ear to the already con-

structed graph. Repeating the same procedure for all the

other rows, we get an ear decomposition of Bm,n with ex-

actly mn + 1 ears, counting the first hexagon as two ears.

The claim now follows, since every ear in the ear de-

composition brings at least one new perfect matching.10

�

An example of a perfect matching in B3,4 is shown

in Figure 4.

We see that this matching contains exactly one verti-

cal edge from each row. We can prove that this is always

the case.

Lemma 3.2

Every perfect matching in a benzenoid parallelogram

Bm,n contains precisely one vertical edge of each row.

Proof

Let us consider a benzenoid parallelogram Bm,n and a

perfect matching M in Bm,n. The vertex set of Bm,n is par-

titioned in two sets, W (for white) and B (for black) in

such a way that the top vertices of all hexagons are white.

Suppose that there is a row, say the i-th one, such that no

vertical edge from it is contained in M. By removing all

vertical edges of this row, we decompose the parallelo-

gram Bm,n into the components B+ and B–. An example

of such procedure is shown in Figure 5.

Each of deleted edges connects a black vertex of B+

with a white one of B–. Further, in B+ the number of

black vertices exceeds the number of white ones by pre-

cisely one (and conversely in B–). Hence, any perfect

matching in Bm,n must contain precisely one vertical edge

from the considered row. �
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Figure 2. An essentially disconnected benzenoid with 11 hexagons
and only 9 perfect matchings.

Figure 3. A benzenoid parallelogram.

Figure 4. A perfect matching in B3,4.
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Figure 5. With the proof of Lemma 3.2.



So, every perfect matching M of a benzenoid paral-

lelogram Bm,n contains exactly one vertical edge from

each row of Bm,n. There are n+1 vertical edges in every

row of Bm,n. Label them consecutively from the left to

the right with integer labels 0,1,2, …, n. For a given per-

fect matching M, let ip be the label of the vertical edge

from the p-th row contained in M.

Lemma 3.3

The sequence (i1, …, im) is non-decreasing for every

perfect matching M of a benzenoid parallelogram Bm,n.

Proof

Consider a perfect matching M in Bm,n and suppose that

there is a p � �m–1� such that ip > ip+1. Remove all verti-

cal edges from the p-th row which are to the left from ip.

(We count the rows from bottom to top.) The remaining

graph, B'm,n as shown in Figure 6, will have a pendant

vertex. Denote this vertex by a. Consider the shortest

path connecting the vertex a with x, the lower endpoint

of the vertical edge ip+1 from M, and denote it by P. No

vertex of P–�x� is covered by a vertical edge of M, and

yet, as no edges from M were removed, all vertices of

p–�x� must be covered by some edge of M. But the car-

dinality of V(P)–�x� is necessarily odd and we have ar-

rived at a contradiction. �

Corollary 3.4

Let M be a perfect matching in Bm,n containing the verti-

cal edge ip in the row p. Then the part of M lying in the

rows p+1,..., m, left from their respective ip-th vertical

edges is uniquely determined. Similarly, the part of M

lying in the rows 1,..., p–1, right to their respective ip-th

rows is uniquely determined.

Proof

Let us first consider the part of Bm,n above and left from

the ip-th vertical edge of the p-th row. No vertical edge

from this part may be in M, and the conditions on the

boundary force both non-vertical edges on the left side

of every hexagon in this part of Bn.m to be in M. A simi-

lar argument holds for the part of Bm,n below and right of

the considered vertical edge. �

Proposition 3.5

There is a bijection between the set of all perfect match-

ings in Bm,n and the set of all non-decreasing sequences

of length m with elements from �0,1,... n�.

Proof

It follows from Lemma 3.3 and Corollary 3.4 that the

positions of vertical edges in a perfect matching uniquely

define a non-decreasing sequence of length m with ele-

ments from �0,1,... n�. To prove the other part, take a

nondecreasing sequence (i1, i2,..., im) with elements from

�0,1,...,n� and construct a matching in Bm,n by taking the

vertical edge ip in the row p. Denote this matching by V

and suppose that there are two different perfect match-

ings, M' and M'', such that V � M', V � M''. Consider

their symmetric difference M'�M''. Any edge from M'�M''

must be non vertical. By Corollary 3.4, no edge of M'�M''

may lie left and above of any edges of V. Similarly, no

such edges can exist right and below the edges from V.

The only remaining possibility is that they are on paths

connecting the upper end of the vertical edge ip with the

lower end of the edge ip+1. But all such paths must have

an even number of inner vertices, and their perfect ma-

tchings are unique. So, we have M'�M'' = 	, and hence

M'=M''. Therefore, each choice of m vertical edges with

nondecreasing labels defines a unique perfect matching

M of Bm,n. �

CORRESPONDENCE WITH LATTICE PATHS

A lattice path of length n between the points P0 and Pn in

the (x,y) coordinate plane is any sequence P of n seg-

ments (P Pj j
1 ) j

n

�1 both of whose endpoints have integer

coordinates. The segment P Pj j
1 is called the j-th step of

the path P. By imposing various restrictions on the size

and orientation of steps, on the initial and final points,

and on the areas of the lattice that must be visited or

avoided by the path, we obtain different classes of lattice

paths. We consider here lattice paths in a rectangular lat-

tice with integer coordinates from (0,0) to (n,m) with

steps of type (1,0) and (0,1). Denote the set of all such

paths with Pn.m.

Proposition 4.1

There is a one-to-one correspondence between the set of

all lattice paths from (0,0) to (n,m) with steps (1,0) and

(0,1) and the set of all nondecreasing sequences of length

m with elements from �0,...,n�.

Proof

Let us take a lattice path from Pn.m. It has m+n steps, m

of them vertical (i.e. of type (0,1)). By writing down

their abscissas, we get a nondecreasing sequence of length
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m with elements from �0, ..., n�, and the correspondence

is obviously injective. On the other hand, take a nonde-

creasing sequence of length m with elements from �0, ...,

n� and construct a lattice path starting from (0,0) with

vertical steps connecting the points (ij, j–1) and (ij, j) for

j = 1, ..., m. By inserting horizontal steps from (ij, j) to

(ij+1, j), j = 1, ..., m–1 and the steps from (0,0) to (i1, 0)

and (0,1) and from (im, m) to (n, m), if needed, we get a

lattice path from (0,0) to (n, m) with steps (1,0) and (0,1),

and the correspondence is again injective. �

Theorem 4.2

There is a one-to-one correspondence between the set of

all perfect matchings in a benzenoid parallelogram Bm,n

and the set of all lattice paths from (0,0) to (n, m) with

steps (1,0) and (0,1).

Proof

Follows from combining Proposition 3.5. and Propositi-

on 4.1. �

An example of this correspondence is illustrated in

Figure 7.

CONSEQUENCES AND APPLICATIONS

The most obvious consequence of Theorem 4.2 is an ex-

act formula for the number of perfect matchings in Bm,n.

The result was obtained long time ago by Gordon and

Davison, using essentially the same correspondence, but

in a less formal manner.3,7

Proposition 5.1.

K(Bm,n)=
m n

n

m n

m

�

�
��

�

�
�� �

�

�
��

�

�
�� �

The Theorem 4.2. also enables us to get exact formulas

for number of perfect matchings in various benzenoid

graphs which may be obtained from benzenoid parallel-

ograms by deleting some subgraphs.

As a first example, consider the benzenoid graph Tn

consisting of n rows of hexagons, with the number of

hexagons in a row decreasing by one from n in the low-

er-most row to one in the uppermost row, each row shift-

ed for one and a half hexagon to the right from the row

immediately below it. An example of such graph is

shown in Figure 8.

Proposition 5.2

K(Tn) = Cn+1,

where Cn+1 is the (n+1)-st Catalan number.

Proof

Using Theorem 4.2. we can see that every perfect

matching in Tn corresponds to a lattice path from (0,0)

to (n+1, n+1) with the steps (1,0) and (0,1) that always

remains below the line y=x. Such paths are known as

Dyck paths, and it is well known (see e.g. Ref. 15) that

the number of Dyck paths on 2n steps is Cn+1. �

The Catalan numbers, 1, 1, 2, 5, 14, 42, 132,... are

one of the most ubiquitous sequences of enumerative

combinatorics. They appeared already in the 18th cen-

tury, in works of Euler, and got their name after a Bel-

gian mathematician E. C. Catalan, who wrote a paper

about them in 1838.1 Since then, more than a hundred

different families of objects counted by Catalan numbers

have been found.15 Certainly, this is not the first appear-

ance of Catalan numbers in a chemical context. The best

known example of their occurrence is as the number of

ways to couple 2n electrons in 2n simply occupied or-

bitals to form a singlet wave-function. They also arise in

the enumeration of Morgan trees4 and in polymer statis-

tics.

The result of Proposition 5.2 has been obtained in

Ref. 16. Also, the triangular benzenoids Tn have not

been overlooked by authors of Ref. 3. They give explicit

formulas for K(Tn), obtained by deriving recurrence re-

lations for broader classes of benzenoids and then spe-

cializing certain parameters. Using the correspondence

just established, all these results follow at a glance.

Let us now use some known results about enumera-

tion of lattice paths with diagonal constraints.

Proposition 5.3

Let W(n, m, r, s) denote the number of lattice paths from

(0, 0) to (n, m) not touching the lines y = x – r and

y = x + s, for some positive integers r, s. Then
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Figure 7. A perfect matching in Bn.m and the corresponding lattice
path.

Figure 8. A triangular benzenoid.
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where t = r + s. �

For the proof of this proposition, one can see Ref. 8.

Many other results about lattice paths between diagonal

boundaries can be found in Ref. 11.

Prohibiting the lattice paths from touching the lines

y = x – r and y = x + s effectively confines them to the

hexagonal portion of the lattice, delimited by the said

two lines and the lines x = 0, x = n, y = 0 and y = m. By

replacing each unit square of the lattice which is whole

contained in this area with a regular hexagon, we get a

benzenoid graph whose every perfect matching corres-

ponds to a lattice path confined between the lines y = x – r

and y = x + s. Let us denote such a graph, determined by

the parameters n, m, r and s by Bn,m,r,s. An example of

such correspondence is shown in Figure 9.

Corollary 5.4

K(Bn,m,r,s) =
m n

m

m n
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where t = r + s.

Proof

Follows by combining the Theorem 4.2 and Proposition

5.3. �

The following results are obtained by specializing

certain parameters in Corollary 5.4.

Corollary 5.5

K(Bn,m,r,s) =
m n

m

m n

n s

�

�
��

�

�
�� 


�

�



�
��

�

�
��

for m–n � s � m, r � n. �

Corollary 5.6

K(Bn,n,2,2) = 2n;

K(Bn,n,3,3) = 2 � 3n;

K(Bn+1,n,3,3) = 3n;

K(Bk+1,k–1,3,3) = 3k–1. �

The correspondence can also be used in the opposite di-

rection: By taking some known explicit formulas for

number of perfect matchings in certain benzenoid graphs,

we can derive some curious identities. Here are two ex-

amples involving Fibonacci numbers.

Corollary 5.7

F2k =
2

1

2

1 5

2

1 5
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Proof

It is well known3 that the number of perfect matchings

in a zig-zag chain with h hexagons is Fh+2. But the zig-

-zag chain with k–2 hexagons can be obtained as Bn,m,r,s,

taking n = k + 1, m = k – 1, r = 3, s = 2. The claim now fol-

lows from Corollary 5.4. �

By the same reasoning, we can prove the following

result.

Corollary 5.8

F2k+1 =

2
2

2

5

2

2 5

2
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We conclude our review by presenting two explicit for-

mulas derived from our correspondence, that are not in

Ref. 3.
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Corollary 5.9

K(Bn+1,n,5,5) = 5n/2Fn+1,

for n even. �

Corollary 5.10

K(Bn+3,n,5,5) = 5(n+1)/2Fn+1,

for n odd. �

In recent years, perfect matchings in benzenoids

have been intensively studied for their connections with

tilings of »Aztec diamonds« and plane partitions,12 and

many interesting results for special cases have been ob-

tained (see, e.g. Refs. 2 and 5). Aztec diamonds also ap-

pear in our next section.

PERFECT MATCHINGS IN SOME CLASSES OF
POLYOMINOES

We have already mentioned that the results expressing

the number of perfect matchings in various special clas-

ses of polyominoes are far less abundant than those for

hexagonal animals. The best known, and historically the

most important, is the formula for the number of perfect

matchings in a rectangular grid of m � n vertices (i.e., in

a rectangular polyomino of (m–1) � (n–1) squares):

K(Lm–1,n–1) = 2mn/2� �
k

m

l

n k

m+

l

n+� �
�

�

��
�

	
1 1

1 4

2 2

1 1
cos cos

/
p p

For more information about this result we refer the re-

ader to Ref. 10, p. 329. By setting one of the parameters,

say n, to 2, we obtain the ladder graph with m rungs, Lm.

It is easy to check that K(Lm)=Fm+1, where Fm+1 denotes

the (m+1)-st Fibonacci number.

Some other classes of polyominoes, most of them

with the square symmetry, were considered by Hosoya

in his 1986 paper.9 Among them were the already men-

tioned Aztec diamonds. An Aztec diamond is a polyo-

mino of the type shown in Figure 10. It has 2n–1 rows of

squares, the number of squares increasing by 2 from 1 in

the uppermost row to 2n–1 squares in the middle row,

and then decreasing again to 1 in the lowermost row.

Hosoya stated, without proof, that the number of

perfect matchings in an Aztec diamond An is given by

K(An) = 2(
n � 1

2 ). The first proof appeared in 1991, in a

much cited paper.6 By doubling the middle row in an

Aztec diamond one obtains an augmented Aztec dia-

mond; a graph of this type is shown in Figure 11. We de-

note such graph by AAn.

It was shown by Sachs and Zernitz in Ref. 13 that

there is a one-to-one correspondence between the set of

all perfect matchings in an augmented Aztec diamond

AAn and the set of all lattice paths from (0,0) to (2n,0)

using only the steps of the types (1,1), (1,–1), and (2,0).

Such lattice paths are known in combinatorial literature

as Delannoy paths, and their enumerating sequence Dn

as the sequence of (central) Delannoy numbers. The se-

quence begins as 1,3,13,63,321,1683.... From its gener-

ating function D(x) =
1

1 6 2� �x x
it can be deduced that Dn =

Pn(3), where Pn(x) denotes the n-th Legendre polyno-

mial, and that the sequence has the asymptotic behavior

of (3 + 2 2)n.

By restricting the paths of Delannoy type to the up-

per half-plane, we get a class of paths known as Schrö-

der paths. Their enumerating sequence, (large) Schröder

numbers rn, have a number of other combinatorial inter-

pretations (see Ref. 15, Ex. 6.39), and their history goes

all the way back to 1870.14 It can be shown, following

the approach of Sachs and Zernitz, that large Schröder

numbers also enumerate the perfect matchings in the

graph obtained from an augmented Aztec diamond by

taking only its upper half. We denote such a polyomino

by Zn and call it a ziggurath of order n. A perfect match-

ing in a ziggurath Zn and the corresponding Schröder

path are shown in Figure 12a). The correspondence be-

comes more clear if the images are superposed, as in Fi-

gure 12b).

The superposition makes particularly clear the rela-

tionship between the vertical edges in a perfect matching

and the non-horizontal steps in the corresponding Schrö-

der path.
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Figure 10. An Aztec diamond.

1

2
.

.

n

.

Figure 11. An augmented Aztec diamond.



As our last task, we consider the perfect matchings

in a ziggurath Zn that have exactly 2n vertical edges. (It is

clear from the above correspondence, and it can be also

shown using parity arguments, that no perfect matching

in Zn can contain more than 2n vertical edges.) We call

such perfect matchings all-vertical. Such perfect match-

ings correspond to the Schröder paths without horizontal

steps, and these, in turn, are nothing else but the Dyck

paths on 2n steps, reflected across the line y = x and ro-

tated 45 degrees clockwise. Hence, we have the follow-

ing result:

Proposition 6.1

The number of all-vertical perfect matchings in a ziggu-

rath Zn is the n-th Catalan number Cn. �

The five all-vertical perfect matchings of Z3 and the

corresponding Schröder paths are shown in Figure 13.

In a similar way it can be shown that the number of

all-vertical perfect matchings in an augmented Aztec di-

amond AAn is equal to (
2
2
n
). Hence, perfect matchings in

zigguraths and in augmented Aztec diamonds provide

combinatorial interpretations for the well-known pair of

formulas

rn =
n k

n k
C

k

n

k

�






�
��

�

�
��

�
�

0

Dn =
n k

n k

k

kk

n �






�
��

�

�
��



�
��

�

�
��

�
�

0

2
.

From Propositions 6.1 and 5.2 it follows that there

must exist a bijection between perfect matchings in a trian-

gular benzenoid Tn and perfect matchings in a ziggurath

Zn+1. We invite the reader to work it out explicitly. Tak-

ing this bijection as the starting point, it is possible to

derive the results about the number of perfect matchings

in zigguraths and augmented Aztec diamonds in an al-

ternative way.

The author is indebted to the anonymous referees

for their careful reading of the manuscript and valuable

suggestions.
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SA@ETAK

Savr{eno sparivanje kod re{etkastih `ivotinja i re{etkastih putova uz ograni~enja

Tomislav Do{li}

U prvom je dijelu ~lanka pokazana uporaba tehnika u{nog rastava u dokazivanju postojanja i izvo|enju

donjih ocjena broja savr{enih sparivanja u benzenoidnim grafovima i poliominima. Nakon toga je uspostavljena

korespondencija izme|u savr{enih sparivanja u nekim klasama benzenoidnih grafova i putova u pravokutnim

re{etkama koji zadovoljavaju odre|ena ograni~enja zadana dijagonalama. Korespondencija je zatim rabljena za

dobivanje eksplicitnih formula za broj savr{enih sparivanja u benzenoidnim grafovima i za izvo|enje identiteta

koji uklju~uju Fibonaccijeve brojeve i binomne koeficijente. Neki od rezultata za benzenoidne grafove su zatim

prevedeni u kontekst poliomina.

PERFECT MATCHINGS IN LATTICE ANIMALS 259

Croat. Chem. Acta 78 (2) 251–259 (2005)


