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Abstract. We discuss the concept of what we refer to as semi-commuting linear differential
operators. Such operators hold commuting operators as a special case. In particular, we
discuss a heuristic by which one may construct such operators. Restricting to the case
in which one such operator is of degree two, we construct families of linear differential
operators semi-commuting with some named operators governing special functions (with a
focus on the hypergeometric case, as it holds many other cases as reductions); operators
commuting with such special degree two operators will necessarily be contained in these
families. In the partial differential operator case, we consider examples in the form of
the wave equation with a variable wave speed, and then hypergeometric operators on two
variables (such operators define Appell functions).
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1. Introduction

The theory of commuting differential operators has been an important area of study
over the last hundred years. The basic results for ordinary differential operators
were first laid out in the three classical papers [8] - [10] authored by Burchnall and
Chaundy. The main theorem established by Burchnall and Chaundy is as follows:
If P and Q are ordinary differential operators of orders m and n respectively, and
[P,Q] = 0, then P and Q satisfy an algebraic identity F (P,Q) = 0 of degree n in P
and m in Q. In the case when m and n are co-prime, then F (P,Q) = 0 implies that
[P,Q] = 0.

With the development of algebraic geometry in the 1960’s, the study of the ge-
ometric properties of such curves F (P,Q) was furthered. Algebro-geometric results
like those discussed in Mumford [21] generalize the results discussed in [8] - [10]. Let
k be any field of characteristic zero, let k [[t]] be the ring of formal power series over
k, and let k[[t]]

[
d
dt

]
be the ring of formal linear ordinary differential operators over

k. Consider two sets of data:
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Data A [Algebraic Data] consists of:

(I) a complete curve X over field k;

(II) a smooth k-rational point P ∈ X and an isomorphism Tx,p
∼= k, and;

(III) a torsion-free rank one sheaf F on X such that h0(F) = h1(F) = 0.

Data B [Differential Operator Data] consists of commutative subrings k ⊂ R ⊂
k[[t]]

[
d
dt

]
such that there exist elememts A,B ∈ R of the form

A =

(
d

dt

)α

+ a1(t)

(
d

dt

)α−1

+ · · ·+ aα(t),

B =

(
d

dt

)β

+ b1(t)

(
d

dt

)β−1

+ · · ·+ bβ(t),

where α and β are coprime. Two subrings R1, R2 ⊂ k[[t]]
[
d
dt

]
are identified if for

some u(t) ∈ k[[t]] with u(0) ̸= 0 we have that R2 = u(t) ◦R1 ◦ u−1(t).
Krichever shows that there is a natural bijection between the set Data A of

algebraic data, and the set Data B of differential operator data. (See, for instance,
[15, 16].) See also [20] for a discussion of the difference operator case.

Also, while a categorical presentation was not explicitly employed in Mumford
[21], it may help one to “step-back” from the details and view the underlying themes
present in the theory. Note that the spectrum of a commutative ring R denoted as
Spec(R) is defined to be the set of all proper prime ideals of R. If P is a point in
Spec(R) (that is, a prime ideal), then the stalk at P equals the localization of R at P ,
and this is a local ring. Hence, Spec(R) is a locally ringed space. In a sense, then one
might consider Spec (as a functor) a mapping (equivalence, really) between our data
sets: the functor Spec yields an equivalence between the category of commutative
rings (or, the restriction to commutative rings of differential operators, as far as we
are concerned) and the category of affine schemes (which provide, up to isomorphism,
our algebraic data, as locally ringed spaces).

As can easily be seen from the literature in this area over the last 30 years,
an understanding of commuting and non-commuting differential operators is useful.
Most likely the best application explored recently is the construction of Lax pairs
from certain non-commuting differential operators. Lax pairs allow for one to un-
derstand a potentially complicated nonlinear partial differential equation in terms
of two potentially better behaved differential equations. As such, formulating a non-
linear model in terms of Lax pairs has become a frequent practice. Some examples
of nonlinear equations which have been formulated via a Lax pair include the Sine-
Gordon equation, the KdV hierarchy (and hence the standard Korteweg de Vries
equation), and several instances of the nonlinear Schrödinger equation, to name a
few. Excellent reviews and recent work in the area include [11, 28, 27, 29].

While a number of important differential operators in mathematical physics have
been shown to commute with some class of operators, it is important to note that
many do not. Indeed, perhaps the most famous of such relations is due to the
Heisenberg uncertainty principle

[x̂, p̂] = i~
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from quantum mechanics. For some modern examples of non-commuting operators
of physical relevance and their applicability, see [2, 18, 19, 4, 13, 14, 7, 26].

While non-commuting operators are of sufficent interest in and of themselves, in
some cases there are certain symmetries or degeneracies which permit operators to
“almost” commute, or, as we shall discuss, “semi-commute”. In essence, suppose P
is a differential operator of degree m and Q is an operator of degree n. Then the
commutator [P,Q] is, in general, an operator of degree m + n − 1. Let us fix the
choice of P . Then, how can one select Q so that the highest order terms in [P,Q]
vanish? This will be the focus of the present paper. Whereas P and Q might not
commute, we show that Q may be selected so as to reduce the order of [P,Q] to
strictly less than m + n − 1, under certain conditions. One may form the set of all
such operators Q, and we say that such operators semi-commute with P . From this
set of operators, one may then search for operators which commute with P ; as such
a set will be much smaller than the set of all degree n operators Q, searching within
such a set for Q commutative with P is much more efficient.

In Section 2, we shall discuss the notion of semi-commuting ordinary differential
operators. We provide theorems on the construction of semi-commuting operators
for monic P in the case where P and Q have analytic coefficients. Most of the mate-
rial in this section is known for the restricted case of commuting operators, and can
be omitted by those familiar with this area. However, this material will be useful in
the following sections, and is included for completeness. In Section 3, we consider
the case of ordinary differential operators with singular coefficients, and show that
operators Q which semi-commute with P preserve the singular structure of P . In
Section 4, we make some remarks concerning semi-commuting partial differential
operators in many variables. We then turn our attention to some applications in
Section 5, considering Airy, Bessel and Hypergeometric operators to demonstrate
the construction of semi-commuting operators for in the ordinary case. We also dis-
cuss cases for which ordinary differential operators locally commute. Meanwhile, in
order to demonstrate the results for partial differential operators, we consider Appell
operators (a generalization of the 2F1 Hypergeometric operator to two variables).
Finally, in Section 6 we provide some discussions on difficulties extending the results
to infinite dimensional operators and nonlinear operators.

2. Semi-commutative operators: the ordinary case for suffi-
ciently differentiable coefficients

Here we introduce the notion of ordinary differential operators which semi-commute.
In general, for ordinary differential operators P and Q of degrees m ≥ 2 and n, the
commutator [P,Q] is an ordinary differential operator of degree m + n − 1. Fix P .
Then, if Q is chosen such that the degree of [P,Q] is less than or equal to m − 2
(as we are free to select the n + 1 variable coefficients of Q) we say that P and Q
semi-commute. For arbitrary operator P , often the best we can do is to select an
operator Q which semi-commutes with P . If additional conditions hold, we show
that P and Q commute. Again, most of the material in this section is known for
the restricted case of commuting operators, and can be omitted by those familiar
with this area. However, this material will be useful in the following sections, and
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is included for completeness.
Let us introduce some notation. Let Λk,h denote the set of degree k ordinary

differential operators with variable coefficients which are all h times continuously
differentiable, that is

Λk,h def
=

{
L | L =

k∑
i=0

ai(x)D
i, ai ∈ Ch(R)

}
. (1)

We shall denote the set of degree k ordinary differential operators with variable
coefficients which are all smooth (C∞(R)) by Λk,∞.

Remark 1. The following properties are apparent:

1. Λk,0 ⊃ Λk,1 ⊃ Λk,2 ⊃ · · · ∀k ≥ 0,

2. Λk,∞ ⊂ Λk,h ∀k ≥ 0 ∀0 ≤ h < ∞,

3. Λ0,h ⊂ Λ1,h ⊂ Λ2,h ⊂ · · · ∀k ≥ 0.

Let Γk(P ) denote the set

Γk(P )
def
=

{
L | [P,L] ∈ Λk,0

}
. (2)

Meanwhile, define the set Γ∗(P ) by

Γ∗(P )
def
= {L | [P,L] = 0} . (3)

Thus, Γk(P ) denotes the set of all ordinary differential operators L such that [P,L]
is a k-jet of some function of D.

Remark 2. The following properties are apparent:

1. Γ0(P ) ⊂ Γ1(P ) ⊂ Γ2(P ) ⊂ · · · ,

2. Γ∗(P ) ⊂ Γk(P ) ∀k≥0.

Proposition 1. Let P ∈ Λm,n, Q ∈ Λn,m. Then, [P,Q] ∈ Λm+n−1,0, Q ∈
Γm+n−1(P ), and P ∈ Γm+n−1(Q).

Proof. This follows from the above definitions.

Definition 1. Let P ∈ Λm,n for m ≥ 2, n ≥ 1. For some Q ∈ Λn,m, if [P,Q] ∈
Λm−2,0, then we say that P and Q semi-commute.

Then, we have

Theorem 1 (Semi-commutativity of P and Q). Given monic P ∈ Λm,n, we may, in
principle, construct an (m − 1)(n + 1) parameter family of (not necessarily monic)
Q ∈ Λn,m such that P and Q semi-commute.
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Proof. It is sufficient to consider

P = Dm + pm−1(x)D
m−1 + · · ·+ p1(x)D + p0(x), (4)

as P may always be made monic. By assumption, pj ∈ Cn(R). Then, consider

Q = qn(x)D
n + · · ·+ q1(x)D + q0(x), (5)

where the qj ’s are functions qj ∈ Cm(R) which are to be determined. Clearly,
[P,Q] ∈ Λm+n−1,0, and in particular,

[P,Q] =
m+n−1∑
k=0

Nk[qn, . . . , q1, q0]D
k, (6)

where the Nk’s are linear functions of the qj ’s and their derivatives up to order m−1.
Explicitly, after some tedious computation, we find that

Nχ =

χ∑
η=0

pη(x)

η∑
ξ=0

(
η

ξ

)
Dη−ξqχ−η(x)− qχ−η(x)

χ−η∑
ξ=0

(
χ− η

ξ

)
Dχ−η−ξpη(x)


×I1(η)I2(χ− η),

(7)

where I1(y) = 1 if y ≤ m and I1(y) = 0 for y > m, while I2(y) = 1 if y ≤ n
and I2(y) = 0 for y > n are indicator functions which prevent us from counting
extraneous terms (we have summed an array along the diagonal).

Consider the system of n+ 1 linear differential equations

Nm+n−1[qn, . . . , q1, q0] = 0

Nm+n−2[qn, . . . , q1, q0] = 0
...

Nm−2[qn, . . . , q1, q0] = 0,

(8)

for n + 1 unknown functions qn, . . . , q0. From the equations derived above, we see
that Nm+n−1−ℓ is a (m − 1)th order linear ODE in qn−k. In the general case, we
may always express this as a system of (m− 1)(n+ 1) first order linear differential
equations. By assumption, all coefficients are at worst C0(R), so a solution to the
system in the form of an initial value problem exists and is unique. Such a system will
then admit a solution q̃n(x;βn,1, . . . , βn,m−1),...,q̃0(x;β0,1, . . . , β0,m−1), where each
qk depends on m − 1 free parameters; let βi,j ∈ B ⊆ R(m−1)(n+1). Such solutions
identically satisfy (8). So, taking

Q = q̃n(x)D
n + · · ·+ q̃1(x)D + q̃0(x), (9)

we see that

[P,Q] =

m−2∑
k=0

Nk[q̃n, . . . , q̃1, q̃0]D
k, (10)

hence [P,Q] ∈ Λm−2,0.
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Corollary 1 (Commutativity of P and Q). For Q taken in the proof of Theorem
2.5, if the additional conditions

Nm−2[q̃n, . . . , q̃1, q̃0] = 0

Nm−3[q̃n, . . . , q̃1, q̃0] = 0
...

N0[q̃n, . . . , q̃1, q̃0] = 0,

(11)

hold, then [P,Q] = 0; that is, P and Q commute.

Note that requiring Nk = 0 for all k results in an overdetermined system for the
qk’s; the additional conditions listed here are not likely to hold in general. However,
as Nm−3, . . . , N0 depend on the m(n+ 1) parameters βk,j , such parameters may be
selected to permit conditions (11) in specific special cases.

For P ∈ Λ1,n, semi-commutativity of P and Q ∈ Λn,1 is equivalent to commuta-
tivity of such P and Q. That is to say, all first order ordinary differential operators
P = D + p0(x) commute with a differential operator Q if and only if P and Q
semi-commute. In the case P = D+ p0(x), from (7) we have the system of precisely
n+ 1 linear ODEs

Dqj(x) + p0(x)qj(x) = 0 for all j = 1, 2, . . . , n,

Dq0(x) =
n∑

k=1

qk(x)D
kp0(x).

(12)

The solution to this system is given by

qj(x) = βj exp

(
−
∫ x

0

p0(t)dt

)
for all j = 1, 2, . . . , n,

q0(x) = β0 +

∫ x

0

exp

(
−
∫ t

0

p0(τ)dτ

){
n∑

k=1

βkD
kp0(x)|x=t

}
dt,

(13)

an n + 1 parameter family in the β’s. Then, if solutions qj to (12) are taken to be
those given in (13), P and Q semi-commute. However, placing such a form of Q into
[P,Q], we find that [P,Q] = 0 identically and hence P and Q commute.

However, if P is of degree greater than one, commutativity of course implies
semi-commutativity while semi-commutativity does not imply commutativity. That
said, computing the space of Q that semi-commute with P (Q ∈ Γm−2(P ) in the
case of analytic coefficients) allows us to narrow the search for Q that are commuting
with P (the space Γ∗(P ) in the case of analytic coefficients).

3. Semi-commutative operators: the singular ordinary case

We remark that in the above proofs and definitions, we have always taken the coef-
ficients of P and Q to be sufficiently continuously differentiable. However, in some
circumstances, this requirement will not hold. We would still like to say something
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about such cases, which include certain differential operators with solutions having
singularities.

Consider the ordinary differential operator

P = Dm + pm−1(x)D
m−1 + · · ·+ p1(x)D + p0(x), (14)

and let {si}i∈I be discrete singularities of the coefficients (where I is an index set).
In the case when P has only regular singular points close to the ith singularity we
know that there exist analytic functions p̃k;i(x) such that

pk(x) =
p̃k;i(x)

(x− si)γk;i
, (15)

where 0 ≤ γk;i ≤ m− k. Now, to determine all Q of degree n which semi-commute
with P , let us assume

Q = qn(x)D
n + qn−1(x)D

n−1 + · · ·+ q1(x)D + q0(x). (16)

To compute the commutator [P,Q], we will need the formula

Dℓ

(
p̃k;i(x)

(x− si)γk;i

)
=

ℓ∑
j=0

gj(γk;i)

(x− si)γk;i+j

dℓ−j p̃k;i(x)

dxj
, (17)

where gj is a degree j polynomial in γk;i (i.e., a constant in x). From here, we find
that near x = si

[P,Q] =
m+n−1∑
k=0

Nk[qn, . . . , q1, q0]D
k, (18)

where the Nk’s are linear functions of the qj ’s and their derivatives up to order m−1
with singular coefficients due to the singularity si. As in (7) of the previous section,
after some tedious computation, we find that

Nχ =

χ∑
η=0

{ p̃η(x)

(x− si)γη;i

η∑
ξ=0

(
η

ξ

)
Dη−ξqχ−η(x)

− qχ−η(x)

χ−η∑
ξ=0

(
χ− η

ξ

) χ−η−ξ∑
j=0

gj(γη; i)

(x− si)γη;i+j
Dχ−η−ξ−jpη(x)}

× I1(η)I2(χ− η),

(19)

where I1(y) = 1 if y ≤ m and I1(y) = 0 for y > m, while I2(y) = 1 if y ≤ n
and I2(y) = 0 for y > n are indicator functions which prevent us from counting
extraneous terms (we have summed an array along the diagonal).

Theorem 2 (Regular singular points of P and Q). Given P ∈ Λm,n with regular sin-
gular points {si}i∈I , we may construct Q ∈ Λn,m such that P and Q semi-commute
and Q shares the regular singular points of P .
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Proof. From the analysis above, clearly the regular singular points of P are regular
singular points of Q. Assume that Q has some singular point s∗ that is not a singular
point of P , yet P and Q semi-commute. Then, reversing the roles of P and Q, the
singular points of P must be the singular points of Q.

By a similar argument, irregular singular points are also transferred from P to
Q. In other words,

Theorem 3. Differential operators Q which semi-commute with P share the singular
structure of P in the sense that regular (irregular) singular points of P are regular
(irregular) singular points of Q.

4. Semi-commutative operators: the partial differential oper-
ator case

In the setting of partial differential operators, we can recast the results discussed for
the ordinary differential operators considered in the previous sections. To that end,
we shall be required to consider partial differential operators in ν variables of the
form

P =

N1∑
n1=0

· · ·
Nν∑

nν=0

an1,...,nν (x1, . . . , xν)∂
n1
x1

· · · ∂nν
xν

. (20)

Here, ∂xk
= ∂/∂xk. For brevity, we shall denote n = (n1, . . . , nν), x = (x1, . . . , xν) ∈

Rν , ∂ = (∂x1 , . . . , ∂xν ), and N = (N1, . . . , Nν). Making use of the multi-index
notation, we may write

P =
∑

0≤n≤N

an(x)∂
n. (21)

For vectors h = (h1, . . . , hν) and n (as above), let Πk,h denote the set of partial
differential operators of degree Nk in the kth variable, with variable coefficients
which are all hj times continuously differentiable in the variable xj , that is

Πn,h def
=

L | L =
∑

0≤n≤N

an(x)∂
n, ∀n an is Chj (R) for xj

 . (22)

We denote the set of such operators with variable coefficients which are all smooth
in all variables (anC

∞(Rν)) by Πn,∞.

Remark 3. The following properties are obvious:

1. Πn,(h1,...,hj−1,k1,hj+1,...,hν) ⊃ Πn,(h1,...,hj−1,k2,hj+1,...,hν) for all 0 ≤ k1 ≤ k2 ≤ ∞
and all |n| ≥ 0,

2. Π(n1,...,nj−1,k1,nj+1,...,nν),h ⊂ Π(n1,...,nj−1,k2,nj+1,...,nν),h for all 0 ≤ k1 ≤ k2 ≤
∞ and all |h| ≥ 0.
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Let Ωn(P ) denote the set

Ωn(P )
def
=

{
L | [P,L] ∈ Πn,0

}
, (23)

and let Ω∗(P ) denote the set

Ω∗(P )
def
= {L | [P,L] = 0} . (24)

Thus, Ωn(P ) denotes the set of all partial differential operators L such that [P,L] is
a k-jet of some function of ∂, whereas Ω∗(P ) denotes the set of all partial differential
operators L such that P and L commute.

Remark 4. The following properties are obvious:

1. Ω(n1,...,nj−1,k1,nj+1,...,nν)(P ) ⊂ Ω(n1,...,nj−1,k2,nj+1,...,nν)(P ) for all 0 ≤ k1 ≤
k2 ≤ ∞,

2. Ω∗(P ) ⊂ Ω0(P ).

Proposition 2. Let P ∈ Πm,n, Q ∈ Πn,m. Then, [P,Q] ∈ Πm+n−1,0, Q ∈
Ωm+n−1(P ), and P ∈ Ωm+n−1(Q). Here, m = (m1, . . . ,mν), n = (n1, . . . ,mν),
1 = (1, . . . , 1) ∈ Zν , 0 = (0, . . . , 0) ∈ Zν .

Proof. This follows from the above definitions and properties.

Definition 2. Let P ∈ Πm,n for m ≥ 2, n ≥ 1. For Q ∈ Πn,m, if [P,Q] ∈ Πm−2,0,
then we say that P and Q semi-commute. Note that by a ≥ b for a, b ∈ Zν , we
mean that aj ≥ bj for all j = 1, 2, . . . , ν.

The general relations for the partial differential equations governing the coeffi-
cients q of the partial differential operator Q semi-commuting with a given partial
differential operator P are similar to, though in general far more complicated than,
those given in the case of the ordinary differential operators (Sections 2 and 3). We
omit the details here, as often for a given partial differential operator there will be
certain symmetries to exploit so as to permit commutativity. In the definition given
here, note that there are cases in which the reduction of order of the commutator
[P,Q] cannot be achieved strictly by selection of the coefficients of Q. For instance,
consider operators P and Q which are second order in two variables, x1 and x2.
Assuming no reductions or symmetries, each operator will in general have six terms.
The commutator of P and Q will, however, have ten terms. Given P , in order for
Q to semi-commute with P , we would need to pick Q so that the commutator is
reduced to order one. Yet, of the ten terms, four are order three and three are order
two. Hence, seven partial differential equations would need to be satisfied by the
six free coefficients of Q, leading to an over determined system. This is the primary
difference with semi-commuting partial differential operators: in general, we cannot
select Q semi-commuting with general P via a restriction of the coefficients of Q.
However, for particular forms of P , we are capable of finding semi-commuting op-
erators Q. This is illustrated in Section 5.6, where we consider a Hypergeometric
equation in two variables.
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In analogy to the analytic and singular coefficient cases considered in Sections
2 and 3 for the ordinary differential operators, one may construct semi-commuting
partial differential operators which preserve the singular structure of the original
partial differential operator of interest in some instances. (Of course, this is impossi-
ble in full generality, as one is not always able to construct semi-commuting partial
differential operators for a given operator, by the discussion in the above paragraph.)

5. Operators commutative and semi-commutative with well-
known differential operators

We apply methods discussed above, along with basic knowledge of ordinary dif-
ferential equations, in order to obtain operators commutative with several specific
differential operators. For some of the cases, we are able to demonstrate the solutions
to such operators.

5.1. The first order case

In Section 2, we have already shown that the operators Q semi-commuting with
first order operators P are exactly those which commute with P . The first order
ordinary differential equation Py = (D + p0(x))y = 0 admits the solution y =
y(0) exp

(
−
∫ x

0
p0(t)dt

)
. From the relations obtained in (12) and (13), we know

precisely the form that differential operators Q satisfying [P,Q] must take. So, let
us consider solutions to the nth order ODE Qz = 0. It is clear that such an ODE
equation takes the form

dnz

dxn
+ bn−1

dn−1z

dxn−1
+ · · ·+ b1

dz

dx
+ f(x)z = 0, (25)

where bk = βk/βn and

f(x) = exp

(∫ x

0

p0(t)dt

)
×

{
b0 +

∫ x

0

exp

(
−
∫ t

0

p0(τ)dτ

){
n∑

k=1

bkD
kp0(x)|x=t

}
dt

}
.

(26)

From the Burchnall and Chaundy theory, P and Q must share a solution. Hence,
whenever we encounter an ordinary differential equation of the form provided in
(25), one may employ reduction of order (using the said shared solution of P and
Q) in order to make the above ODE more amenable to analysis.

5.2. The general dim(P ) = 2 case and local commutativity

For general second order differential operators P = D2 + p1(x)D + p0(x), we now
outline the explicit construction of operatorsQ of degree n commutative with P . The
dim(P ) = 2 case is worthy of consideration, as (i) many interesting special functions
are governed by second order linear differential operators and (ii) the dimension-two
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case is the first non-trivial instance in which semi-commutative operators may not be
commutative. Interestingly, we find that even for some well-known special operators
P there may exist a class of semi-commutative differential operators Q, none of
which commute with P . We then discuss what we shall call local commutativity of
operators.

We first give the explicit relations that the qk’s must satisfy in order for operators
P and Q to be semi-commutative. Indeed, we find that if the qk’s satisfy

Dqn(x) = 0,

Dqk(x) =
1

2

n∑
j=k+1

(
j

k

)
qj(x)D

j−kp1(x)−
1

2
P [qk+1(x)],

(27)

for all k = 0, 1, . . . , n− 1, then P and Q semi-commute. One additional equation,

D2q0(x) + p1(x)Dq0(x) =

n∑
k=1

qk(x)D
kp0(x), (28)

remains free. If this additional equation is satisfied, then P and Q commute provided
that the qk’s satisfy (27). As discussed above, for sufficiently well-behaved p1 and p0,
we can solve (27) to obtain the qk’s, which will depend on parameters βk (there will
be a total of n+ 1 arbitrary parameters βk, as we have n+ 1 first order differential
equations in (27)). Placing such solutions back into (28), we obtain a relation

r(x;β0, β1, . . . , βn) = 0. (29)

In general, r will not be identically zero for all x. However, provided a solution
x0 = x0(β0, β1, . . . , βn) to relation (29) exists, all requirements for commutativity
are satisfied at the point x0. In such a case, we say that P and Q locally commute
at x = x0.

Let P and Q be semi-commuting differential operators with real valued variable
coefficients over R. Then, if [P,Q] = 0 at x = xℓ, we say that P and Q locally
commute at xℓ. In the case of dim(P ) = 2, the is equivalent to the 0-jet of [P,Q]
vanishing at xℓ. In the case of dim(P ) = 1, the notion is not needed as all semi-
commuting operators trivially commute.

5.3. Airy’s equation

The Airy function is named after the British astronomer George Biddell Airy, who
encountered it in his study of optics [3]. The Airy differential equation is

y′′ + xy = 0,

with solutions Ai(x) and Bi(x). Explicitly [1],

Ai(x) =
1

π

∫ ∞

0

cos

(
t3

3
+ xt

)
dt,
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and

Bi(x) =
1

π

∫ ∞

0

{
exp

(
− t3

3
+ xt

)
+ sin

(
t3

3
+ xt

)}
dt.

The Airy operator is the second order operator PAiry = D2 + x, which falls into the
set of second order operators with C∞ coefficients, Λ2,∞, so the theory of Section 2
applies. We may thus apply the methods of Section 2 in order to construct nth order
linear operators Q = qnD

n + · · · q1D + q0 semi-commuting with the Airy operator.
From (27) we see that the coefficients of Q must satisfy

Dqn = 0,

Dqk = −1

2
PAiry[qk+1] for k = 0, 1, . . . , n− 1.

(30)

Such a system can be solved recursively starting with qn(x) = βn. In order for
deg(Q) = n we need βn ̸= 0. Then, from relations (30) we see that qk must be a
polynomial of degree 2(n− k) in x. For such qk’s, Q semi-commutes with PAiry. To
illustrate this, let us constrict Q in the case n = 3. We find that all third order
operators Q commuting with P take the form Q = q3(x)D

3 + q2(x)D
2 + q1(x)D +

q0(x), where q3(x) = β3 and

q2 (x) = −1

4
x2β3 + β2, (31)

q1 (x) =
1

4
xβ3 +

1

32
x4β3 −

1

4
x2β2 + β1, (32)

q0 (x) = − 5

48
x3β3 +

1

4
xβ2 −

1

384
x6β3 +

1

32
x4β2 −

1

4
x2β1 + β0. (33)

Then, the condition (28) becomes

D2q0 = q1 ⇒ 7β3

64
x4 − 5β2

8
x2 +

7β3

8
x+

3β1

2
= 0, (34)

which is not identically satisfied for any β3 ̸= 0. However, at the roots of this degree
4 polynomial we have that [P,Q] = 0 and hence P and Q locally commute at such
roots.

We remark that, in general, the semi-commuting Q cannot be put into a form
which commutes with P in the Airy case. In general, when dim(Q) = n, we find that
r(x;β0, . . . , βn) = 0 has at least 2(n − 1) complex roots (r being a degree 2(n − 1)
polynomial in x). There are too few coefficients to force r ≡ 0.

5.4. Bessel’s equation

Bessel’s differential equation is given by

x2 d
2y

dx2
+ x

dy

dx
+ (x2 − a2)y = 0.

The corresponding differential operator is

PBessel = D2 +
1

x
D +

x2 − a2

x2
.
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This operator falls into the category of differential operators with singular coeffi-
cients, so the theory of Section 3 applies. In order for a degree n differential operator
Q to semi-commute with PBessel, the coefficients of Q = qnD

n + · · · q1D + q0 must
satisfy

Dqn = 0,

Dqk =
1

2

n∑
j=k+1

(
j

k

)
(−1)j−k(j − k)!

xj−k+1
qj −

1

2
PBessel[qk+1]

(35)

for k = 0, 1, . . . , n− 1. We find that the qk’s take the form

qk =
q̃k

xn−k
for k = 0, 1, . . . , n− 1, (36)

where q̃k is a polynomial in x. Hence, x = 0 is a regular singular point for the
operator Q, as expected from the results in Section 3.

5.5. The hypergeometric equation

The hypergeometric differential equation is given by

x(1− x)
d2y

dx2
+ [c− (a+ b+ 1)x]

dy

dx
− aby = 0.

Solutions are given in terms of the hypergeometric function,

2F1(a, b; c;x) =
∞∑

n=1

(a)n(b)n
(c)nn!

xn,

where

(q)n = q(q + 1)(q + 2) · · · (q + n− 1) =
Γ(q + n)

Γ(q)
=

(q + n− 1)!

(q − 1)!

is the rising factorial, or the Pochhammer symbol.
We define the corresponding differential operator as

PH1 = D2 +
c− (a+ b+ 1)x

x(1− x)
D − ab

x(1− x)
0.

In order for Q of degree n to semi-commute with PH1, the coefficients of Q =
qnD

n + · · · q1D + q0 must satisfy

Dqn = 0,

Dqk =
1

2

n∑
j=k+1

(
j

k

)
D

[
c− (a+ b+ 1)x

x(1− x)

]
qj −

1

2
PH1[qk+1],

(37)

for k = 0, 1, . . . , n − 1. The explicit expressions for the qk’s are complicated in
general. However, we find that solutions will preserve the singular structure of PH1.
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5.6. Hypergeometric equations in multiple variables

In order to demonstrate operators in multiple variables, we can consider the mul-
tivariate generalizations of the Hypergeometric function 2F1. When there are two
variables, we have the Appell functions (F1, F2, F3, F4) [5] - [12]. Meanwhile, in the
case of three or more variables, we have the Lauricella functions [17], [6], [25]. Here
we shall take the Appell operators corresponding to F1. It has been shown [5] that
F1 satisfies the two partial differential equations(
x(1− x)

∂2

∂x2
+ y(1− x)

∂2

∂x∂y
+ [c− (a+ b1 + 1)x]

∂

∂x
− b1y

∂

∂y
− ab1

)
F1 = 0, (38)(

y(1− y)
∂2

∂y2
+ x(1− y)

∂2

∂x∂y
+ [c− (a+ b2 + 1)y]

∂

∂y
− b2x

∂

∂x
− ab2

)
F1 = 0. (39)

From here, we define the corresponding partial differential operators PH2a and PH2b

by

PH2a = x(1− x)∂2
x + y(1− x)∂x∂y + [c− (a+ b1 + 1)x]∂x − b1y∂y − ab1, (40)

PH2b = y(1− y)∂2
y + x(1− y)∂x∂y + [c− (a+ b2 + 1)y]∂y − b2x∂y − ab2. (41)

Consider a general operator Q of the form

Q =
∑

0≤i+j≤2, i,j>0

qij∂
i
x∂

j
y, (42)

so that there are 6 coefficient qij ’s. Now, the commutator of PH2a and Q takes the
form

[PH2a, Q] =
∑

0≤i+j≤3, i,j>0

κij∂
i
x∂

j
y. (43)

Here κij will depend on the qij ’s through somewhat lengthy expressions (of which we
omit the explicit forms). Without any assumptions on symmetry, the commutator
will have 10 such κ’s. However, for the case of PH2a, we observe that κ03 ≡ κ02 ≡ 0
for all Q. In order for the operators PH2a and Q to semi-commute, we need all higher-
order terms (specifically, degree 2 and 3 terms) in commutator (43) to vanish. As
there are five such non-zero κij ’s which depend linearly on some of the six qij ’s we
can, in principle, ensure that the operator Q can be taken so that PH2a and Q do
semi-commute. However, we can actually do better in the present case. Due to
the structure of commutator (43) we can actually select qij ’s such that PH2a and Q
commute.

We find that q02 ≡ 0 implies κ12 ≡ κ21 ≡ 0. We then find that κ11 ≡ 0 if and
only if q01(x, y) = f01(y) (i.e., q01 is constant in x). The condition for κ01 ≡ 0 then
becomes equivalent to yf ′

01(y) = f01(y), i.e., f01(y) = µ01y, where µ01 is a constant
of integration. From here we are left with four equations and four unknown qij ’s.
The remaining commutativity conditions and dependences are (in order of degree)

κ30 = κ30(q11, q20) ≡ 0,κ20 = κ20(q11, q20, q10) ≡ 0,

κ10 = κ10(q10, q00) ≡ 0,κ00 = κ00(q00) ≡ 0,
(44)
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a system of coupled linear partial differential equations. The simplest of these equa-
tions is κ00(q00) ≡ 0, which is the parabolic equation

(1− x)(x+ y)∂2
xq00 + [c− (a+ b+ 1)x]∂xq00 − b1y∂yq00 = 0. (45)

One then substitutes the solution q00 to this partial differential equation into the
equation κ10(q10, q00) ≡ 0 to solve for q10. Then, one places the solution into κ20 to
arrive at a system of two partial differential equations for the remaining unknown
functions q11 and q20.

5.7. The wave equation over one spatial dimension with vari-
able wave speed

Consider the one-dimensional wave equation

∂2u

∂t2
− c2

∂2u

∂x2
= 0, (46)

and associated linear partial differential operator

PWave = ∂2
t − c2∂2

x. (47)

Note that we may write PWave as the product PWave = PW1PW2 = PW2PW1 where

PW1 = ∂t − c∂x and PW2 = ∂t + c∂x (48)

are first order operators which clearly commute. One may wonder if such a factor-
ization is possible in the case of a non-constant wave speed, say c = c(x, t). Such a
factorization was possible for constant c because PW1 and PW2 commute. Consider
the operator

P̃Wave = ∂2
t − ∂x

{
(c(x, t))2∂x

}
, (49)

which permits variable wave speed. Let us define first order operators

P̃W1 = ∂t − g−(x, t)∂x and P̃W2 = ∂t + g+(x, t)∂x, (50)

and note that an unknown function g(x, t), rather than c(x, t), is taken. It is clear
that in general these operators do not commute. Let us see if they can be made
to commute or semi-commute with an appropriate choice of g(x, t). Calculating the
commutator, we find

[P̃W1, P̃W2] = {∂t(g− + g+) + g−∂xg+ − g+∂xg−} ∂x. (51)

Thus, the operators do not automatically semi-commute. Note that if we set g− =
−g+, then the operators identically commute; however, this is not useful as in such
a case P̃W1 ≡ P̃W2 and P̃Wave ̸= P̃W1P̃W2. Let us consider the case where g− = g+.
Then commutator (51) becomes

[P̃W1, P̃W2] = {2∂tg+} ∂x. (52)
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In this case, it is clear that the operators P̃W1 and P̃W2 commute if g+ = g+(x) (i.e.,
g+ does not depend on t). This stands to reason, as the substitution ∂x → ∂̃x ≡
g+(x)∂x yields operators of the form (48). Setting g+(x, t) = G(x) and g−(x, t) =
G(x) for some function G(x) ∈ C1(R) we have that

P̃W1P̃W2 = ∂2
t −G(x)G′(x)∂x − (G(x))2∂2

x

= ∂2
t − ∂x

{
(G(x))2∂x

}
.

(53)

This equation exactly matches (49) when c(x, t) ≡ G(x). Hence, for c(x, t) depending
only on x, we obtain a factorization P̃Wave = P̃W1P̃W2.

6. Conclusions

While we were able to obtain results for finite linear operators with variable coeffi-
cients, it is worthwhile to note that we omit two large classes of differential operators.
First, we omit infinite dimensional linear operators. Our constructive proofs relied
on the fact that for a given finite order P we were constructing finite order Q such
that the variable coefficients of Q satisfy a system of degQ + 1 linear differential
equations for which a solution exists (locally). One could, for finite order P , con-
struct infinite order Q such that Q semi-commutes with P . However, additional
requirements would be needed to ensure that the infinite system of differential equa-
tions governing the coefficients of Q admits a solution; such conditions would be on
the variable coefficients of P . The case in which both P and Q are infinite becomes
more complicated.

We have also omitted any discussion of commuting nonlinear operators. Even
in the case of constant coefficients, there appears to be no good way to go about
constructing commuting or semi-commuting nonlinear differential operators, at least
in the general case. However, for some nonlinear operators which depend on small
parameters, one may expand the operator in a perturbation about the small param-
eter (see below). Let us consider the example of a nonlinear operator and a linear
operator which share a solution yet do not commute. Let

M [y] = Dy + y2 and L[y] = D2y − 2

(x+ 1)2
y (54)

denote the nonlinear and linear differential operators, respectively. Observe that
both operators admit a solution

y(x) =
1

x+ 1
(55)

for initial conditions y(0) = 1, y′(0) = −1. Although these operators share a solu-
tion, observe that the resulting operator formed by the commutator is non zero:

[M,L] [y] =
(
D2y

)2 − 2 (Dy)−
(
2 +

4

(x+ 1)2

)
y(D2y)

+

(
2

(x+ 1)2
+

4

(x+ 1)4

)
y2 +

4

(x+ 1)3
y.

(56)
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In many cases, two given operators may not commute. However, they may semi-
commute or even locally commute for some x. In analogy to local commutativity
for some x in the domain, note that an operator Q with parameter ϵ may commute
with a given operator P for some fixed values of ϵ. Indeed, we have illustrated
this through some of the examples given in Section 5: in some cases, the arbitrary
constants of integration obtained in finding the coefficients of Q can be fixed so as to
permit commutativity. Let us take a different look at this approach. Suppose Q and
P commute at ϵ0 = 0 (we can take ϵ0 = 0 through linear scaling) and semi-commute
for all other values of ϵ. Then, for ϵ near ϵ0 = 0 we consider the expansion of Q in
terms of ϵ:

Q = Q0 + ϵQ1 + ϵ2Q2 + · · · . (57)

Then,
[P,Q] = [P,Q0] + ϵ[P,Q1] + ϵ2[P,Q2] + · · · . (58)

Yet, Q0 = Q|ϵ=0 and [P,Q] = 0 at ϵ = 0, so [P,Q0] = 0 and hence

[P,Q] = ϵ[P,Q1] + ϵ2[P,Q2] + · · · . (59)

Consider a solution y(x; ϵ) to the homogeneous differential equation Qy = 0. As
[P,Q0] = 0 we have from the Burchnall and Chaundy theory that P and Q0 share
a solution. Let y0(x) = y(x; 0) be this solution. Now, P and Q commute up to
zeroth order, and the higher order corrections in (59) are deformations due to the
non-commutativity. For small ϵ, the corrections are minor, and as |ϵ| → 0, the semi-
commutativity collapses to commutativity. Such decompositions (59) may be useful
in the study of semi-commuting operators, as the sequence Q1, Q2, Q3 . . . is often
times simpler than the original operator Q. Such a perturbation approach might also
prove useful for nonlinear operators. If Q is nonlinear, and P is linear, then in some
cases we can expand Q as given in (57) in the sense that Q1, Q2, Q3 . . . are all linear
operators. Observe that, for such a case, if Q is finite then the Q1, Q2, Q3 . . . are
finite. Hence this gives us a way to study the commutativity of nonlinear operators
Q with a linear operator P over certain parameter regimes by studying the relation
between the linear operator P and the linear Q1, Q2, Q3 . . . .

As another way to view the relation between commuting and semi-commuting
operators, recall that for a given operator P of degree m ≥ 2, Q1 of degree n semi-
commutes with P provided [P,Q1] has degreem−2. Let P1 ≡ [P,Q1]. Now acting on
P1, let us select another operator, Q2 of degree n, so that P1 and Q2 semi-commute.
Then, [P1, Q2] is of degree m − 4. After a finite number of reductions (m2 + 1 for
even m, m+1

2 + 1 for odd m) the process will terminate, yielding operators Pκ and
Qκ+1 which commute. The sequence of Qj ’s thus satisfies the nested commutator
relation

[· · · [[[P,Q1] , Q2] , Q3] · · · , Qκ+1] = 0. (60)

In some cases, this may help in finding an operator Q which commutes with P ; such
a Q should satisfy the relation

[P,Q] = [· · · [[[P,Q1] , Q2] , Q3] · · · , Qκ+1] . (61)

Semi-commuting operators can be useful, as they comprise a large set of non-
commuting operators, of which commuting operators are a subset. Hence, computing
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the large set of operators, we can impose additional conditions to ensure that the
operators commute. In this manner, one may constructively obtain operators Q
commuting with some fixed operator P , by considering a restriction of the set of
operators P and Q which semi-commute.
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