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Abstract. Let NJt?(c) be an (n+p)-dimensional connected Lorentzian space form of con-
stant sectional curvature ¢ and ¢ : M — Ny 7P(c) an n-dimensional spacelike submanifold
in NJ'"P(c). The immersion ¢ : M — NJ*P(c) is called a Willmore spacelike submanifold
in NJ™?(c) if it is a critical submanifold to the Willmore functional

W(go):/ pndv:/ (S —nH?)% dv,
M M

where S, H and p? denote the norm square of the second fundamental form, the mean
curvature and the non-negative function p? = S —nH? of M. In this article, by calculating
the first variation of W (p), we obtain the Euler-Lagrange equation of W(y) and prove
some rigidity theorems for n-dimensional Willmore spacelike submanifolds in N} t?(c).
AMS subject classifications: 53C42, 53C40

Key words: Willmore spacelike submanifold, Lorentzian space form, Euler-Lagrange equa-
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1. Introduction

Let N;"P(c) be an (n +p)-dimensional connected Lorentzian space form of constant
sectional curvature ¢. If ¢ > 0, ¢ = 0 or ¢ < 0, we call N;L‘”’(c) a Minkowski space
Ry*P, a de Sitter space S;*?(c) or an anti-de Sitter space H}'*?(c). A submanifold
in NJ*P(c) is said to be spacelike if the induced metric on the submanifold is positive
definite. Let
©: M — NJTP(c)

be an n-dimensional spacelike submanifold in N;“’ (¢). Denote by hg;, S, H and H
the second fundamental form, the norm square of the second fundamental form, the
mean curvature vector and the mean curvature of M and denote by p? the non-
negative function p? = S —nH?. We define the Willmore functional (see [4, 9, 16]):

W(p) = /M pldv = /M(S —nH?) % dv, (1)
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which vanishes if and only if M is a totally umbilical submanifold, so the functional
W (y) measures how far (M) is from being a totally umbilical submanifold. If the
critical points of the Willmore functional W(y) are submanifolds in N}*?(c), we
call them Willmore spacelike submanifolds.

Due to their backgrounds in mathematics, we know that Willmore submanifolds
in a unit sphere were extensively studied by many mathematicians. For example, the
well-known Willmore conjecture, which says that W () > 472 holds for all immersed
tori ¢ : M — S3, was investigated by Willmore [20, 21], Li and Yau [10] and many
others; it was recently proved by Marques and Neves [12]. We should notice that the
topic of Willmore submanifolds and their rigidity problem was also studied by Wang
[19] (using conformal invariance), Li [8, 9] and the first author [18] (using metric
invariants) and by Mondino-Riviere [13] (who established a divergence form of the
Willmore equation in manifolds and exploited it to get rigidity results). On the other
hand, we should see that the parallel problem in Lorentzian conformal geometry is
also an important and interesting topic. As far as the authors know, the earliest
work in this direction is L. Alias and B. Palmer’s paper [2], in which they essentially
used the conformal invariance. We notice that one of Alias and Palmer’s main
contributions is the generalization of Willmore surfaces to Lorentz geometry and a
Bernstein type theorem for them, which implies that compact Willmore surfaces in 3-
dimensional Lorentz space forms must be totally umbilic spheres. This research was
motivated by Barros et al. [3], Li and Nie [11], Nie et al. [14, 15] and others. In this
article, we consider the Willmore functional on spacelike submanifolds in Lorentzian
space forms. By using the metric invariants, we compute the first variation of the
Willmore functional W (p) and obtain the Euler-Lagrange equation and some rigidity
results of n-dimensional Willmore spacelike submanifolds in N;}“’(c).

Theorem 1. Let ¢ : M — N[j"‘p(c) be an n-dimensional spacelike submanifold in
N;}“‘P(C). Then M is an n-dimensional Willmore spacelike submanifold if and only
ifforn+1<a,B<n+p

n—2 « B« a,B 18 2 17
2 SHY Y HORhG — T R R —nHAH" }
i,5,8 1,5,k 8
+ (n—1)p"PATH +2(n - 1)) (p"?):HY (2)

+ (n=1)H*A(p""?) = 0%(p" %) =0,
where
A" = (0" )y

i
ALHQZZHQ

O%(p"%) = > (0" )i (nH*6i5 — hey),
i

and (p"_Q)J'j is the Hessian of p"~2 with respect to the induced metric, HS and HY;
are defined by (20) and (21).
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Remark 1. We should notice that in Theorem 1 (also in Proposition 3 - 5 and
Corollary 2), when n = 3 and n = 5, we need to assume that M has no umbilical
points to guarantee (p"~?) ;; is continuous on M. In fact, if we denote ¥ := S—nH?,

n—4
n=2 7 z,; and

then p

n—2 _
="z . Thus, we have (p"~?),; = 252

n—2) .

_n—2(n—4 n—6 _4
X/ A 2

(p 5 ¢ T TyTit ana?,ij)-

From the above equation, we see that whenn = 2,4 orn > 6, (p"~2) ;; is continuous
on M and when n =3 or 5, (p"~2),; is not continuous on the umbilical points of
M. Therefore, the assumption n # 3,5 is needed in Theorem 2 -Theorem 4 .

Remark 2. We also notice that in conformal geometry of conformal spacelike sub-
manifolds Nie and Wu [15] obtain the Willmore equation (Euler-Lagrange equation)
in terms of conformal invariants.

When n = 2, since R;j = géij and S = R — 2c+ 4H?, from the Gauss equation
(12) we see that

-y hgjhfkhfj = —Zhgj(mj—cainZH%g)
4,7 B

,,k,8
_ o 2170 B1B 1o
= —SH® +4H?H* -2 " HPhhg,.
,3,8
Thus, (2) reduces to
1 ryo @ Bpa _
AYH® +2H?H® = > HPW)h; =0, (3)

15,8
where 3 < a, 8 <24 p. From (3), we easily see

Proposition 1. Fvery mazimal spacelike surface o : M — Ng“’(c) in a Lorentzian
space form Ng“’(c) is a Willmore spacelike surface.

Proposition 2. Every n(n > 3)-dimensional mazimal and Finstein spacelike sub-
manifold ¢ : M — N} P(c) in a Lorentzian space form N}*P(c) is a Willmore
spacelike submanifold.

In fact, since M is maximal and Einstein, we have H* = 0 for all  and R;; =
£4,; = constant. Thus, from (13), we see that p* = S = R — n(n — 1)c = constant.
From (2), we only need to prove Y. h%h’ h*,fj = 0. From the Gauss equation (12),

ST 17" ik
we have o
> nghihg = S b (SR ) = (R — (0 = Vs g
1,5k, ,J k,B %,

— Z {ggij —(n— 1)05”} e = {% —c(n— 1)}nHO‘ =0.
i,J

We also have the example of Willmore spacelike hypersurfaces of H"!(—1).
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Example 1. The hyperbolic cylinders

”;k) x H"‘k(\/f) CH ' (-1),1<k<n-1,

have two distinct principal curvatures \/k/(n —k) and —\/(n —k)/(k) with mul-

tiplicities k and n — k, respectively. We may easily check that they are Willmore
spacelike hypersurfaces in H' ™ (—1) (see [14]) and p*> = S — nH? = n.

H*(

Remark 3. It is unknown whether there exist non-trivial examples of closed Will-
more spacelike submanifolds whose normal bundle is timelike.

Denote by K and @ the functions which assign to each point of M the infimum
of the sectional curvature and the Ricci curvature at the point. We obtain the

following integral inequalities of Simons’ type and rigidity theorems in terms of p?,
K, Q and H.

Theorem 2. Let ¢ : M — NJ*P(c) be an n(n > 2)-dimensional compact Willmore
spacelike submanifold in a Lorentzian space form NJ*P(c)(c =1,0,—1). Ifn # 3,5,
then

(1) forp=1, we have

(4) if ¢ =1,0, then M is totally umbilical;
(i) if c = —1 and p* > n, then M is totally umbilical;

(2) forp>2, we have
n 1 2 2
P —=p°+nc—nH"}dv<O0. (4)
M p

In particular, if
p* > np(H? — c),
then M s totally umbilical.
Theorem 3. Let ¢ : M — N}*P(c) be an n(n > 2)-dimensional compact Willmore

spacelike submanifold in a Lorentzian space form Ng“’(c)(c =1,0,-1). If n # 3,5,
then the following integral inequality holds

n)pg__n-2 v
/Mp {K n(n—l)HP}d =0 (5)

In particular, if

then M is totally umbilical.
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Theorem 4. Let ¢ : M — N}*P(c) be an n(n > 2)-dimensional compact Willmore
spacelike submanifold in a Lorentzian space form N;“‘p(c) (¢c=1,0,-1). If n # 3,5,
then the following integral inequality holds

| Q= m=p=-ne- 1)} dv <o (6)
In particular, if
Q> (n—p—1)(c—H?),
then M is totally umbilical.

Remark 4. If p = 1 and ¢ = 1,0, from Theorem 2 we know that M is totally
umbilical. Thus, the conditions
-2

K>_"—2%2

n(nfl)Hp and Q> (n—p—1)(c—H?)

can be omitted from Theorem 8 and Theorem 4 if p=1 and c =1,0.

Remark 5. For the Willmore spacelike surfaces, L. Alias and B. Palmer [2] proved
that compact Willmore spacelike surfaces in 3-dimensional Lorentz space forms must
be totally umbilical spheres. Thus, we notice that our results above generalize Alias
and Palmer’s uniqueness result to high dimension and high co-dimension Willmore
spacelike submanifolds.

If o : M — N2*P(c) is a maximal spacelike surface in a Lorentzian space form
N;“’(c), from Proposition 1 and Theorem 2 - Theorem 4, we easily have the follow-
ing result:

Corollary 1. Let ¢ : M — Ng*‘p(c) be a compact maximal spacelike surface in a
Lorentzian space form Ng“’(c)(c =1,0,-1). Then

(1) if c=1,0, M is totally geodesic;
(2) ifc=—-1,5>2por K>0o0rQ>p—1, M is totally geodesic.

Remark 6. We notice that the result (1) of Corollary 1 was obtained by [7].

2. Preliminaries

Let NJ*P(c) be an (n 4 p)-dimensional Lorentzian space form with index p. Let
M be an n-dimensional connected spacelike submanifold immersed in N}*?(c). We
choose a local field of semi-Riemannian orthonormal frames e, ..., ep4p in NI’}“’(C)
so that at each point of M, eq,...,e, span the tangent space of M and form an
orthonormal frame there. We use the following convention on the range of indices:

1<ABC,...<n+p, 1<ijk,...<n n+1<a,p8,7,...<n+p.
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Let wi,...,wn4p be its dual frame field so that the semi-Riemannian metric of
N]'*P(c) is given by

d§2:E w?—g wi:E €AWy,
% « A

where ¢; = 1 and e, = —1. Then the structure equations of N}'*?(c) are given by
dws = epwap Awp, wap+wpa =0, (7)
B
1
dwap =Y ccwac Awop — 3 Y ecepKapopwo Awp, (8)
c C,D
Kapcep = ceaep(6acdpp — 0apdBC). (9)

If we restrict these forms to M, then w, =0, n+1<a <n+pand

wai = Y hw;,  hg = hS;. (10)
J
The Gauss equations are
Riji = c(0in0j1 — 6adjk) — Z(h?kh?l — hhSy), (11)
Ry = (n—1)cdi, — Y (O hi)hG + > hihs, (12)
« l a,j
R=mn(n—1)c+S—n?H? (13)

where
. 1 .
S=> (hgy)?, H=) H%,, H"==> hjy, H=|H
g;l( Zj) ’ za: € n zk: kk | |
and R is the scalar curvature of M.

Define the first and the second covariant derivatives of h{;, say hf} . and h% ki DY

SR gwr=dhS + > W + Y hSwr — Y hiwsa, (14)
k k k B

> hgwr = dhS > G Wmi T ok Y Wk — i waa- (15)
l m m m Jé;

The Codazzi equations and the Ricci identities are
?jk = ?kjv (16)

W — he = > ho Rkt + Y W% Runint + > i Ragir. (17)
m m B

The Ricci equations are

Raprr = Y (hft i = hiv ). (18)

m
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The Laplacian of h{; is defined by Ahf; = Zk: hsyy.- From (17), for any a,n +1 <

a < n + p, we obtain

ARG = " his + D b Bmijk + Y W Rk + Y By Ragjn- (19)
k k,m k,m k,B

Define the first, second covariant derivatives and Laplacian of the mean curvature
vector field H = > H%e, in the normal bundle N (M) as follows
«

> H$9; =dH® +  H0p, (20)
i B
> HY0; = dHS + Y HS0;+ Y H0p0, (21)
J J B
Atge =Y HY, H = %Zhgk. (22)
% k

Let f be a smooth function on M. The first, second covariant derivatives f;, f;; and
Laplacian of f are defined by

df = Zfif)u Zf,ijej =df; + Zfﬁji, Af = qu (23)
i J J i

For the fix index a(n +1 < a < n + p), we introduce an operator 0% due to
Cheng-Yau [5] by

O%f =Y (nH6;j — h$)) fj- (24)
i.j

Since M is compact, the operator O% is self-adjoint (see [5]) if and only if

/ (0% f)gdv = / F(0%g)do, (25)
M M

where f and g are smooth functions on M. We need the following:

Lemma 1 (See [17]). Let A, B be symmetric n X n matrices satisfying AB = BA
and trA =trB =0. Then

n —

2
vn(n—1)

and the equality holds if and only if (n — 1) of the eigenvalues x; of B and the
corresponding eigenvalues y; of A satisfy

lzi| = (trB)Y2/\/n(n — 1), xx; >0,
yi = (ttA%)2//n(n - 1).

ltrA%B| < (trA%)(trB?)1/2, (26)
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By the same method as in the proof of Lemma 4.2 in [9], we also have the
following:

Lemma 2. Let ¢ : M — N}'*P(c) be an n-dimensional (n > 2) spacelike submani-
fold in NP (c). Then we have

2 3 1 an
|Vh|" > mw HI%, (27)

where V> = Y (b))%, [VEH? = Y (HS)2.

1,5,k 1,0

3. First variation and Euler-Lagrange equation

In this section, we shall calculate the first variation of the Willmore functional W (yg)
and obtain the Euler-Lagrange equation (2).

Let ¢o : M — N;,”rp (¢) be an n-dimensional compact spacelike submanifold in
N]'*P(c) with (possibly empty) boundary M. If otherwise, we will consider the
variation with compact support. Let ¢ : M x R — N;H‘p (¢) be a smooth variation
of wg such that ¢(-,t) = @o on the boundary. Along ¢ : M x R — NJ}*?(c),
we choose a local orthonormal basis {ea} for TN} (c) with dual basis {wa}, so
that {e;(-,t)} forms a local orthonormal basis for ¢; : M x {t} — N;'*P(c). Since
T*(M x R) = T*M © T*R, the pullback of {wa} and {wap} on NJ*?(c) through
@ : M x R — N]J"P(c) have the decomposition

O we = Vodt,  ©*w; = 0; + Vidt, (28)
Y wij = 0 + Lijdt, @ wia = 0iq + Miadt, @ wag = bap + Nagdt, (29)

where {V;, Vo, Lij, Mia, Nog} are local functions on M x R with L;; = —Lj;, Nog =
—Npgqo and

d
V= limopr = zijvidgoo(ei) +§ajvaea, (30)

is the variation vector field of ¢; : M — N;“"’(c). We note that forms {6;,6;;,6;a,
0.} are defined on M x {t}, for t = 0, they reduce to the forms with the same
notation on M. We denote by dj; the differential operator on T*M; then d =
dy + dt2 on T*(M x R).

Let Kapcop be the components of the Riemannian curvature tensor of N+ (c).
On M x {t}, if we assume that h$; and the covariant derivatives V; ;, V,,; and M,q
are defined similarly to [6] (see (3.7) - (3.10) in [6]), by the proof similar to Lemma 3.1
and Lemma 3.2 in [6], we have the following lemmas:
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Lemma 3. Under the above notations, we have

09, .
5 D Vig+Li)b + > hisVaby,

Jre

J
Mo = Va,i + Zh%‘/j’
J

aeia
it =37 (Mo + Y LuhSi = > Noah
, : -

J

=Y KiakiVi = KiajaVi )65
k 5

Lemma 4.
th?"j
ot

= Vaij + Y _(Lihflj + Lighgs + b Vi)

k
+ 3 (Naghly = KaigiVs) = > hihi;Vs.
3 kB

309

(31)

(32)

(34)

Proof of Theorem 1. By reasoning as in [6], setting ¢ = j in (34) and summing

over ¢ by using Y L;th$; = 0, we have

2

O _ Lty +> HGVi+ ) NogH’
ot  n « - vk 5 ab
1,05 1
—— > BV = =Y KaigiVi:
n n <
i,k,B 8
Since Z Na@h?jhfj =0 and Z Ljihi;hi; = 0, from (34) we have
,3,0,8 .5,k
108 1
- = hiVaii + =Y SV
= D KaigghiVa— D hhihVs.
4,5, ,9,k,,8

From (35) and Z NosgHH? =0, we have
a,pB
18(nH2)
2 0Ot

= Y HOA Va4 5 Y (HA) Vi
k

«
= D HORGhGVs = 3 H KaigVs.

.5, i,a,B

For p; : M — Ng‘“’ (c), we consider the non-negative functional

W((pt):/ p”dv:/ (S —nH?>)Z0, A--- A b,
M M

(36)

(37)
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From (31), we have

(01N NO) =0 A ABA NG,

(39)
= (ZVi,i +nZH“Va>91 ARERWAN
From (36) and (37), we see that
%" s “2{Zh 12(&)%— > Kaigih&V
Ot aij T 2 ; . aifBjlti; Ve
4,7, i,5,0,0
- Z HOAYV, — Y hEhehy, Vs (40)
,3,k,a,8
+ N HORgh Vs + Y HO Kmﬁzvﬂ}
i,5,0,3 i,0,[3
From (38) - (40), we have
Fule) / o [0 Y Vo —n R HUA+ g Z(/P) Vi
at M = 17 J 5
+p Z +nz = Kpiajhly = > hfjhfkh (41)
,5,8 i.5,k,8
+ > HONG NG + 3 H Kiai + p2HO Ve o
,3,8 i
By the same reason as in [6], we see that
) n—
=n Z {P 2= D0 mihahis =D Ksiagh
M i,5,k,B 03,8
+ > HOWGhS + Y H Kpiai + p°H°] (42)
.3,8 .8

+Z n— Qha ‘—Alpn_QHa}VadU.

From (9), we see that

- Z Kﬁiajhfj + ZHﬁKﬂiozi = 0.
4,5, i,8

Thus, by (30) and (42) with restriction to ¢ = 0, we obtain the Euler-Lagrange
equation (2). This completes the proof of Theorem 1. O



WILLMORE SPACELIKE SUBMANIFOLDS IN A LORENTZIAN SPACE FORM N;“’(c) 311
4. Integral equalities of Willmore spacelike submanifolds
Define tensors
hg; = h; — H*6j, (43)

Gop = Zh” by Oap = Zh;’]hfj (44)

Then the (p X p)-matrix (5,8) is symmetric and can be assumed to be diagonalized
for a suitable choice of e,41, -, entp. We set

Gop = Gadus. (45)
By a direct calculation, we have
thk =0, Gap=0as—nHH’ p*= Zaa =S —nH? (46)

D hihihG = 30 WGRGRG, 2D HORGRG + HEp? + nH2HP. (47)

1] "1g
1,5,k .5,k 5,00

From (43), (46) and (47), the new Euler-Lagrange equation (2) can be rewritten as

Proposition 3. Let M be an n-dimensional spacelike submanifold in Ng”'p(c).

Then M 1is a Willmore spacelike submanifold if and only if forn+1<a<n+p
0 = (0= DA 2= )

(48)

+(n—1)H*A(p" 2 (ZHBUaB + > hhihy )
i,5,k, 8

Setting f = nH® in (24), we have
DQ(TLHQ) = Z(?’LHQ@] - h%)(nHO‘),”
4,J
49)
=Y (nH*)(nH*); Zh“ (nH®) ; (

We also have

%A(nH)2

%A za:(nHaf = % Za: A(nH*)?
5 ST = Y02+ Sl (50)

.t

=n?|VEHP 4+ (nH®)(nH®) ;4

a,t
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Therefore, from (49) and (50), we get

1 q
> 0%nH*) = 5A(nH)2 —n?|VEHP? - Z e (nH®) ;

i,
1 _,
= 5A[n(n—l)Hz—,02—&—5’] —n?VtH]? - Zho‘ (nH®) (51)
ij
_ 1 1 2 1 2 2 L 712 a «
= 2AS+2n(n 1)AH 2Ap n°|V-H|* — ;}h (nH®)
On the other hand, we have
1 (6% «@
SAS = > (W) + D ARG
1,5k, i,5,Q
= [VAP? + D b (nH®) 5+ > > hiy(hiyRuge + hiRue)  (52)
i,5,0 a 4,5k,
+ Z Z h?jhfiRaﬁjk-
a,B 1,5,k

Putting (52) into (51), we have

L1 1
> 0%nH®) = |Vh]* - 0’|V H[* + nn = AH? - §Ap2

+Z Z b (hig Ruiji + hii Rukjr) +ZZh"‘h Papijk

o 4,5,k a,B 4,5,k

(53)

Multiplying (53) by p"~2 and taking the integral, using (25), we have

S [ wH o= [ (VAR = AP
— Ju M

1 1
+-n(n— 1)/ PV 2AH? dv — f/ P2 AP du
2 M 2 Jum

+/ p”_2z Z he; (higy Riiji + iy Rk ) dv
M

a 4,5,k

/ "TNSR Raggdv.

a,B 4,5,k

(54)
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Taking the Willmore equation (48) into (54) and making use of the following:

1

n—2 a Al rra n—2 1 « n—2 a2
p EHAHdv—f/ §jA H)dv—/p N (HS)?dv
/M a 2 Jm M e

1 _
= 7/ pn—2AH2dv—/ "2V H dv,
2 M M

| magrta = [ SoH Y o
o a2/ n—2 dy = — ni?i 0‘2iv
_ Z/M(H ("2 d ;/Mu) )i((H*)2)
— _2/ ZHQ )iH dv,

71 n—2 2 _ = n—2
2/Mp Apdy = 22/”
=32 [ e == [ Ao
M

by a direct calculation, we have the following:

Proposition 4. Let M be an n-dimensional compact Willmore spacelike submani-
fold in N]'*P(c). Then

/ P R(TRP — n| V2o + (- 2) / 2V pl2du
M M

o W SIS NS St
M
a,f

4,9,k
(55)
+ /M p"_2 Z Z h%(h%lRlijk + hﬁlejk)dU
a i,7,k,l
/ "y Y b Ragirdo = 0.
a,B .5,k

In general, for a matrix A = (a;;) we denote by N(A) the square of the norm of
A, that is,

N(A) = trace(A - A) =) “(ai;)*.

4,9
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Clearly, N(A) = N(T*AT) for any orthogonal matrix 7. From (18), we have

ZZhgjhfiRaﬁjk = Z Z hSshig (b hflh;;)

a,B i,5,k B i,5,k,l
2
—3 5 (St - Sion)
a,B,7,k l
B3, y - (56)
:5 (Zh RS- Zh R )
1 - .
=3 N(AaA,g — AgA,),
a,pB
where A, = (ﬁf;) = (hg; — H%0y5).
By using (12), (18), (44), (46), (47) and (56), we conclude that
> g (b Ruijk + i Rugjie)
o 4,7,k
=ncp® + Y > hGRERGRG —n Y Y HPR SRS — > hShb Reajk
a,fB i,5,k,l a,B 1,5,k a,B,1,5,k
_ BB T« arrBra B
= nep JrZJaﬁfnZZH hyhshs, — 20> > " H* HP Rl
a,B 5,k a,B i,j
22— S 5 LS WA A 67)
—nZH H ZH fZNA Ag — AgA,)
=nep —I—Zoaﬁ—anpg—nZZH’Bhk] f‘j X
a,fB 1,5,k

+5 > N(AaAp— A3A,).
o,
Putting (56) and (57) into (55), we have the following:
Proposition 5. Let M be an n-dimensional compact Willmore spacelike submani-

fold in NJ*P(c). Then

/ (VAP — n|VEHP)do + (0 - 2) / 2|V p v
M M

+n/Mp"*2<ZH“Hﬁ&a5—H2p2>dv+nc/Mp"dv (58)
o,
4 /M S (N (Audy — Agda) +625)d0 = 0.
a,

Corollary 2. Let M be an n-dimensional compact Willmore spacelike hypersurface
in NJtP(c). Then

/ p”_Q(\Vh\Q—n\VH\Z)dv+(n—2)/ p”_2|Vp\2dv+/ p"(nc+p?)dv = 0. (59)
M M M
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5. Proofs of Theorems

From Remark 1, in the proofs of Theorem 2 - Theorem 4, we should assume that
n # 3,5.

Proof of Theorem 2. (1) For p = 1, from Lemma 2 and (59), we have

3n?

n—2 2 17312 n—2 3n?
0= [ p" (VA" = —= IV H[ )dv + [ p"*(
M n M

o L 772
+2 nta MV HId
(60)

o =2) [ 2ok [ et oz [ e+ .
M M M

(i) If ¢ = 1, since nc + p? > 0, from (60), it follows that p? = 0 and M is totally
umbilical. If ¢ = 0, since nc+ p? = p?, from (60), we easily see that p? = 0, thus M
is totally umbilical.

(ii) If ¢ = —1 and p* > n, since nc + p?> = —n + p?> > 0, from (60), we have
p?> =0 and M is totally umbilical or p?> = n. In the latter case, since p> = n > 0,
from (60) we have that

2 2
/ (2 ) VEAPd =0 and / (VR — 2 AP = 0.
M M

n+2 n+2

Thus VX H = 0 and Vi = 0, that is, H = constant and the second fundamental form
of M is parallel. It easily follows that M is an isoparametric spacelike hypersurface
with two distinct constant principal curvatures. By the congruence Theorem of
Abe, Koike and Yamaguchi (see Theorem 5.1 of [1]), we know that M is isometric
to Example 1. This is impossible since M is compact.

(2) For p > 2, from (45), we get

IR > (o) = 1ot (61)

- p

From (58) and (61) and

> N(A Ay - A5A,) >0, (62)
a,B
> HHPGo5 = (H*)?Ga > 0, (63)
a,3 «@

we have

0:/ p"_2(|Vh|2—n|VLﬁ|2)dv+(n—2)/ " 2|V p|?dv
M M

—|—n/ p"fz(ZHQHB&ag—H2p2>dv—|—nc/ p"dv
M

B M (64)
+ [ s = ApAa) + 52)do
a,B

1
> / p" {p2+nc—nH2}dv.
M p
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In particular, if
2 2
p° = np(H” —c),

from (64), we see that p? = 0 and M is totally umbilical or p> = np(H? — ¢). In the
latter case, from (64) we have that

/ P2 Z HYHPG zdv = 0,
M a,B

that is
/ PPN (H®)?Gqdv = 0. (65)
M =
If p? = 0, that is, M is totally umbilical; if p? # 0, from (65) it follows that

> (HY)?64 =0.

e

Thus, we see that H* = 0 and H = 0. If ¢ = 1, we have p> = —np < 0, a
contradiction; if ¢ = 0, we have p? = 0, also a contradiction since we assume that
p? #0;if ¢ = —1, we have p? = np. Since H = 0 and M is maximal, it follows that
S = np. From a result of T Ishihara [7] (see Theorem 1.3 of [7]), M is isometric to

H™( /%) X oo x Hr( /nl;;‘l)7

where ny + - -+ 4+ npy1 = n. This is impossible since M is compact. This completes
the proof of Theorem 2. O

Proof of Theorem 3. For a fixed a,n +1 < a < n + p, we can take a local
orthonormal frame field {ei,...,e,} such that h$; = A%d;;, then Ay = pufd;; with
pe = A} —H* > pu® =0. Thus

[e3 (0% « 1 «@ (0%
> hg(hiy Ruik + hiiRuggr) = 3 D> ¢ = M) Riji (66)
a,i,j,k,l a,i,j
1 « (03
=3 > (18 = 1§ )’ Riji; = nKp?,
o,1,]j

and the equality in (66) holds if and only if R;;;; = K for any ¢ # j.
Let Z(ﬁﬁ)Q = 7g. Then 75 < Z(ﬁg)z = 7. Since Zﬁﬁ =0, Zuf‘ =0 and
i i

i,J 4
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Z(uf‘)2 = G4, from Lemma 1 we have that

SN HORSRL G, =Y > " HPL R, = ZHﬁ Z R () (67)

a,pB i,k Biox i,k

> - \/72“[ |Gar/T5

__ T G H. /G
- fnm—ng 2
n—2 n—2
N L B HB)?2S G5= -2 [,
e 25:( ) zﬁ: 5 TN

From (55), (56), (62), (63), (66) and (67), we have
n—2 a2~ n—2 n(n 2) 3 v
E/Mp Xa:n(H )G q Mp \/7_1H d

-2
+/ p"_QnKdevz/ np" K—nin dv.
M M n(n —1)

In particular, if

(68)

K = ——Hp.
n(n —1) P

In the latter case, from (68), we know that (65) holds. If p? = 0, that is, M is totally

umbilical; if p? # 0, it follows from (65) that Y. (H*)?6, = 0. Thus, we see that

H* =0and H =0. It also follows from (66) that R;;;; = K for any ¢ # j. Since
n-—2

K=——-—Hp=0,
nin—1)

we have R;j;; = 0 for any ¢ # j. From the Gauss equation (11), we have n(n —1)c+
S =0.If c=1, we have n(n — 1) + S = 0, a contradiction; if ¢ = 0, we have S = 0,
thus p? = 0, also a contradiction since we assume that p? # 0; if ¢ = —1, we have

S =n(n—1). Since M is maximal and S = np, where p = n — 1, from a result of T
Ishihara [7], M is isometric to

) e e ),

where ny + - - - +n, = n. This is impossible since M is compact. This completes the
proof of Theorem 3. O
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Proof of Theorem 4. From (12) and (43), we have

Q<Ri=(m—-1)c—(n—2)Y H*h%—(n—1)H>+ (h)>.
« a,j

Thus
p? = Z(BZ)Q >nQ —n(n—1)(c— H?), (69)
a,i,]
and

202 @ = n(n = 1)(c — H). (70)

> G 2
oB
3)

From (58), (62), (63) and (70), we have

n—2 Ha 2~a _ 7L—2H2 2d
OZ/M/J Za:n( )6 n/Mp pdv
tne /]v prdu + /Mp"-%pﬁncz—n(n—1><c—H2>] (71)
22 [ Q- (- p-1)le- B} do,
M

p

In particular, if
Q > (n_p_ 1)(0_ H2)7
from (71), we see that p?> = 0 and M is totally umbilical or Q = (n—p—1)(c— H?).

In the latter case, from (71), we know that (65) holds. If p? = 0, that is, M is totally
umbilical; if p? # 0, it follows from (65) that

> (HY)?60 =0.

[

Thus, we see that H* = 0 and H = 0. It also follows from (71) that the equality
in (69) holds, that is, p> = nQ —n(n — 1)(c — H?) = nQ — n(n — 1)c. Since we

also know that Q = (n — p — 1)¢, we see that p> = —npc, by reasoning as in the
proof of Theorem 2, we know that this is impossible. This completes the proof of
Theorem 4. O
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