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1. Introduction and preliminaries

The following inequality is given by Hardy-Littlewood-Pólya (see [3, Theorem 134]).

Theorem 1. If f is a convex and continuous function defined on [0,∞) and ak,
k ∈ N are non-negative and non-increasing, then

f

(
n∑

k=1

ak

)
≥ f (0) +

n∑
k=1

[f (kak)− f ((k − 1) ak)] . (1)

If f ′ is a strictly increasing function, there is an equality only when ak are equal up
to a certain point and then zero.

In 1986, G. Bennett [1] proved the weighted version of (1) for power functions
f (x) = xs: if ak, k = 1, . . . , n are non-negative and non-increasing and pk ≥ 0 for
each k = 1, . . . , n with

Pk : =
k∑

i=1

pi, k = 1, . . . , n,
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then for any real number s > 1,(
n∑

k=1

pkak

)s

≥
n∑

k=1

P s
k

[
ask − ask+1

]
= (p1a1)

s
+

n∑
k=2

ask
[
P s
k − P s

k−1

]
(2)

holds. If 0 < s < 1, then (2) holds in the reverse direction (see [1]).
Some generalizations of Hardy-Littlewood-Pólya inequality are presented by S.

Khalid, J. Pečarić and M. Praljak in [6] and some generalizations of G. Bennett’s
result are proved by J. Pečarić, I. Perić and R. Roki in [7]. The aim of this paper
is to present some new generalizations and refinements of inequalities (1) and (2).
Our results generalize not only the G. Bennett’s result but also some results recently
proved by S. Khalid and J. Pečarić in [5]. In this paper, we also obtain some results
which are related with the discrete weighted reversed Hardy-type inequality. In
order to obtain our main results first, let us recall some definitions which are going
to be used throughout this paper.

Definition 1. A sequence (ak, k ∈ N) ⊂ R is non-increasing in weighted mean, if

1

Pn

n∑
k=1

pkak ≥ 1

Pn+1

n+1∑
k=1

pkak, n ∈ N, (3)

where ak and pk, k ∈ N are real numbers such that pi > 0, i = 1, . . . , k with

Pk =
k∑

i=1

pi, k ∈ N.

A sequence (ak, k ∈ N) ⊂ R is non-decreasing in weighted mean, if the opposite
inequality holds in (3).
In a similar way, we can define when a finite sequence (ak, k = 1, . . . , n) ⊂ R is
non-increasing or non-decreasing in weighted mean.

Remark 1. It is easy to see that a sequence (ak, k ∈ N) is non-increasing in
weighted mean (non-decreasing in weighted mean) if and only if

k−1∑
i=1

piai ≥ Pk−1ak

(
k−1∑
i=1

piai ≤ Pk−1ak

)

for k = 2, 3, . . . holds.

The following property of a convex function will be used later (see [9, p.2]).

Definition 2. A function f : I → R is convex on I if

(x3 − x2) f (x1) + (x1 − x3) f (x2) + (x2 − x1) f (x3) ≥ 0 (4)

holds for all x1, x2, x3 ∈ I such that x1 < x2 < x3.

Another characterization of a convex function will be needed later (see [9, p.2]).
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Proposition 1. If f is a convex function on an interval I and if x1 ≤ y1, x2 ≤
y2, x1 ̸= x2, y1 ̸= y2, then the following inequality

f (x2)− f (x1)

x2 − x1
≤ f (y2)− f (y1)

y2 − y1
(5)

holds. If the function f is concave, the inequality reverses.

By letting x1 = x, x2 = x + h, y1 = y and y2 = y + h, x ≤ y, h ≥ 0 in (5), we
have,

f (x+ h)− f (x) ≤ f (y + h)− f (y) . (6)

The following definition of Wright-convex function is given in [9, p.7].

Definition 3. A function f : [a, b] → R is said to be Wright-convex if for all x,
y + h ∈ [a, b] such that x ≤ y, h ≥ 0, (6) holds. The function f is said to be
Wright-concave if the opposite inequality holds in (6).

Remark 2. If K ([a, b]) and W ([a, b]) denotes the class of all convex functions and
the class of all Wright-convex functions, respectively, then K ([a, b]) & W ([a, b]).
That is, a convex function must be a Wright-convex function but not conversely (see
[9, p.7]).

Wright-convex functions have an interesting and important generalization for
functions of several variables (see [2]). Let Rm denote the m-dimensional vector
lattice of points x = (x1, . . . , xm), xi ∈ R for i = 1, . . . ,m, with partial ordering

x = (x1, . . . , xm) ≤ y = (y1, . . . , ym)

if and only if xi ≤ yi for i = 1, . . . ,m (see [9, p.13]).
For any two m-tuples x,y ∈ Rm, let us define component-wise multiplication

and division as follows:

xy = (x1y1, . . . , xmym) ,

x

y
=

(
x1

y1
, . . . ,

xm

ym

)
, y ̸= 0.

Definition 4. A sequence (ak, k ∈ N) ⊂ Rm is non-increasing in weighted mean if

1

Pn

n∑
k=1

pkak ≥ 1

Pn+1

n+1∑
k=1

pkak, n ∈ N, (7)

where

ak =
(
a1k, . . . , a

m
k

)
,pk =

(
p1k, . . . , p

m
k

)
and Pk =

(
k∑

i=1

p1i , . . . ,

k∑
i=1

pmi

)
∈ Rm

such that pk > 0, k ∈ N.
A sequence (ak, k ∈ N) ⊂ Rm is non-decreasing in weighted mean if the opposite

inequality holds in (7).
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In [2], H. D. Brunk explored an interesting class of multivariate real-valued func-
tions defined as follows:

Definition 5. A real-valued function f on an m-dimensional rectangle I ⊂ Rm is
said to have non-decreasing increments if

f (x+ h)− f (x) ≤ f (y + h)− f (y) , (8)

whenever x, y + h ∈ I, 0 ≤ h ∈ Rm, x ≤ y. The function f is said to have
non-increasing increments if the opposite inequality holds in (8).

Remark 3. It is easy to see that if a function f is defined on [a, b] ⊂ R, then the
functions having non-decreasing increments are Wright-convex functions.

Our first main result is the direct generalization of the Hardy-Littlewood-Pólya
inequality (1), a result of G. Bennett given in [1] and also a result of S. Khalid
and J. Pečarić given in [5]. After appropriate substitutions, our first main result is
equivalent to the following inequality given by I. Perić (see [10, Theorem 1.4]).

Theorem 2. Let f be a Wright-concave function defined on [0,∞). Let 0 = x0 ≤
x1 ≤ x2 ≤ · · · ≤ xn ≤ xn+1 ≤ · · · , Cn ≥ 0, n ∈ N and

n∑
k=1

Ck (xk − xk−1) ≥ Cn+1xn, n ≥ 1. (9)

Then

f

(
n∑

k=1

Ck (xk − xk−1)

)
+

n−1∑
k=1

f (Ck+1xk) ≤
n∑

k=1

f (Ckxk) , n ∈ N. (10)

The organization of the paper is the following: in Section 2, we present gen-
eralizations of some results given in [1] and [5] and show that one of our result is
equivalent to the inequality from Theorem 2. In Section 3, the objective is to study
the functionals defined as the difference between the right-hand and the left-hand
side of the generalized inequalities and also their properties, such as n-exponential
and logarithmic convexity. Furthermore, we prove the monotonicity property of the
generalized Cauchy means obtained via these functionals. Finally, in Section 4, we
give several examples of the families of functions for which the results can be applied
and also present a refinement of inequality (2).

2. Main results

Inequality (2) is already proved in [1], but we give a new proof in a more general
setting. The following result is our first main result.

Theorem 3. Let ak and pk, k = 1, . . . , n be real numbers such that ak ≥ 0 and
pk > 0. Let

p1a1,
n∑

k=1

pkak, Pkak, Pk−1ak ∈ [a, b]

for all k = 2, . . . , n and let f : [a, b] → R be a Wright-convex function.
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(i) If the sequence (ak, k = 1, . . . , n) is non-increasing in weighted mean, then we
have

f

(
n∑

k=1

pkak

)
≥ f (p1a1) +

n∑
k=2

[f (Pkak)− f (Pk−1ak)] . (11)

(ii) If the sequence (ak, k = 1, . . . , n) is non-decreasing in weighted mean, then we
have

f

(
n∑

k=1

pkak

)
≤ f (p1a1) +

n∑
k=2

[f (Pkak)− f (Pk−1ak)] . (12)

If the function f is Wright-concave, then the opposite inequalities hold in (11) and
(12).

Proof. (i): Since the sequence (ak, k = 1, . . . , n) ⊂ R is non-increasing in weighted
mean, by definition we have

k−1∑
i=1

piai ≥ Pk−1ak

for k = 2, . . . , n. As f is a Wright-convex function, by setting

x = Pk−1ak, y =
k−1∑
i=1

piai and h = pkak, k = 2, . . . , n

in (6), we have

f

(
k∑

i=1

piai

)
− f

(
k−1∑
i=1

piai

)
≥ f (Pkak)− f (Pk−1ak) .

Summing over k from 2 to n, we have

f

(
n∑

i=1

piai

)
− f (p1a1) ≥

n∑
k=2

[f (Pkak)− f (Pk−1ak)] ,

and so (11) holds.
(ii): Since the sequence (ak, k = 1, . . . , n) ⊂ R is non-decreasing in weighted

mean, by definition we have
k−1∑
i=1

piai ≤ Pk−1ak

for k = 2, . . . , n. As f is a Wright-convex function, by setting

x =
k−1∑
i=1

piai, y = Pk−1ak and h = pkak, k = 2, . . . , n

in (6), we have

f

(
k∑

i=1

piai

)
− f

(
k−1∑
i=1

piai

)
≤ f (Pkak)− f (Pk−1ak) .
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Now summing over k from 2 to n and after simplification, we have (12).
If f is a Wright-concave function, then the opposite inequality holds in (6) and

so the opposite inequalities hold in (11) and (12).

Remark 4. For a Wright-concave function f , Theorems 2 and 3(i) are equivalent.
First of all, from the proof of Theorem 2 (see [10, p.6]) it is obvious that the interval
[0,+∞) can be replaced by [a, b]. Furthermore, with the substitutions ak = Ck and
pk = xk − xk−1, k = 1, . . . , n condition (9) is equivalent to the condition that the
sequence (ak, k = 1, . . . , n) is non-increasing in weighted mean and inequality (10)
is equivalent to the reverse of (11).

Since the class of Wright-convex (Wright-concave) functions properly contains
the class of convex (concave) functions (see for example [9, p.7]), the following result
is valid:

Corollary 1. Let ak and pk, k = 1, . . . , n be real numbers such that ak ≥ 0 and
pk > 0. Let

p1a1,

n∑
k=1

pkak, Pkak, Pk−1ak ∈ [a, b]

for all k = 2, . . . , n and let f : [a, b] → R be a convex function.

(i) If the sequence (ak, k = 1, . . . , n) is non-increasing in weighted mean, then (11)
holds.

(ii) If the sequence (ak, k = 1, . . . , n) is non-decreasing in weighted mean, then (12)
holds.

If the function f is concave, then the opposite inequalities hold in (11) and (12).

The following corollary is an application of Corollary 1:

Corollary 2. Let f (x) = xs, where x ∈ (0,∞) and s ∈ R.

(i) If the sequence (ak > 0, k = 1, . . . , n) is non-increasing in weighted mean, pk >
0, k = 1, . . . , n and s ∈ R such that s < 0 or s > 1, then(

n∑
k=1

pkak

)s

≥ (p1a1)
s
+

n∑
k=2

ask
[
P s
k − P s

k−1

]
(13)

holds. If 0 < s < 1, then (13) holds in the reverse direction.

(ii) If the sequence (ak > 0, k = 1, . . . , n) is non-decreasing in weighted mean, pk >
0, k = 1, . . . , n and s ∈ R such that s < 0 or s > 1, then(

n∑
k=1

pkak

)s

≤ (p1a1)
s
+

n∑
k=2

ask
[
P s
k − P s

k−1

]
(14)

holds. If 0 < s < 1, then (14) holds in the reverse direction.
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Remark 5. Theorem 3 is a generalization of inequality (2) in the sense that we can
obtain (2) as a special case of our first main result.

The following result is related with the discrete weighted reversed Hardy-type
inequality (see [11]):

Theorem 4. Let ak and pk, k = 1, . . . , n be real numbers such that ak ≥ 0 and
pk > 0 and let bn ≥ 0, for n = 2, . . . ,m. Let

p1a1,
n∑

k=1

pkak, Pkak, Pk−1ak ∈ [a, b]

for all k = 2, . . . , n and let f : [a, b] → R be a differentiable convex function.

(i) If the sequence (ak, k = 1, . . . , n) is non-increasing in weighted mean, then we
have

m∑
n=2

bnf

(
n∑

k=1

pkak

)
≥ f (p1a1)

m∑
n=2

bn +
m∑

k=2

f
′
(Pk−1ak) pkak

m∑
n=k

bn. (15)

(ii) If the sequence (ak, k = 1, . . . , n) is non-decreasing in weighted mean, then we
have

m∑
n=2

bnf

(
n∑

k=1

pkak

)
≤ f (p1a1)

m∑
n=2

bn +
m∑

k=2

f
′
(Pk−1ak) pkak

m∑
n=k

bn. (16)

If the function f is concave, then the opposite inequalities hold in (15) and (16).

Proof. (i): By following the steps as given in the proof of Theorem 3 (i), we have
(11). Multiplying (11) by bn ≥ 0, n = 2, . . . ,m and summing over n from 2 to m,
we get

m∑
n=2

bnf

(
n∑

k=1

pkak

)
≥ f (p1a1)

m∑
n=2

bn +

m∑
k=2

[f (Pkak)− f (Pk−1ak)]

m∑
n=k

bn. (17)

Due to convexity of f , we have

f (Pkak)− f (Pk−1ak) ≥ f ′ (Pk−1ak) (Pkak − Pk−1ak) = f ′ (Pk−1ak) pkak,

which together with (17) implies (15).

(ii): (12) can be obtained by using the same arguments as given in the proof of
Theorem 3 (ii). Now multiplying (12) by bn ≥ 0, summing over n from 2 to m and
also using convexity of f , we get (16).

If f is a concave function, then the opposite inequality holds in (11) and (12)
and so the opposite inequalities hold in (15) and (16).
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Example 1. Let f (x) = xs, where x ∈ (0,∞) and s ∈ R. If the sequence
(ak > 0, k = 1, . . . , n) is non-increasing in weighted mean, pk > 0, k = 1, . . . , n and
s ∈ R such that s < 0 or s > 1, then

m∑
n=2

bn

(
n∑

k=1

pkak

)s

≥ (p1a1)
s

m∑
n=2

bn + s
m∑

k=2

pka
s
kP

s−1
k−1

m∑
n=k

bn (18)

holds. If 0 < s < 1, then (18) holds in the reverse direction.
Now, let s > 1 and take bn = pnP

−s
n−1. Using the fact that

m∑
n=k

pnP
−s
n−1 ≥

∫ Pm

Pk−1

x−sdx =
P 1−s
k−1 − P 1−s

m

s− 1
,

from (18) we get

m∑
n=2

pn

(
1

Pn−1

n∑
k=1

pkak

)s

≥ p1a
s
1

s− 1

(
1−
( p1
Pm

)s−1
)
+

s

s− 1

m∑
k=2

pka
s
k

(
1−
(
Pk−1

Pm

)s−1
)
.

(19)
By adding p1a

s
1 to both sides of (19) and with the convention P0 = p1, if m → ∞

and Pm → ∞, inequality (19) becomes

∞∑
n=1

pn

(
Pn

Pn−1

)s
(

1

Pn

n∑
k=1

pkak

)s

≥ s

s− 1

∞∑
k=1

pka
s
k

and represents a discrete weighted reversed Hardy-type inequality.

The multidimensional generalization is stated as follows:

Theorem 5. Let

ak, pk and Pk =

(
k∑

i=1

p1i , . . . ,
k∑

i=1

pmi

)
∈ Rm

be such that ak ≥ 0 and pk > 0 for each k = 1, . . . , n. Let

p1a1,

n∑
k=1

pkak, Pkak, Pk−1ak ∈ I

for all k = 2, . . . , n and let f : I → R be a real valued function having non-decreasing
increments on the rectangle I ⊆ Rm.

(i) If the sequence (ak, k = 1, . . . , n) is non-increasing in weighted mean, then we
have

f

(
n∑

k=1

pkak

)
≥ f (p1a1) +

n∑
k=2

[f (Pkak)− f (Pk−1ak)] . (20)
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(ii) If the sequence (ak, k = 1, . . . , n) is non-decreasing in weighted mean, then we
have

f

(
n∑

k=1

pkak

)
≤ f (p1a1) +

n∑
k=2

[f (Pkak)− f (Pk−1ak)] . (21)

If the function f has non-increasing increments, then the opposite inequalities hold
in (20) and (21).

Proof. The idea of the proof is the same as in Theorem 3.
(i): Since the sequence (ak, k = 1, . . . , n) ⊂ Rm is non-increasing in weighted

mean, by definition we have

k−1∑
i=1

piai ≥ Pk−1ak,

for k = 2, . . . , n. By setting x = Pk−1ak, y =
∑k−1

i=1 piai and h = pkak, k = 2, . . . , n
in (8), where f has non-decreasing increments, we have

f

(
k∑

i=1

piai

)
− f

(
k−1∑
i=1

piai

)
≥ f (Pkak)− f (Pk−1ak) .

Summing over k from 2 to n, we have

f

(
n∑

k=1

pkak

)
− f (p1a1) ≥

n∑
k=2

[f (Pkak)− f (Pk−1ak)] .

and so (20) holds.
(ii): Since the sequence (ak, k = 1, . . . , n) ⊂ Rm is non-decreasing in weighted

mean, by definition we have

k−1∑
i=1

piai ≤ Pk−1ak,

for k = 2, . . . , n. By setting x =
∑k−1

i=1 piai, y = Pk−1ak and h = pkak, k = 2, . . . , n
in (8), where f has non-decreasing increments, we have

f

(
k∑

i=1

piai

)
− f

(
k−1∑
i=1

piai

)
≤ f (Pkak)− f (Pk−1ak) .

Now, summing over k from 2 to n and after simplification, we have (21).
If f has non-increasing increments, then the opposite inequality holds in (8) and

so the opposite inequalities hold in (20) and (21).

The following theorem is proven in the same way as Theorem 5 and it represents
the m-dimensional generalization of Theorem 2.
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Theorem 6. Let f : I → R be a real valued function having non-decreasing incre-
ments on a rectangle I ⊆ Rm and let Ck, xk ∈ Rm be such that 0 = x0 ≤ x1 ≤ x2 ≤
· · · ≤ xn and Ck ≥ 0 for k = 1, . . . , n. Furthermore, let

C1x1,
n∑

k=1

Ck (xk − xk−1) , Ckxk and Ck−1xk ∈ I

for all k = 2, . . . , n.

(i) If the inequalities

k−1∑
i=1

Ci (xi − xi−1) ≥ Ckxk−1, for k ≥ 1 (22)

hold, then

f

(
n∑

k=1

Ck (xk − xk−1)

)
+

n−1∑
k=1

f (Ck+1xk) ≥
n∑

k=1

f (Ckxk) . (23)

(ii) If the inequalities in (22) are reversed, then

f

(
n∑

k=1

Ck (xk − xk−1)

)
+

n−1∑
k=1

f (Ck+1xk) ≤
n∑

k=1

f (Ckxk) (24)

holds. If the function f has non-increasing increments, then the opposite inequalities
hold in (23) and (24).

If we take p1k = p2k = p3k = . . . = pmk = pk, k = 1, . . . , n in pk =
(
p1k, . . . , p

m
k

)
in

Theorem 5, then we have the following result:

Corollary 3. Let ak ∈ [0,∞)
m

and pk, k = 1, . . . , n be real numbers such that
pk > 0. Let

p1a1,
n∑

k=1

pkak, Pkak, Pk−1ak ∈ I

for all k = 2, . . . , n and let f : I → R be a real valued function defined on a rectangle
I ⊆ Rm having non-decreasing increments.

(i) If the sequence (ak, k = 1, . . . , n) is non-increasing in weighted mean, then we
have

f

(
n∑

k=1

pkak

)
≥ f (p1a1) +

n∑
k=2

[f (Pkak)− f (Pk−1ak)] . (25)

(ii) If the sequence (ak, k = 1, . . . , n) is non-decreasing in weighted mean, then we
have

f

(
n∑

k=1

pkak

)
≤ f (p1a1) +

n∑
k=2

[f (Pkak)− f (Pk−1ak)] . (26)
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If the function f has non-increasing increments, then the opposite inequalities hold
in (25) and (26).

Remark 6. If we make the substitutions pk → 1, k = 1, . . . , n in our results, then
the results given in [5] are recaptured.

Consider the inequalities (11) and (15) and define two functionals

Φ1 (f) = f

(
n∑

k=1

pkak

)
− f (p1a1)−

n∑
k=2

[f (Pkak)− f (Pk−1ak)] , (27)

Φ2 (f) =
m∑

n=2

bnf

(
n∑

k=1

pkak

)
− f (p1a1)

m∑
n=2

bn −
m∑

k=2

f
′
(Pk−1ak) pkak

m∑
n=k

bn, (28)

where ak ≥ 0, pk > 0;

p1a1,
n∑

k=1

pkak, P kak, Pk−1ak ∈ [a, b]

for all k = 2, . . . , n and bn ≥ 0, for n = 2, . . . ,m. If the function f is convex defined
on [a, b] and the sequence (ak, k = 1, . . . , n) ⊂ R is non-increasing in weighted mean,
then Corollary 1 (i), implies that Φ1(f) ≥ 0, and if in addition f is differentiable,
then Theorem 4 (i), implies that Φ2(f) ≥ 0.

Now, we give mean value theorems for the functional Φi, i = 1, 2. These theorems
enable us to define various classes of means that can be expressed in terms of linear
functionals.

Theorem 7. Let ak and pk, k = 1, . . . , n be real numbers such that ak ≥ 0 and
pk > 0 and let bn ≥ 0, for n = 2, . . . ,m. Let

p1a1,
n∑

k=1

pkak, P kak, Pk−1ak ∈ [a, b]

for all k = 2, . . . , n and let the sequence (ak, k = 1, . . . , n) be non-increasing in
weighted mean. Suppose that Φ1 and Φ2 are linear functionals as defined in (27)
and (28) and f ∈ C2 ([a, b]). Then there exists ξ1, ξ2 ∈ [a, b] such that

Φi (f) =
f ′′ (ξi)

2
Φi (f0) , i = 1, 2,

holds, where f0 (x) = x2.

Proof. Analogous to the proof of Theorem 2.2 in [8].

The following theorem is a new analogue to the classical Cauchy mean value
theorem related to the functionals Φi, i = 1, 2, and it can be proven by following
the proof of Theorem 2.4 in [8].
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Theorem 8. Let all the assumptions of Theorem 7 be satisfied and let f, g ∈
C2 ([a, b]). Then there exist ξ1, ξ2 ∈ [a, b] such that

Φi (f)

Φi (g)
=

f ′′ (ξi)

g′′ (ξi)
, i = 1, 2, (29)

holds, provided that the denominators are non-zero.

Remark 7.

(i) By taking f (x) = xs and g (x) = xq in (29), where s, q ∈ R \ {0, 1} are such
that s ̸= q, we have

ξs−q
i =

q (q − 1)Φi (x
s)

s (s− 1)Φi (xq)
, i = 1, 2.

(ii) If the inverse of the function f ′′/g′′ exists, then (29) gives

ξi =

(
f ′′

g′′

)−1(
Φi (f)

Φi (g)

)
, i = 1, 2.

3. n-Exponential convexity and log-convexity

We begin this section by recollecting definitions and properties which are going to
be explored here and we also study some useful characterizations of these properties.
In the sequel, let I be an open interval in R.

Definition 6. A function h : I → R is n-exponentially convex in the Jensen sense
on I if

n∑
i,j=1

αiαjh

(
xi + xj

2

)
≥ 0

holds for every αi ∈ R and xi ∈ I, i = 1, . . . , n (see [8]).

Definition 7. A function h : I → R is n-exponentially convex on I if it is n-
exponentially convex in the Jensen sense and continuous on I.

Remark 8. From the above definition it is clear that 1-exponentially convex func-
tions in the Jensen sense are non-negative functions. Also, n-exponentially convex
functions in the Jensen sense are k-exponentially convex functions in the Jensen
sense for all k ∈ N, k ≤ n.

By the definition of positive semi-definite matrices and some basic linear algebra,
we have the following proposition:

Proposition 2. If h : I → R is n-exponentially convex in the Jensen sense, then
the matrix [

h

(
xi + xj

2

)]k
i,j=1
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is a positive semi-definite matrix for all k ∈ N, k ≤ n. Particularly,

det

[
h

(
xi + xj

2

)]k
i,j=1

≥ 0 for every k ∈ N, k ≤ n, xi ∈ I, i = 1, . . . , n.

Definition 8. A function h : I → R is exponentially convex in the Jensen sense if
it is n-exponentially convex in the Jensen sense for all n ∈ N.

Definition 9. A function h : I → R is exponentially convex if it is exponentially
convex in the Jensen sense and continuous.

Lemma 1. A function h : I → (0,∞) is log-convex in the Jensen sense, that is, for
every x, y ∈ I,

h2

(
x+ y

2

)
≤ h (x)h (y)

holds if and only if the relation

α2h (x) + 2αβ h

(
x+ y

2

)
+ β2h (y) ≥ 0

holds for every α, β ∈ R and x, y ∈ I.

Remark 9. It follows that a positive function is log-convex in the Jensen sense if
and only if it is 2-exponentially convex in the Jensen sense. Also, by using basic
convexity theory, a positive function is log-convex if and only if it is 2-exponentially
convex.

The following definition of divided difference is given in [9, p.14].

Definition 10. The second order divided difference of a function f : [a, b] → R at
mutually distinct points y0, y1, y2 ∈ [a, b] is defined recursively by

[yi; f ] = f (yi) , i = 0, 1, 2,

[yi, yi+1; f ] =
f (yi+1)− f (yi)

yi+1 − yi
, i = 0, 1,

[y0, y1, y2; f ] =
[y1, y2; f ]− [y0, y1; f ]

y2 − y0
. (30)

Remark 10. The value [y0, y1, y2; f ] is independent of the order of the points y0, y1
and y2. This definition may be extended to include the case in which some or all the
points coincide (see [9, p.16]). Namely, taking the limit y1 → y0 in (30), we get

lim
y1→y0

[y0, y1, y2; f ] = [y0, y0, y2; f ] =
f (y2)− f (y0)− f ′ (y0) (y2 − y0)

(y2 − y0)
2 , y2 ̸= y0,

provided that f ′ exists; and furthermore, taking the limits yi → y0, i = 1, 2, in (30),
we get

lim
y2→y0

lim
y1→y0

[y0, y1, y2; f ] = [y0, y0, y0; f ] =
f ′′(y0)

2
,

provided that f ′′ exists.
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Remark 11. Convex functions can be characterized by second order divided differ-
ence (see [9, p.16]): a function f : [a, b] → R is convex if and only if for all choices
of three distinct points y0, y1, y2,∈ [a, b], [y0, y1, y2; f ] ≥ 0.

Next, we study n-exponential convexity and log-convexity of the functions asso-
ciated with linear functionals Φi, i = 1, 2 defined in (27) and (28).

Theorem 9. Let Φi, i = 1, 2 be linear functionals as defined in (27) and (28). Let
Ω = {fs : s ∈ I ⊆ R} be a family of functions defined on [a, b] such that the function
s 7→ [y0, y1, y2; fs] is n-exponentially convex in the Jensen sense on I for every three
mutually distinct points y0, y1, y2 ∈ [a, b] (for i = 2, the functions fs ∈ Ω must be
differentiable). Then the following statements hold:

(i) The function s 7→ Φi (fs) is n-exponentially convex in the Jensen sense on I
and the matrix [

Φi

(
f sj+sk

2

)]m
j,k=1

is a positive semi-definite matrix for all m ∈ N, m ≤ n and s1, . . . , sm ∈ I.
Particularly,

det
[
Φi

(
f sj+sk

2

)]m
j,k=1

≥ 0, ∀ m ∈ N, m ≤ n.

(ii) If the function s 7→ Φi (fs) is continuous on I, then it is n-exponentially convex
on I.

Proof. The idea of the proof is the same as that of Theorem 3.1 in [8].
(i): Let αj ∈ R, j = 1, . . . , n and consider the function

φ (y) =
n∑

j,k=1

αjαkf sj+sk
2

(y) ,

where sj ∈ I and f sj+sk
2

∈ Ω. Then

[y0, y1, y2;φ] =
n∑

j,k=1

αjαk

[
y0, y1, y2; f sj+sk

2

]
and since [

y0, y1, y2; f sj+sk
2

]
is n-exponentially convex in the Jensen sense on I by assumption, it follows that

[y0, y1, y2;φ] =
n∑

j,k=1

αjαk

[
y0, y1, y2; f sj+sk

2

]
≥ 0.

And so by using Remark 11 we conclude that φ is a convex function. Hence

Φi (φ) ≥ 0, i = 1, 2,
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which is equivalent to

n∑
j,k=1

αjαkΦi

(
f sj+sk

2

)
≥ 0, i = 1, 2,

and so we conclude that the function s 7→ Φi (fs) is n-exponentially convex in the
Jensen sense on I. The remaining part follows from Proposition 2.

(ii): If the function s 7→ Φi (fs) is continuous on I, then from (i) and by Defini-
tion 7 it follows that it is n-exponentially convex on I.

The following corollary is an immediate consequence of the above theorem.

Corollary 4. Let Φi, i = 1, 2 be linear functionals as defined in (27) and (28). Let
Ω = {fs : s ∈ I ⊆ R} be a family of functions defined on [a, b] such that the function
s 7→ [y0, y1, y2; fs] is exponentially convex in the Jensen sense on I for every three
mutually distinct points y0, y1, y2 ∈ [a, b] (for i = 2, the functions fs ∈ Ω must be
differentiable). Then the following statements hold:

(i) The function s 7→ Φi(fs) is exponentially convex in the Jensen sense on I and
the matrix [

Φi(f sj+sk
2

)
]n
j,k=1

is a positive semi-definite matrix for all n ∈ N and s1, . . . , sn ∈ I. Particularly,

det
[
Φi(f sj+sk

2

)
]n
j,k=1

≥ 0, ∀ n ∈ N.

(ii) If the function s 7→ Φi (fs) is continuous on I, then it is exponentially convex
on I.

Corollary 5. Let Φi, i = 1, 2 be linear functionals as defined in (27) and (28). Let
Ω = {fs : s ∈ I ⊆ R} be a family of functions defined on [a, b] such that the function
s 7→ [y0, y1, y2; fs] is 2-exponentially convex in the Jensen sense on I for every three
mutually distinct points y0, y1, y2 ∈ [a, b] (for i = 2, the functions fs ∈ Ω must be
differentiable) and also assume that Φi (fs) , i = 1, 2 are strictly positive for fs ∈ Ω.
Then the following statements hold:

(i) If the function s 7→ Φi (fs) is continuous on I, then it is 2-exponentially convex
on I and so it is log-convex on I and for r, s, t ∈ I such that r < s < t, we
have

[Φi (fs)]
t−r ≤ [Φi (fr)]

t−s
[Φi (ft)]

s−r

, i = 1, 2, (31)

known as Lyapunov’s inequality. If r < t < s or s < r < t, then the opposite
inequality holds in (31).

(ii) If the function s 7→ Φi (fs) is differentiable on I, then for every s, q, u, v ∈ I
such that s ≤ u and q ≤ v, we have

µs,q (Φi,Ω) ≤ µu,v (Φi,Ω) , i = 1, 2, (32)



236 S.Khalid, J. Pečarić and M.Praljak

where

µs,q (Φi,Ω) =


(

Φi(fs)
Φi(fq)

) 1
s−q

, s ̸= q,

exp
(

d
dsΦi(fs)

Φi(fs)

)
, s = q,

(33)

for fs, fq ∈ Ω.

Proof. The idea of the proof is the same as that of Corollary 3.2 in [8].
(i): The claim that the function s 7→ Φi (fs) is log-convex on I, is an immediate

consequence of Theorem 9 and Remark 9 and (31) can be obtained by replacing the
convex function f by the convex function f (z) = log Φi (fz) for z = r, s, t in (4),
where r, s, t ∈ I such that r < s < t.

(ii): Since by (i) the function s 7→ Φi (fs) is log-convex on I, that is, the
function s 7→ log Φi (fs) is convex on I. Applying Proposition 1 with setting
f (z) = log Φi (fz), we get

log Φi (fs)− log Φi (fq)

s− q
≤ log Φi (fu)− log Φi (fv)

u− v
, (34)

for s ≤ u, q ≤ v, s ̸= q, u ̸= v; and therefore conclude that

µs,q (Φi,Ω) ≤ µu,v (Φi,Ω) , i = 1, 2.

If s = q, we consider the limit when q → s in (34) and conclude that

µs,s (Φi,Ω) ≤ µu,v (Φi,Ω) , i = 1, 2.

The case u = v can be treated similarly.

Remark 12. Note that the results from Theorem 9, Corollary 4 and Corollary 5 still
hold when two of the points y0, y1, y2 ∈ [a, b] coincide, say y1 = y0, for a family of
differentiable functions fs such that the function s 7→ [y0, y1, y2; fs] is n-exponentially
convex in the Jensen sense (exponentially convex in the Jensen sense, log-convex in
the Jensen sense on I); and furthermore, they still hold when all three points coincide
for a family of twice differentiable functions with the same property. The proofs are
obtained by recalling Remark 10 and using suitable characterizations of convexity.

4. Examples

In this section, we present several families of functions which fulfil the conditions of
Theorem 9, Corollary 4, Corollary 5 and Remark 12. This enables us to construct
large families of functions which are exponentially convex.

Example 2. Consider the family of functions

Ω1 = {gs : R → [0, ∞) : s ∈ R}

defined by

gs (x) =

{
1
s2 e

sx, s ̸= 0,
1
2 x

2, s = 0.
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We have
d2

dx2
gs (x) = esx > 0,

which shows that gs is convex on R for every s ∈ R and s 7→ g′′s (x) is expo-
nentially convex by definition (see also [4]). In order to prove that the function
s 7→ [y0, y1, y2; gs] is exponentially convex, it is enough to show that∑n

j,k=1 αjαk

[
y0, y1, y2; g sj+sk

2

]
=
[
y0, y1, y2;

∑n
j,k=1 αjαkg sj+sk

2

]
≥ 0, (35)

∀ n ∈ N, αj , sj ∈ R, j = 1, . . . , n. By Remark 11, (35) will hold if

Υ(x) :=
n∑

j,k=1

αjαkg sj+sk
2

(x)

is convex. Since s 7→ g′′s (x) is exponentially convex, i.e

n∑
j,k=1

αjαkg
′′
sj+sk

2

≥ 0, ∀n ∈ N, αj , sj ∈ R, j = 1, . . . , n,

which shows the convexity of Υ(x) and so (35) holds. Now, as the function s 7→
[y0, y1, y2; gs] is exponentially convex, s 7→ [y0, y1, y2; gs] is exponentially convex in
the Jensen sense and by using Corollary 4, we have that s 7→ Φi (gs) , i = 1, 2 is expo-
nentially convex in the Jensen sense. Since this mapping is continuous (although the
mapping s 7→ gs is not continuous for s = 0), s 7→ Φi (gs) , i = 1, 2 is exponentially
convex.
For this family of functions, by taking Ω = Ω1 in (33), µs,q (Φi,Ω1) , i = 1, 2 become

µs,q (Φi,Ω1) =



(
Φi(gs)
Φi(gq)

) 1
s−q

, s ̸= q,

exp
(

Φi(id·gs)
Φi(gs)

− 2
s

)
, s = q ̸= 0,

exp
(

Φi(id·g0)
3Φi(g0)

)
, s = q = 0.

By using Theorem 8, it can be seen that

Ms,q (Φi,Ω1) = logµs,q (Φi,Ω1) , i = 1, 2,

satisfy a ≤ Ms,q (Φi,Ω1) ≤ b, which shows that Ms,q (Φi,Ω1) is a family of mean.

Example 3. Consider the family of functions

Ω2 = {fs : (0,∞) → R : s ∈ R}

defined by

fs (x) =


xs

s(s−1) , s ̸= 0, 1,

− lnx, s = 0,

x lnx, s = 1.
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Here

d2

dx2
fs (x) = xs−2 = e(s−2) ln x > 0,

which shows that fs is convex for x > 0 and s 7→ f ′′
s (x) is exponentially convex by

definition (see also [4]). It is easy to prove that the function s 7→ [y0, y1, y2; fs] is
exponentially convex. Arguing as in Example 2, we have that s 7→ Φi (fs) , i = 1, 2
is exponentially convex.
If r, s, t ∈ R are such that r < s < t, then from (31) we have

Φi (fs) ≤ [Φi (fr)]
t−s
t−r [Φi (ft)]

s−r
t−r , i = 1, 2. (36)

If r < t < s or s < r < t, then the opposite inequality holds in (36).

Particularly, for i = 1 and r, s, t ∈ R \ {0, 1} such that r < s < t, we have

(
∑n

k=1 pkak)
s − (p1a1)

s −
∑n

k=2 a
s
k

(
P s
k − P s

k−1

)
s (s− 1)

≥

[
(
∑n

k=1 pkak)
r − (p1a1)

r −
∑n

k=2 a
r
k

(
P r
k − P r

k−1

)
r (r − 1)

] t−s
t−r

×

[
(
∑n

k=1 pkak)
t − (p1a1)

t −
∑n

k=2 a
t
k

(
P t
k − P t

k−1

)
t (t− 1)

] s−r
t−r

,

where ak > 0, pk > 0, k = 1, . . . , n are such that p1a1,
∑n

k=1 pkak, P kak, Pk−1ak
∈ [a, b] for all k = 2, . . . , n. In fact, for s > 1, (37) is the refinement of inequality
(2) and for 0 < s < 1, (37) holds in the reverse direction.
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By taking Ω = Ω2 in (33), Ξi
s,q := µs,q (Φi,Ω2) , i = 1, 2 are of the form

Ξ1
s,q =

(
q (q−1)

s (s−1)
.
(
∑n

k=1 pkak)
s−(p1a1)

s−
∑n

k=2 a
s
k

(
P s
k−P s

k−1

)
(
∑n

k=1 pkak)
q−(p1a1)

q−
∑n

k=2 a
q
k

(
P q
k−P q

k−1

)) 1
s−q

, s ̸= q ̸= 0, 1,

Ξ1
s,0 =

(
1

s (s− 1)
.
(
∑n

k=1 pkak)
s − (p1a1)

s −
∑n

k=2 a
s
k

(
P s
k − P s

k−1

)
ln (Pna1)− ln (

∑n
k=1 pkak)

) 1
s

, s ̸= 0, 1,

Ξ1
s,1=

(
1

s(s−1)
·

(
∑n

k=1 pkak)
s−(p1a1)

s−
∑n

k=2 a
s
k

(
P s
k − P s

k−1

)∑n
k=1ak(pkln(

∑n
k=1pkak)−Pkln(Pkak))+

∑n
k=2akPk−1ln(Pk−1ak)

) 1
s−1

,

s ̸= 0, 1,

Ξ1
0,1 =

∑n
k=1 ak (pk ln (

∑n
k=1 pkak)− Pk ln (Pkak)) +

∑n
k=2 akPk−1 ln (Pk−1ak)

ln (Pna1)− ln (
∑n

k=1 pkak)
,

Ξ1
s,s =exp

(
1− 2s

s (s− 1)
+
(
∑n

k=1 pkak)
s
ln (
∑n

k=1 pkak)−
∑n

k=1 a
s
kP

s
k ln (Pkak)

(
∑n

k=1 pkak)
s − (p1a1)

s −
∑n

k=2 a
s
k

(
P s
k − P s

k−1

)
+

∑n
k=2 a

s
kP

s
k−1 ln (Pk−1ak)

(
∑n

k=1 pkak)
s − (p1a1)

s −
∑n

k=2 a
s
k

(
P s
k − P s

k−1

)) , s ̸= 0, 1,

Ξ1
0,0=exp

(
(ln (

∑n
k=1 pkak)− ln (p1a1)) ln

(
e2p1a1

∑n
k=1 pkak

)
2 (ln (

∑n
k=1 pkak)− ln (Pna1))

−
∑n

k=2 (lnPk − lnPk−1) ln
(
e2PkPk−1a

2
k

)
2 (ln (

∑n
k=1 pkak)− ln (Pna1))

)
,

Ξ1
1,1=exp


n∑

k=1

ak

(
pk ln

(
n∑

k=1

pkak

)
ln

(
e−2

n∑
k=1

pkak

)
−Pk ln (Pkak) ln

(
e−2Pkak

))
2 (
∑n

k=1 ak(pk ln (
∑n

k=1 pkak)−Pk ln (Pkak))+
∑n

k=2 akPk−1 ln (Pk−1ak))



×exp


n∑

k=2

akPk−1 ln (Pk−1ak) ln
(
e−2Pk−1ak

)
2(
∑n

k=1 ak(pk ln(
∑n

k=1 pkak)−Pk ln(Pkak))+
∑n

k=2 akPk−1ln(Pk−1ak))

.
Similarly, we can obtain Ξ2

s,q =: µs,q (Φ2,Ω2).
If Φi, i = 1, 2 is positive, then Theorem 8 applied for f = fs ∈ Ω2 and g = fq ∈ Ω2

yields that there exists ξi ∈ [a, b] such that

ξs−q
i =

Φi (fs)

Φi (fq)
, i = 1, 2.

Since the function ξi 7→ ξs−q
i is invertible for s ̸= q, we have

a ≤
(
Φi (fs)

Φi (fq)

) 1
s−q

≤ b, i = 1, 2, (37)
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which, together with the fact that µs,q (Φi,Ω2) is continuous, symmetric and monoto-
nous (by (32)), shows that µs,q(Φi,Ω2) is a family of mean.

If a = 0 and we consider functions defined on [0,∞), then we can obtain inequal-
ities and means of the same form, but for parameters s and q restricted to (0,∞).
More precisely, we consider the family of functions

Ω̃2 = {f̃s : [0,∞) → R : s ∈ (0,∞)}

defined by

f̃s (x) =

{
xs

s(s−1) , s ̸= 1,

x lnx, s = 1,

with the convention that 0 ln 0 = 0. For s > 0 and q > 0, by taking Ω = Ω̃2 in (33),

Ξ̃i
s,q =: µs,q

(
Φi, Ω̃2

)
, i = 1, 2

are of the same form as Ξi
s,q.

Remark 13. If we make the substitutions pk → 1, k = 1, . . . , n in the means given
in Example 3, then the results for the means given in [5] are recaptured.

Example 4. Consider the family of functions

Ω3 = {hs : (0,∞) → (0,∞) : s ∈ (0,∞)}

defined by

hs (x) =

{
s−x

ln2 s
, s ̸= 1,

x2

2 , s = 1.

We have
d2

dx2
hs(x) = s−x > 0,

which shows that hs is convex for all s > 0. Since s 7→ h′′
s (x) is the Laplace transform

of a non-negative function (see [4, 12]), it is exponentially convex. It is easy to see
that the function s 7→ [y0, y1, y2;hs] is also exponentially convex. Arguing as in
Example 2, we have that s 7→ Φi (hs) is exponentially convex.
In this case, by taking Ω = Ω3 in (33), µs,q (Φi,Ω3), i = 1, 2 are of the form

µs,q(Φi,Ω3) =



(
Φi(hs)
Φi(hq)

) 1
s−q

, s ̸= q,

exp
(
−Φi(id·hs)

sΦi(hs)
− 2

s ln s

)
, s = q ̸= 1,

exp
(
−Φi(id·h1)

3Φi(h1)

)
, s = q = 1.

By using Theorem 8, it follows that

Ms,q (Φi,Ω3) = −L (s, q) logµs,q (Φi,Ω3) , i = 1, 2,
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satisfy a ≤ Ms,q (Φi,Ω3) ≤ b and so Ms,q (Φi,Ω3) is a family of mean, where L (s, q)
is a logarithmic mean defined by

L (s, q) =

{ s−q
log s−log q , s ̸= q,

s, s = q.

Example 5. Consider the family of functions

Ω4 = {ks : (0,∞) → (0,∞) : s ∈ (0,∞)}

defined by

ks (x) =
e−x

√
s

s
.

Here,
d2

dx2
ks (x) = e−x

√
s > 0,

which shows that ks is convex for all s > 0. Since s 7→ k′′s (x) is the Laplace transform
of a non-negative function (see [4, 12]), it is exponentially convex. It is easy to
prove that the function s 7→ [y0, y1, y2; ks] is also exponentially convex. Arguing as
in Example 2, we have that s 7→ Φi (ks) is exponentially convex.
In this case, by taking Ω = Ω4 in (33), µs,q (Φi,Ω4) , i = 1, 2 are of the form

µs,q (Φi,Ω4) =


(

Φi(ks)
Φi(kq)

) 1
s−q

, s ̸= q,

exp
(
− Φi(id·ks)

2
√
sΦi(ks)

− 1
s

)
, s = q.

By using Theorem 8, it is easy to see that

Ms,q (Φi,Ω4) = −
(√

s+
√
q
)
logµs,q (Φi,Ω4) , i = 1, 2,

satisfy a ≤ Ms,q (Φi,Ω4) ≤ b, showing that Ms,q (Φi,Ω4) , i = 1, 2 is a family of
mean.

Remark 14. From (33), it is clear that µs,q (Φi,Ω) , i = 1, 2 for Ω = Ω1,Ω3 and Ω4

are monotonous functions in parameters s and q.
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