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1. Introduction and preliminaries

The following inequality is given by Hardy-Littlewood-Pélya (see [3, Theorem 134]).

Theorem 1. If f is a convex and continuous function defined on [0,00) and ag,
k € N are non-negative and non-increasing, then

FUD an ) = £ 0+ [f (kax) — f (k= 1) ax)] . (1)
k=1 =

k=1

If ' is a strictly increasing function, there is an equality only when ay are equal up
to a certain point and then zero.

In 1986, G. Bennett [1] proved the weighted version of (1) for power functions
f(x) = z%: if ag, k = 1,...,n are non-negative and non-increasing and p, > 0 for
each k =1,...,n with

k
Pk::Zpi, k=1,...,n,
i=1
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then for any real number s > 1,

n

(ZPk%) > ZPE la; —aj 1] = (pra1)” + Zai [P; — P _y] (2)
h—1

k=1 k=2

holds. If 0 < s < 1, then (2) holds in the reverse direction (see [1]).

Some generalizations of Hardy-Littlewood-Pdélya inequality are presented by S.
Khalid, J. Pecari¢ and M. Praljak in [6] and some generalizations of G. Bennett’s
result are proved by J. Pecarié, I. Peri¢ and R. Roki in [7]. The aim of this paper
is to present some new generalizations and refinements of inequalities (1) and (2).
Our results generalize not only the G. Bennett’s result but also some results recently
proved by S. Khalid and J. Pecari¢ in [5]. In this paper, we also obtain some results
which are related with the discrete weighted reversed Hardy-type inequality. In
order to obtain our main results first, let us recall some definitions which are going
to be used throughout this paper.

Definition 1. A sequence (ax, k € N) C R is non-increasing in weighted mean, if

1 n 1 n+1
F Zpkak = Zpka'kv ne Na (3)
" k=1 nl =1
where ag and pr, k € N are real numbers such that p; > 0,1 =1,... k with

k
Po= Y pi, keN.
=1

A sequence (ay, k € N) C R is non-decreasing in weighted mean, if the opposite
inequality holds in (3).
In a similar way, we can define when a finite sequence (ax, k=1,...,n) C R is
non-increasing or non-decreasing in weighted mean.

Remark 1. It is easy to see that a sequence (ay, k € N) is non-increasing in
weighted mean (non-decreasing in weighted mean) if and only if

k-1 k-1
> pia; > Pp_yay (Zpiai < Plc—lak>

i=1 i=1
for k=23,... holds.
The following property of a convex function will be used later (see [9, p.2]).
Definition 2. A function f: I — R is convex on I if
(23 — 22) [ (21) + (21 — 23) [ (w2) + (22 — 21) f (23) 2 0 (4)
holds for all x1,x2,x3 € I such that r1 < x93 < x3.

Another characterization of a convex function will be needed later (see [9, p.2]).
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Proposition 1. If f is a convez function on an interval I and if x1 < y1, 12 <
Yo, T1 F£ Ta, Y1 7 Yo, then the following inequality

flxo) = f(x1) _ f(y2) = F )

To — T1 o Y2 — Y1

()

holds. If the function f is concave, the inequality reverses.

By letting 1 =2, zo = x4+ h,y1 =yand yo =y + h, z < y,h > 0 in (5), we
have,

flath)=fe) < fly+h)—fy). (6)

The following definition of Wright-convex function is given in [9, p.7].

Definition 3. A function f : [a,b] — R is said to be Wright-convez if for all x,
y+ h € [a,b] such that x < y, h > 0, (6) holds. The function f is said to be
Wright-concave if the opposite inequality holds in (6).

Remark 2. If K ([a,b]) and W ([a,b]) denotes the class of all convex functions and
the class of all Wright-convex functions, respectively, then K ([a,b]) & W ([a,b]).
That is, a convex function must be a Wright-convex function but not conversely (see

[9, p.7]).

Wright-convex functions have an interesting and important generalization for
functions of several variables (see [2]). Let R™ denote the m-dimensional vector
lattice of points x = (x1,...,2Zm), z; € R for i = 1,...,m, with partial ordering

X:(xla"'axm)gy:(ylv"wym)

if and only if z; <y, fori =1,...,m (see [9, p.13]).
For any two m-tuples x,y € R™, let us define component-wise multiplication
and division as follows:

Xy = (xlyh e >x’mym)a

T T
(a"'?)u y#o
U Ym

Definition 4. A sequence (ai,k € N) C R™ is non-increasing in weighted mean if

X
Yy

NE

1 n+1
Pray = > prag, neN, (7)
k=1

€
Pn Pn+1

o>~
Il

1

where

k k
a, = (a,lc,...,akm),pk = (p%c,...,pzn) and Py = (Zpll,,z:pzn> e R™
i=1 i=1

such that py > 0,k € N.
A sequence (a, k € N) C R™ is non-decreasing in weighted mean if the opposite
inequality holds in (7).
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In [2], H. D. Brunk explored an interesting class of multivariate real-valued func-
tions defined as follows:

Definition 5. A real-valued function f on an m-dimensional rectangle I C R™ is
said to have non-decreasing increments if

fE+h) —fx) < fly+h) - f(y), (8)

whenever x, y +h € I, 0 < h € R™, x <y. The function f is said to have
non-increasing increments if the opposite inequality holds in (8).

Remark 3. It is easy to see that if a function f is defined on [a,b] C R, then the
functions having non-decreasing increments are Wright-convex functions.

Our first main result is the direct generalization of the Hardy-Littlewood-Pdlya
inequality (1), a result of G. Bennett given in [1] and also a result of S. Khalid
and J. Pecarié¢ given in [5]. After appropriate substitutions, our first main result is
equivalent to the following inequality given by I. Perié¢ (see [10, Theorem 1.4]).

Theorem 2. Let f be a Wright-concave function defined on [0,00). Let 0 = z¢ <

21 <z2< - <z, <xpy1 <, Cp, >0, nEN and
Z Ck (Jﬁk - xk—l) > Cn-l—lxna n = 1. (9)
k=1

Then

f (Z Ch, (Z’k — Tp—1 ) + Z f Ck+1$k S Z Ck.’L'k n € N. (10)
k=1 k=1

k=1

The organization of the paper is the following: in Section 2, we present gen-
eralizations of some results given in [1] and [5] and show that one of our result is
equivalent to the inequality from Theorem 2. In Section 3, the objective is to study
the functionals defined as the difference between the right-hand and the left-hand
side of the generalized inequalities and also their properties, such as n-exponential
and logarithmic convexity. Furthermore, we prove the monotonicity property of the
generalized Cauchy means obtained via these functionals. Finally, in Section 4, we
give several examples of the families of functions for which the results can be applied
and also present a refinement of inequality (2).

2. Main results

Inequality (2) is already proved in [1], but we give a new proof in a more general
setting. The following result is our first main result.

Theorem 3. Let ar and pp,k = 1,...,n be real numbers such that a, > 0 and
pr > 0. Let

pia1, Y prar, Prak, Py 1ax € [a,b]
k=1
forallk =2,...,n and let f : [a,b] = R be a Wright-convex function.
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(i) If the sequence (ax, k =1,...,n) is non-increasing in weighted mean, then we

have
n

f (Zm%) > f(pran) + Y [f (Poay) = f (Pe-1ag)]. (11)

k=1 k=2
(it) If the sequence (ag, k =1,...,n) is non-decreasing in weighted mean, then we
have
(Zm%) < f(pa1) Z (Prak) = f (Pr—1ax)] - (12)
k=1 k=2

If the function f is Wright-concave, then the opposite inequalities hold in (11) and
(12).

Proof. (i): Since the sequence (ag, k =1,...,n) C R is non-increasing in weighted
mean, by definition we have

k—1

Zpiai > Py_1ay

i=1

for k=2,...,n. As f is a Wright-convex function, by setting

k—1
= Pr_qag, y:Zpiai and h=prar, k=2,...,n

i=1

in (6), we have

K k1
f (Zpiai> —f (Zpiaz) > f(Prak) — f (Pr—1ax) .
i=1 i=1

Summing over k from 2 to n, we have

n

f (Zm%) = f(prar) = )y [f (Prag) — f (Pe—1ax)],

k=2
and so (11) holds.
(ii): Since the sequence (ag, k =1,...,n) C R is non-decreasing in weighted

mean, by definition we have
k—1

Zpiai < Pe—iag
i=1
for k=2,...,n. As f is a Wright-convex function, by setting
k—1

z:Zpiai, y=Pr_1ar and h=prax, k=2,...,n
i=1

in (6), we have

k k=1
/ (Zpﬂh) - f <Zpiai> < f(Prar) — f (Pr-1ax) .

i=1
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Now summing over k from 2 to n and after simplification, we have (12).
If f is a Wright-concave function, then the opposite inequality holds in (6) and
so the opposite inequalities hold in (11) and (12). O

Remark 4. For a Wright-concave function f, Theorems 2 and 3(i) are equivalent.
First of all, from the proof of Theorem 2 (see[10,p.6]) it is obvious that the interval
[0,4+00) can be replaced by [a,b]. Furthermore, with the substitutions ar = C) and
P = Tk — Tp—1,k = 1,...,n condition (9) is equivalent to the condition that the
sequence (ag, k=1,...,n) is non-increasing in weighted mean and inequality (10)
is equivalent to the reverse of (11).

Since the class of Wright-convex (Wright-concave) functions properly contains
the class of convex (concave) functions (see for example [9, p.7]), the following result
is valid:

Corollary 1. Let ar and px,k = 1,...,n be real numbers such that ar > 0 and
pr > 0. Let
pia1, Y prag, Prak, Pyo1ax € [a,b]
k=1
forallk=2,...;n and let f : [a,b] = R be a convex function.
(i) If the sequence (ag, k = 1,...,n) is non-increasing in weighted mean, then (11)
holds.
(ii) If the sequence (ax, k = 1,...,n) is non-decreasing in weighted mean, then (12)
holds.

If the function f is concave, then the opposite inequalities hold in (11) and (12).
The following corollary is an application of Corollary 1:

Corollary 2. Let f (z) = %, where x € (0,00) and s € R.

(i) If the sequence (ax, > 0, k =1,...,n) is non-increasing in weighted mean, py >
0,k=1,...,nand s eR such that8<0 or s > 1, then

n

(Z pkak> (pra1)° + Y aj [P — Py (13)

k=2
holds. If 0 < s < 1, then (13) holds in the reverse direction.

(it) If the sequence (ax, > 0, k =1,...,n) is non-decreasing in weighted mean, py >
0,k=1,...,n and s € R such thats<0 or s> 1, then

n

(me) (pra1)” + Z aj, [P{ — Pi_4] (14)

k=2

holds. If 0 < s < 1, then (14) holds in the reverse direction.
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Remark 5. Theorem 3 is a generalization of inequality (2) in the sense that we can
obtain (2) as a special case of our first main result.

The following result is related with the discrete weighted reversed Hardy-type
inequality (see [11]):

Theorem 4. Let ap and pp,k = 1,...,n be real numbers such that a, > 0 and
pr >0 and let b, >0, form=2,...,m. Let

n

pia1, Y prar, Prak, Ps 1ax € [a,b]
k=1

forallk=2,...,n and let f : [a,b] = R be a differentiable convex function.

(4) If the sequence (ax, k =1,...,n) is non-increasing in weighted mean, then we
have
m n m m m
> baf (Zm%) > f(p1a1) Y ba+ Y f (Peorar) prag Yy by (15)
n=2 k=1 n=2 k=2 n=~k
(@) If the sequence (ax, k =1,...,n) is non-decreasing in weighted mean, then we
have

m m

> baf (ZP}«%) < f(P1a1) > bu+ > f (Peciar)prax Y ba. (16)
n=2 k=1 n=2 k=2 n=~k
If the function f is concave, then the opposite inequalities hold in (15) and (16).
Proof. (i): By following the steps as given in the proof of Theorem 3 (i), we have

(11). Multiplying (11) by b, > 0,n = 2,...,m and summing over n from 2 to m,
we get

> baf (Zm%) > f(pra1) Y b+ Y 1f (Prar) = f (Proaar)] D bae (17)
n=2 k=1 n=2 k=2 n==k

Due to convexity of f, we have
[ (Pyak) — f (Pr—rag) > f' (Po—1ak) (Prag — Py—1ax) = f' (Pe—1ax) prak,

which together with (17) implies (15).

(ii): (12) can be obtained by using the same arguments as given in the proof of
Theorem 3 (i3). Now multiplying (12) by b, > 0, summing over n from 2 to m and
also using convexity of f, we get (16).

If f is a concave function, then the opposite inequality holds in (11) and (12)
and so the opposite inequalities hold in (15) and (16). O
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Example 1. Let f(x) = z°, where © € (0,00) and s € R. If the sequence

(ar >0,k =1,...,n) is non-increasing in weighted mean, pr > 0,k =1,...,n and
s € R such that s <0 or s > 1, then

> bn (Z pk@k) > (pra1)* Y b+ sy prai By Z by (18)
n=2 k=1 n=2 k=2

holds. If 0 < s < 1, then (18) holds in the reverse direction.
Now, let s > 1 and take b, = p, P, °,. Using the fact that

n—1-
m P, Pl s Pl S
Pt > / pdy = AL
n=~k Pr—1 s—1

from (18) we get
i (-(5) )

¢ 1 ) piaj p1 \*!
ZP <Pn1 Zpkak> =~ 51 P,
n=2 k=1
(19)

By adding pra$ to both sides of (19) and with the convention Py = p1, if m — oo
and P,, — o0, inequality (19) becomes

oo Pn s 1 n S oo .
;pn (Pn—l) (Pn ;Pkak) >$i1;pkak

and represents a discrete weighted reversed Hardy-type inequality.

The multidimensional generalization is stated as follows:
Theorem 5. Let
k k
ay, pr and Py = (Zp%,,ij”) eR™
i=1 i=1
be such that ar, > 0 and px > 0 for each k=1,...,n. Let
piai, Y  Prak, Pray, Py ja; €1
k=1

forallk=2,...,n andlet f : I — R be a real valued function having non-decreasing
increments on the rectangle I C R™.

(?) If the sequence (ax, k =1,...,n) is non-increasing in weighted mean, then we

have
(Z pkak) > f 1a1 + Z Pkak (Pk_lak)] . (20)
= k=2
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(@) If the sequence (ay, k =1,...,n) is non-decreasing in weighted mean, then we
have
(Zpkak> < f(pra +Z [ (Prag) — f (Pr-1ax)] . (21)
k=1 k=2

If the function f has non-increasing increments, then the opposite inequalities hold
n (20) and (21).

Proof. The idea of the proof is the same as in Theorem 3.
(i): Since the sequence (ag, k =1,...,n) C R™ is non-increasing in weighted
mean, by definition we have

k-1
Z pia; > Pr_iay,

i=1

for k=2,...,n. Bysetting x = Py_q1a5,y = E 1 p:a; and h = pgag, k=2,....,n
in (8), Where f has non-decreasing increments, we have

k k-1
f <Z piai> —f (Z piai> > f(Pray) — f (Pr_12ak) .
i=1

i=1
Summing over k from 2 to n, we have

n

(Z Pkak> (p12a1) Z (Pray) — f (Pr_1ag)].

k=2

and so (20) holds.
(ii): Since the sequence (ai, k =1,...,n) C R™ is non-decreasing in weighted
mean, by definition we have

k-1
Z pia; < Pr_iay,

i=1

for k =2,...,n. By setting x = Zf:_ll pia;,y =Py 1arand h =prag, k=2,...,n
in (8), where f has non-decreasing increments, we have

k k1
f (Z piai> —f (Z Pz‘a¢> < f(Pray) — f (Pr1ax).
i=1

i=1

Now, summing over k from 2 to n and after simplification, we have (21).
If f has non-increasing increments, then the opposite inequality holds in (8) and
so the opposite inequalities hold in (20) and (21). O

The following theorem is proven in the same way as Theorem 5 and it represents
the m-dimensional generalization of Theorem 2.
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Theorem 6. Let f : I — R be a real valued function having non-decreasing incre-
ments on a rectangle I C R™ and let Cy, x € R™ be such that 0 = xg < x13 < x9 <
-<xp, and C, >0 for k=1,...,n. Furthermore, let

(31X17 ch (Xk — Xk—l) R Crxp and Cp_1x €1
k=1
forallk=2,....n
(?) If the inequalities

S

—1
C; (XZ‘ — Xifl) > Cyxg_1, fork>1 (22)
1

i

hold, then

f (Z Cr (xi — Xk—l)) + i f(Cryixg) > Z f(Crxp) . (23)
k=1 =1

(@) If the inequalities in (22) are reversed, then

n

f (Z Cr (%1 — Xk—l)) + i F(Cryaxi) <Y f(Crxy) (24)
k=1 k=1

k=1

holds. If the function f has non-increasing increments, then the opposite inequalities

hold in (23) and (24).

If we takep,l€ :pﬁ :pi =...=p'=prk=1,...,nin py = (p}c,...,pzl) in
Theorem 5, then we have the following result:
Corollary 3. Let a € [0,00)™ and px,k = 1,...,n be real numbers such that
pr > 0. Let
piai, Y prax, Peag, Peoiay €1
k=1
forallk=2,...,n and let f : T — R be a real valued function defined on a rectangle

I C R™ having non-decreasing increments.

(i) If the sequence (ax, k =1,...,n) is non-increasing in weighted mean, then we
have
n
(Zm%) > f(pa) Z (Prak) — f (Pr—1ax)] . (25)
k=1 k=2
(it) If the sequence (ax, k = 1,...,n) is non-decreasing in weighted mean, then we
have

f (Zm%) < f(pan) + ) [f (Peag) — f (Pe-rap)]. (26)
k=1

k=2
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If the function f has non-increasing increments, then the opposite inequalities hold
in (25) and (26).

Remark 6. If we make the substitutions pr, — 1,k = 1,...,n in our results, then
the results given in [5] are recaptured.

Consider the inequalities (11) and (15) and define two functionals

n

e (f)=f (Zm%) — f(prar) = > [f (Prar) = [ (Preorax)], (27)
k=1

k=2
O (f) =Y baf <Zpkak> —f(Pra)) Y bo— > f (Peorar) prax by, (28)
n=2 k=1 n=2 k=2 n=~k

where ay > 0, pr > 0;

n
P11, Zpkak, Pray, Py_1ay € [a,b]
k=1

forallk=2,...,nand b, >0, for n =2,...,m. If the function f is convex defined
on [a, b] and the sequence (ay, kK =1,...,n) C R is non-increasing in weighted mean,
then Corollary 1 (¢), implies that ®;(f) > 0, and if in addition f is differentiable,
then Theorem 4 (i), implies that ®o(f) > 0.

Now, we give mean value theorems for the functional ®;,7 = 1,2. These theorems
enable us to define various classes of means that can be expressed in terms of linear
functionals.

Theorem 7. Let ap and pp,k = 1,...,n be real numbers such that ar > 0 and
pr >0 and let b, >0, form=2,...,m. Let

n

P11, Zpkak, Pray, Py_1ay € [a,b]
k=1

for all k = 2,...,n and let the sequence (ax, k =1,...,n) be non-increasing in
weighted mean. Suppose that ®1 and Py are linear functionals as defined in (27)
and (28) and f € C? ([a,b]). Then there exists &1, &, € [a,b] such that

/" (&)
2

®i(f) = @ (fo), i=12,

holds, where fy (x) = 2.

Proof. Analogous to the proof of Theorem 2.2 in [8]. O
The following theorem is a new analogue to the classical Cauchy mean value

theorem related to the functionals ®;, ¢ = 1,2, and it can be proven by following
the proof of Theorem 2.4 in [8].
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Theorem 8. Let all the assumptions of Theorem 7 be satisfied and let f,g €
C? ([a,b]). Then there exist &1,& € [a,b] such that

®i(f) _f7&) g, (29)

®i(9) 9" (&)
holds, provided that the denominators are non-zero.

Remark 7.

(i) By taking f (x) = z° and g (z) = x? in (29), where s,q € R\ {0,1} are such
that s # q, we have

“1® .
= I 1=1,2.
(ii) If the inverse of the function f"/g" exists, then (29) gives
PN (RN
51' = < ) 1= ]-a 2.
g" ®; (g)

3. n-Exponential convexity and log-convexity

We begin this section by recollecting definitions and properties which are going to
be explored here and we also study some useful characterizations of these properties.
In the sequel, let I be an open interval in R.

Definition 6. A function h: I — R is n-exponentially convez in the Jensen sense
on I if

S avagh (m) >0
= 2

i,j=1

holds for every a; ER and x; € I, 1 =1,...,n (see[d]).

Definition 7. A function h : I — R is n-exponentially convexr on I if it is n-
exponentially convex in the Jensen sense and continuous on I.

Remark 8. From the above definition it is clear that 1-exponentially convex func-
tions in the Jensen sense are non-negative functions. Also, n-exponentially convex
functions in the Jensen sense are k-exponentially convexr functions in the Jensen
sense for all k € N, k <mn.

By the definition of positive semi-definite matrices and some basic linear algebra,
we have the following proposition:

Proposition 2. If h : I — R is n-exponentially convex in the Jensen sense, then

the matriz .
()]
2 ij=1
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is a positive semi-definite matriz for oll k € N, k < mn. Particularly,

k

det {h(w>} >0 forevery keNEk<n,z;€el,i=1,...,n.
2 i,j=1

Definition 8. A function h : I — R is exponentially convex in the Jensen sense if

it is n-exponentially convex in the Jensen sense for all n € N.

Definition 9. A function h : I — R is exponentially convex if it is exponentially
convex in the Jensen sense and continuous.

Lemma 1. A function h : I — (0,00) is log-convez in the Jensen sense, that is, for
every x,y € 1,

w2 (55) <n@no)

holds if and only if the relation

o?h (x) +2abh (T) +B8%h(y) >0

holds for every a, 8 € R and x,y € I.

Remark 9. It follows that a positive function is log-convex in the Jensen sense if
and only if it is 2-exponentially convex in the Jensen sense. Also, by using basic
convexity theory, a positive function is log-convex if and only if it is 2-exponentially
convez.

The following definition of divided difference is given in [9, p.14].

Definition 10. The second order divided difference of a function f : [a,b] — R at
mutually distinct points yo,y1,y2 € [a,b] is defined recursively by
i /1= f (i), i=0,1,2,
f i) = flys) . _ 0.1,

[Yis yiv1; ] = W’
Yo, y1,y2: f] = [yl’yQ’;;] :Lio’yl’f]~ (30)

Remark 10. The value [yo, y1, y2; f] is independent of the order of the points yo, 11
and yo. This definition may be extended to include the case in which some or all the
points coincide (see [9, p.16]). Namely, taking the limit y1 — yo in (30), we get

. f (2) = f (yo) — /" (yo) (y2 — o)

Hm [yo,y1, 23 f] = [yo, Yo, y2; f] = 5 . Y2 # Yo,
Y10 (Y2 — yo)
provided that f' exists; and furthermore, taking the limits y; — yo, 1 = 1,2, in (30),
we get

1"
lim Tim [yo,y1,52; f] = [y0, Y0, y0; f] = I"%0)

b
Y2—Y0 Y1—Yo 2

provided that " exists.
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Remark 11. Convex functions can be characterized by second order divided differ-
ence (see [9, p.16]): a function f : [a,b] = R is convex if and only if for all choices
of three distinct points yo, y1,y2, € [a,b], [yo,y1,y2; f] > 0.

Next, we study n-exponential convexity and log-convexity of the functions asso-
ciated with linear functionals ®;,7 = 1,2 defined in (27) and (28).

Theorem 9. Let ®;,i = 1,2 be linear functionals as defined in (27) and (28). Let
Q={fs:s€ICR} bea family of functions defined on [a,b] such that the function
s = [Yo, Y1, Y2; [s] is n-exponentially convex in the Jensen sense on I for every three
mutually distinct points yo,y1,y2 € [a,b] (for i = 2, the functions fs € Q must be
differentiable). Then the following statements hold:

(i) The function s — ®; (fs) is n-exponentially convex in the Jensen sense on I

and the matriz ”
(2 ()],

is a positive semi-definite matriz for allm € N, m < n and s1,...,8, € 1.
Particularly,
m
det [(I)i (f5j+sk>:| >0, YVmeN, m<n.
= k=1

i) If the function s — (I)l s 18 continuous on I, then it is n-exponentially convex
4 Y
on I.

Proof. The idea of the proof is the same as that of Theorem 3.1 in [8].
(i): Let oj € R,j =1,...,n and consider the function

n
py)= D ajarfrin (),
J,k=1

where s; € I and fs;+s, € §2. Then
2

n
[yO,ylaYJZ;SO] = Z eT1e0" |:y0ay17y2;ff‘j;5k:|
Jk=1

and since
|:y0a Y1,Y2; f5j+5k :|
2

is n-exponentially convex in the Jensen sense on I by assumption, it follows that
n
[0, Y1, Y25 ] = Z Qg [y()aylayZ;ij*Sk} > 0.
jik=1 :
And so by using Remark 11 we conclude that ¢ is a convex function. Hence

(1)1(30)20, i:1727
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which is equivalent to

3 ajand; (fsjzsk) >0, i=1,2,

jk=1

and so we conclude that the function s — @, (fs) is n-exponentially convex in the
Jensen sense on I. The remaining part follows from Proposition 2.

(ii): If the function s — ®; (fs) is continuous on I, then from (i) and by Defini-
tion 7 it follows that it is n-exponentially convex on I. O

The following corollary is an immediate consequence of the above theorem.

Corollary 4. Let ®;,1 = 1,2 be linear functionals as defined in (27) and (28). Let
Q={fs:s€lICR} bea family of functions defined on [a,b] such that the function
s — [yo, Y1, Y2; fs] is exponentially convex in the Jensen sense on I for every three
mutually distinct points yo,y1,y2 € [a,b] (for i = 2, the functions fs € Q must be
differentiable). Then the following statements hold:

(i) The function s — ®;(fs) is exponentially conver in the Jensen sense on I and

the matriz
n

[‘I%(f@)}

is a positive semi-definite matriz for alln € N and sq,...,s, € I. Particularly,

J,k=1

det {q)i(fsj;sk )L_ 20, ¥neN

(it) If the function s — ®; (fs) is continuous on I, then it is exponentially convex
on I.

Corollary 5. Let ®;,i = 1,2 be linear functionals as defined in (27) and (28). Let
Q={fs:s€ICR} bea family of functions defined on [a,b] such that the function
s = [0, Y1, y2; fs] is 2-exponentially convex in the Jensen sense on I for every three
mutually distinct points yo,y1,y2 € [a,b] (for i = 2, the functions fs € Q must be
differentiable) and also assume that ©; (fs),i = 1,2 are strictly positive for fs € Q.
Then the following statements hold:

(3) If the function s — ®; (fs) is continuous on I, then it is 2-exponentially convex
on I and so it is log-convex on I and for r,s,t € I such that r < s < t, we
have L

[q)i (fs)]t_r < [(I)l (fr)]t_s [(I)i (ft)] , 1=1,2, (31)
known as Lyapunov’s inequality. If r <t < s or s < r < t, then the opposite
inequality holds in (31).

(ii) If the function s — ®; (fs) is differentiable on I, then for every s,q,u,v € I
such that s < u and ¢ < v, we have

Hs,q ((I)iy Q) < Hu,v ((I)iy Q) ) 1= 1a 27 (32)
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where )
Di(fs) V71
. s#4q,
ts,q (Pi, 2) = (@(mi) i(f2) (33)
exp(dsi(fsj )’ 5=
for fo, fq € Q.

Proof. The idea of the proof is the same as that of Corollary 3.2 in [8].

(i): The claim that the function s — ®; (fs) is log-convex on I, is an immediate
consequence of Theorem 9 and Remark 9 and (31) can be obtained by replacing the
convex function f by the convex function f(z) = log®; (f.) for z = r,s,t in (4),
where r, s,t € I such that r < s < t.

(ii): Since by (i) the function s — ®;(fs) is log-convex on I, that is, the
function s — log®; (fs) is convex on I. Applying Proposition 1 with setting

f(z) =log ®; (f.), we get
log @i (fs) —10g Pi (fg) _ log @i (fu) —log @i (fu)

s—q U—v (34)
for s <u, g <w, s# q,u # v; and therefore conclude that
fs,q (i, €0) < pu (93,9), i=1,2.
If s = g, we consider the limit when ¢ — s in (34) and conclude that
ts,s (@i, Q) < iy (94,02), i=1,2.
The case u = v can be treated similarly. O

Remark 12. Note that the results from Theorem 9, Corollary 4 and Corollary 5 still
hold when two of the points yo,y1,y2 € |a,b] coincide, say y1 = yo, for a family of
differentiable functions fs such that the function s — [yo, y1, yo; [s] is n-exponentially
convez in the Jensen sense (exponentially convez in the Jensen sense, log-convez in
the Jensen sense on I); and furthermore, they still hold when all three points coincide
for a family of twice differentiable functions with the same property. The proofs are
obtained by recalling Remark 10 and using suitable characterizations of convexity.

4. Examples

In this section, we present several families of functions which fulfil the conditions of
Theorem 9, Corollary 4, Corollary 5 and Remark 12. This enables us to construct
large families of functions which are exponentially convex.

Example 2. Consider the family of functions
O ={gs:R—1[0, o0):s5s€R}
defined by

5%, s=0.

S%esz, s#£0,
gé(x) = 1 .2



ON AN INEQUALITY OF 1. PERI¢ 237

We have

d2

T2 (x) =€ >0,
which shows that gs is convexr on R for every s € R and s — g”(x) is expo-
nentially convex by definition (see also[4]). In order to prove that the function
s+ [yo, Y1, Y2; gs] s exponentially convez, it is enough to show that

D k=1 QGO yanlva;gsy‘;Sk} = [yo,yhyz;Z}fk:l kgt | 20, (35)

VneN, aj,s; €R, j=1,...,n. By Remark 11, (35) will hold if

T (z) := E g s;+sy ()
2
k=1

is convex. Since s+ g7 (x) is exponentially convez, i.e

n
Z ajorgs e, >0, VneNaj,s; eRj=1,...,n,
Jk=1 2

which shows the convezxity of Y (x) and so (35) holds. Now, as the function s —
[Yo, Y1, Y2; gs] s exponentially convex, s — [yo,Y1,Y2; gs] i exponentially convex in
the Jensen sense and by using Corollary 4, we have that s — ®; (gs) ,i = 1,2 is expo-
nentially convez in the Jensen sense. Since this mapping is continuous (although the
mapping s — gs s not continuous for s =0), s — ®,;(gs),i = 1,2 is exponentially
convex.

For this family of functions, by taking Q = Qq in (33), ps,q (Pi, Q1) ,1=1,2 become

1
q:'i(gs) R
(‘I>i(gq)> , 5 #q,

P, (id-
exXp ( 3(1521(;53)) ’

By using Theorem 8, it can be seen that
Mg (@i, 1) =log ps,q (i, ), =12,
satisfy a < My 4 (®;, Q1) < b, which shows that My 4 (®;,Q) is a family of mean.
Example 3. Consider the family of functions
Qo ={fs:(0,00) > R:s R}
defined by
= s # 0.1,
fs(x) =< —Inz, s=0,

rlnz, s =1.
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Here

@fs (LU) _ st_2 _ e(s—2)lnar: > 0,

which shows that fs is convex for x > 0 and s — fI/(x) is exponentially convex by
definition (seealso[4]). It is easy to prove that the function s — [yo,y1,Yy2; fs] s
exponentially conver. Arquing as in Example 2, we have that s — ®; (fs),i = 1,2
is exponentially convex.

If r,s,t € R are such that r < s < t, then from (31) we have

s—r

B (f.) < [@: (f))7= [@ (fi)] 7, i=1,2. (36)

If r <t < s ors<r<t, then the opposite inequality holds in (36).

Particularly, for i =1 and r,s,t € R\ {0, 1} such that r < s < t, we have

(o1 prax)” — (pra1)” — Y u_y ap (P — Pi_y)
s(s—1)

[(221 pkak)r - (plal)r - ZZ:Q ay (PIS - Plg—l)
r(r—1)

>

szgmww@mﬁzgwuﬁﬁl>
t(t—1)

where a > 0, pr > 0,k = 1,...,n are such that piay, Zzzﬂ%ak: Pray, Pp_1ak
€ la,b] for all k = 2,...,n. In fact, for s > 1, (37) is the refinement of inequality
(2) and for 0 < s < 1, (37) holds in the reverse direction.
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By taking Q = Qg in (33), EL , = pis,q (Ps,Q2),i = 1,2 are of the form

1

-1 _ q(q—l) (Zzzlpkak)sf(plal)5722:2 ai (Pljiplffl) o S#q#o 1

2\ s(s=1) (Xpoy prar)' = (prar) =Y s af (P —P_,) 7 o
n s s n s

=1 _ 1 (Zk:l prar)” — (pra1)” — Ek:Z aj, (Pij - P,j,l) ' s£0,1

8,0 s(s—1) In(Pyar) —In (37—, prak) 7 o
1

ST (Cioapran)’ = (pron) =0 0 (Pp— Piy)

= \s(s—1) Xp_yar (prIn(p—yprar) — Peln(Pear )Y, _pax Po1In(Pryar) |
s#0,1,

=1 :222221ak(pkln(EZZzlpkak)—-Fkln(F%ak))+—§jZ:2akF%_1ln(P%_1ak)

0,1 In(Pya1) —In (35—, prak) ’

ST B LI 0 ) prax)” In (300 prax) — Yoi_, ai P In (Pray,)
° s(s=1)  (Cpoipra)” — (man)” = X4y ap (PF — Pi_y)

+ == Z;Z:Q G ln (fkflik) ) .s#0,1,
(k=1 prar)” — (pra1)” — > o a} (Pk - Pkfl)
=l ex (In (ZZZl prag) —In(pra;))In (62]91611 22:1 pkak)
00 2 (ln (ZZ:l pkak) —1In (Pnal))

ZZ:Q (InPy —InPr_q)ln (62PkPk,1ai)
2(In (EZ:1 prax) — In(Pra1)) '
> ag (pk In (Z pkak> In (e‘z > pkak> — Py In (Prag) In (e‘szak)>
k=1 k=1

2! =exp |2l - 5
L1 &P 2 (X h -y an(pr In (X p_, prax) — PsIn (Prag) +>-p—o ax Pr—1 In (P_1ay,)

Z apPr_11n (Pk_lak) In (672Pk_1ak)
k=2

(O k1 ar(pr (30— praw) — Pen(Prar)+>_ 50—y ax Pe1In(Pr—1az)) |

X exp 5

Similarly, we can obtain 2, =: jis 4 (P2, Q).
If @;,1 = 1,2 is positive, then Theorem 8 applied for f = f, € Qs and g = f4 € Qo
yields that there exists & € [a,b] such that

s— P, (fs) .
&= , i=1,2.
®; (fq)
Since the function & — &~ is invertible for s # q, we have
1
a< <b i=1,2 37
((I)i (fq) ( )
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which, together with the fact that ps 4 (4, Q2) is continuous, symmetric and monoto-
nous (by (32)), shows that ps q(®;,Q2) is a family of mean.

If a = 0 and we consider functions defined on [0,00), then we can obtain inequal-
ities and means of the same form, but for parameters s and q restricted to (0,00).
More precisely, we consider the family of functions

Qs ={fs:[0,00) > R:s e (0,00)}

defined by

fé(ﬂ?) = {s(sxil),S#L

zlnz, s=1,

with the convention that 0In0 = 0. For s > 0 and q > 0, by taking Q = Qs in (33),

PR (@i,fzg), i=1,2

are of the same form as = .

Remark 13. If we make the substitutions p, — 1,k =1,...,n in the means given
in Example 3, then the results for the means given in [5] are recaptured.

Example 4. Consider the family of functions
Q3 = {hs: (0,00) = (0,00) : s € (0,00)}

defined by

2
xZT J—
5, s=1L

s s £ L
m(@—{“s .

We have

d? _

@hs(lﬁ) =85 "> O7
which shows that hs is convex for all s > 0. Since s — h(x) is the Laplace transform
of a non-negative function (see[4, 12]), it is exponentially convez. It is easy to see
that the function s — [yo, Y1, Y2; hs] is also exponentially convex. Arquing as in
Ezample 2, we have that s — ®; (hs) is exponentially convez.
In this case, by taking Q = Q3 in (33), ps,q (Pi,Q3), i = 1,2 are of the form

_1
(hg) sT4a
(@(hq)) , 37éq’
Ms’q(q)i’QS = p( q:; hhq _slis>78:q¢1’
p( q;’ hh ) s=q=1.

By using Theorem 8, it follows that

Ms,q (q)z;Q3) =—-L (3,(]) 1Og/’és,q ((I)i7Q3)a 1= 1a25
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satisfy a < M 4 (9;,Q3) < b and so My 4 (P;,Q3) is a family of mean, where L (s, q)
s a logarithmic mean defined by

s—q
L(s,q) = {;Ogslogq’ j i Z’

Example 5. Consider the family of functions
Qy ={ks : (0,00) = (0,00) : s € (0,00)}

defined by

Here,
d2
da?
which shows that ks is convex for all s > 0. Since s — k! (x) is the Laplace transform
of a non-negative function (seel4, 12]), it is exponentially convex. It is easy to
prove that the function s v [yo, Y1, y2; ks] s also exponentially convexr. Arguing as
in Example 2, we have that s — ®; (k) is exponentially convez.
In this case, by taking Q@ = Q4 in (33), ws,q (;,Q4),i=1,2 are of the form

ky (z) = e"V5 >0,

1
‘I)i(k?s)>; s 75
5 ) q,
Hs,q (@i, Q) = (q%(kq)

oxp (= Bilidk) 1) o
Pl 3k, —5) 5= ¢
By using Theorem 8, it is easy to see that

Ms,q (@1,94) = 7(\/54’\/&) log:us,q ((I)iaQ4)a i= 1727

satisfy a < Mg 4 (D, Q) < b, showing that M, 4 (D;, ) ,i = 1,2 is a family of
mean.

Remark 14. From (33), it is clear that psq (2:,9Q),i = 1,2 for Q = Qy,Q3 and Q4
are monotonous functions in parameters s and q.
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