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Abstract. The goal of this paper is to provide a method, based on the theory of extensions
of left-symmetric algebras, for classifying left-invariant affine structures on a given solvable
Lie group of low dimension. To illustrate our method better, we shall apply it to classify
all complete left-invariant affine structures on the oscillator group.
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1. Introduction

It is a well known result (see [1, 19]) that a simply connected Lie group G which
admits a complete left-invariant affine structure, or equivalently G acts simply tran-
sitively by affine transformations on R

n, must be solvable. It is also well known that
not every solvable (even nilpotent) Lie group can admit an affine structure [3].

The goal of this paper is to provide a method for classifying all complete left-
invariant affine structures on a given solvable Lie group of low dimension. Since the
classification has been completely achieved up to dimension four in the nilpotent
case (see [10, 14, 17]), we will illustrate our method by applying it to the remarkable
solvable non-nilpotent 4-dimensional Lie group O4 known as the oscillator group.
Since complete left-invariant affine structures on a Lie group G are in one-to-one
correspondence with complete (in the sense of [22]) left-symmetric structures on its
Lie algebra G [14], we will carry out the classification in terms of complete left-
symmetric structures on the oscillator algebra O4.

The paper is organized as follows. In Section 2, we will recall the notion of
extensions of Lie algebras and its relationship to the notion of G-kernels. In Section
3, we will give some necessary definitions and basic results on left-symmetric algebras
and their extensions. In Section 4, given a complete left-symmetric algebra A4 whose
associated Lie algebra is O4, we will use the complexification of A4 and some results
in [5] and [15] to show first that A4 is not simple. Precisely, we will show that
A4 has a proper two-sided ideal whose associated Lie algebra is isomorphic to the
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center Z (O4) ∼= R or the commutator ideal [O4,O4] ∼= H3 of O4. In the latter case,
we will show that the so-called center of A4 is nontrivial, and therefore we can get
A4 as a central extension (in some sense that we will define later) of a complete 3-
dimensional left-symmetric algebra A3 by the trivial left-symmetric algebra R (i.e.,
the vector space R with the trivial left-symmetric product). In Section 5, we will
show that in both cases we have a short exact sequence (which turns out to be

central) of left-symmetric algebras of the form 0 → R
i
→ A4

π
→ A3 → 0, where

here A3 is a complete left-symmetric algebra whose Lie algebra is isomorphic to
the Lie algebra E (2) of the group of Euclidean motions of the plane. We will then
show that, up to left-symmetric isomorphism, there are only two non-isomorphic
complete left-symmetric structures on E (2), and we will use these to carry out all
complete left-symmetric structures on O4. We will see that one of these two left-
symmetric structures on E (2) yields exactly one complete left-symmetric structure
on O4. However, the second one yields a two-parameter family of complete left-
symmetric algebras A4 (s, t) whose associated Lie algebra is O4, and the conjugacy
class of A4 (s, t) is given as follows: A4 (s

′, t′) is isomorphic to A4 (s, t) if and only
if (s′, t′) = (αs,±t) for some α ∈ R∗. By using the Lie group exponential maps, we
will deduce the classification of all complete left-invariant affine structures on the
oscillator group O4 in terms of simply transitive actions of subgroups of the affine
group Aff

(
R4

)
= GL

(
R4

)
⋉R4 (see Theorem 3).

Throughout this paper, all vector spaces, Lie algebras, and left-symmetric alge-
bras are supposed to be over the field R, unless otherwise specified. We shall also
suppose that all Lie groups are connected and simply connected.

2. Extensions of Lie algebras

The notion of extensions of a Lie algebra G by an abelian Lie algebra A is well
known (see, for instance, books [8] and [13]). In light of [21], we will briefly describe

here the notion of extension G̃ of a Lie algebra G by a Lie algebra A which is not
necessarily abelian.

Suppose that a vector space extension G̃ of a Lie algebra G by another Lie algebra
A is known, and we want to define a Lie structure on G̃ in terms of the Lie structures
of G and A. Let σ : G → G̃ be a section, that is, a linear map such that π ◦ σ = id.
Then the linear map Ψ : (a, x) 7→ i (a)+ σ (x) from A⊕ G onto G̃ is an isomorphism

of vector spaces. For (a, x) and (b, y) in A⊕ G, a commutator on G̃ must satisfy

[i (a) + σ (x) , i (b) + σ (y)] = i ([a, b]) + [σ (x) , i (b)] (1)

+ [i (a) , σ (y)] + [σ (x) , σ (y)]

Now we define a linear map φ : G → End (A) by

φ (x) a = [σ (x) , i (a)] (2)

On the other hand, since π ([σ (x) , σ (y)]) = π (σ ([x, y])) , it follows that there exists
an alternating bilinear map ω : G × G → A such that [σ (x) , σ (y)] = σ [x, y] +
ω (x, y).
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To sum up, by means of the isomorphism above, G̃ ∼= A⊕ G and its elements may
be denoted by (a, x) with a ∈ A and x is simply characterized by its coordinates in
G. The commutator defined by (1) is now given by

[(a, x) , (b, y)] = ([a, b] + φ (x) b− φ (y) a+ ω (x, y) , [x, y]) , (3)

for all (a, x) ∈ G̃ ∼= A⊕ G.
It is easy to see that this is actually a Lie bracket (i.e, it verifies the Jacobi

identity) if and only if the following three conditions are satisfied

1. φ (x) [b, c] = [φ (x) b, c] + [b, φ (x) c] ,

2. [φ (x) , φ (y)] = φ ([x, y]) + adω(x,y),

3. ω ([x, y], z)−ω (x,[y, z])+ω (y,[x, z])=φ (x)ω (y, z)+φ (y)ω (z, x)+φ (z)ω (x, y).

Remark 1. We see that condition (1) above is equivalent to say that φ (x) is a
derivation of A. In other words, G is actually acting by derivations, that is, φ :
G → Der (A) . Condition (2) indicates clearly that if A is supposed to be abelian,
then A becomes a G-module in a natural way, because in this case the linear map
φ : G → Der (A) given by φ (x) a = [σ (x) , i (a)] is well defined. Condition (3) is
equivalent to the fact that, if A is abelian, ω is a 2-cocycle (i.e., δφω = 0, where δφ
refers to the coboundary operator corresponding to the action φ).

If now σ′ : G → G̃ is another section, then σ′ − σ = τ for some linear map
τ : G → A, and it follows that the corresponding morphism and the 2-cocycle are
φ′ = φ + ad ◦ τ and ω′ = ω + δφτ + 1

2 [τ, τ ], respectively, where ad stands here
and below (if there is no ambiguity) for the adjoint representation in A, and where
[τ, τ ] has the following meaning: Given two linear maps α, β : G → A, we define
[α, β] (x, y) = [α (x) , β (y)] − [α (y) , β (x)] . In particular, we have 1

2 [τ, τ ] (x, y) =
[τ (x) , τ (y)]. Note here that the Lie algebra A is not necessarily abelian. Therefore,
ω′−ω is a 2 -coboundary if and only if [τ (x) , τ (y)] = 0 for all x, y ∈ G. Equivalently,
ω′ − ω is a 2-coboundary if and only if τ has its range in the center Z (A) of A.
In that case, we get ω′ − ω = δφτ ∈ B2

φ (G, Z (A)) , the group of 2-coboundaries for
G with values in Z (A) .

To overcome all these difficulties, we proceed as follows. Let C2 (G,A) be the
abelian group of all 2-cochains, i.e., alternating bilinear mappings G × G → A. For
a given φ : G → Der (A) , let Tφ ∈ C2 (G,A) be defined by

Tφ (x, y) = [φ (x) , φ (y)]− φ ([x, y]) , for all x, y ∈ G.

If there exists some ω ∈ C2 (G,A) such that Tφ = ad ◦ ω and δφω = 0, then the
pair (φ, ω) is called a factor system for (G,A) . Let Z2 (G,A) be the set of all factor
systems for (G,A). It is well known that the equivalence classes of extensions of a
Lie algebra G by a Lie algebra A are in one-to-one correspondence with the elements
of the quotient space Z2 (G,A) /C1 (G,A) , where C1 (G,A) is the space of linear
maps from G into A (see, for instance, [21], Theorem II.7). Note that if we assume
that A is abelian, then we meet the well known result (see, for instance, [7]) stating
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that for a given action φ : G → End (A) , the equivalence classes of extensions of G
by A are in one-to-one correspondence with the elements of the second cohomology
group

H2
φ (G,A) = Z2

φ (G,A) /B2
φ (G,A) .

In the present paper, we will be concerned with the special case where A is non-
abelian and G is R, and henceforth the cocycle ω is identically zero.

Remark 2. It is worth noticing that the construction above is closely related to the
notion of G-kernels considered for Lie algebras firstly in [20].

3. Left-symmetric algebras

The notion of a left-symmetric algebra arises naturally in various areas of mathemat-
ics and physics. It originally appeared in the works of Vinberg [23] and Koszul [16]
concerning convex homogeneous cones and bounded homogeneous domains, respec-
tively. It also appears, for instance, in connection with Yang-Baxter equation and
integrable hydrodynamic systems (cf. [4, 12, 18]). A left-symmetric algebra (A, .) is
a finite-dimensional algebra A in which the products, for all x, y, z ∈ A, satisfy the
identity

(x · y) · z − x · (y · z) = (y · x) · z − y · (x · z) (4)

It is clear that an associative algebra is a left-symmetric algebra. Actually, if A is
a left-symmetric algebra and (x, y, z) = (x · y) · z − x · (y · z) is the associator of
x, y, z, then we can see that (4) is equivalent to (x, y, z) = (y, x, z) . This means that
the notion of a left-symmetric algebra is a natural generalization of the notion of an
associative algebra. If A is a left-symmetric algebra, then the commutator

[x, y] = x · y − y · x (5)

defines the structure of a Lie algebra on A, called the associated Lie algebra. Con-
versely, if G is a Lie algebra with a left-symmetric product · satisfying (5), then we
say that the left-symmetric structure is compatible with the Lie structure on G.

On the other hand, let G be a Lie group with a left-invariant flat affine connection
∇, and define a product · on the Lie algebra G of G by

x · y = ∇xy, for all x, y ∈ G. (6)

Then, conditions on the connection ∇ for being flat and torsion-free are now equiv-
alent to conditions (4) and (5), respectively. Conversely, suppose that G is endowed
with a left-symmetric product · which is compatible with the Lie bracket of G. In
this case, in order to obtain a left-invariant flat affine structure on G, we can define
an operator ∇ on G according to identity (6) and then extend it by left-translations
to the whole Lie group G. To sum up, the left-invariant flat affine structures on G
are in one-to-one correspondence with the left-symmetric structures on G compatible
with the Lie structure.

Let now A be a left-symmetric algebra, and let Lx and Rx be the left and right
multiplications by the element x, that is, Lxy = x · y and Rxy = y · x. We say that
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A is complete if Rx is a nilpotent operator, for all x ∈ A. It turns out that, for a
given simply connected Lie group G with Lie algebra G, the complete left-invariant
flat affine structures on G are in one-to-one correspondence with the complete left-
symmetric structures on G compatible with the Lie structure (see, for example,
[14]). It is also known that an n-dimensional simply connected Lie group admits a
complete left-invariant flat affine structure if and only if it acts simply transitively on
Rn by affine transformations (see [14]). A simply connected Lie group acting simply
transitively on Rn by affine transformations must be solvable according to [1], but
it is worth noticing that there exist solvable (even nilpotent) Lie groups which do
not admit affine structures (see [3]).

We close this section by fixing some notations which we will use in what follows.
For a left-symmetric algebra A, we can easily check that the subset

T (A) = {x ∈ A : Lx = 0} (7)

is a two-sided ideal in A. Geometrically, if G is a Lie group which acts simply
transitively on Rn by affine transformations, then T (G) corresponds to the set of
translational elements in G, where G is endowed with the complete left-symmetric
product corresponding to the action of G on Rn. It has been conjectured in [1] that
every nilpotent Lie group G which acts simply transitively on Rn by affine trans-
formations contains a translation which lies in the center of G, but this conjecture
turned out to be false (see [9]).

3.1. Extensions of left-symmetric algebras

In this section, we will briefly discuss the problem of an extension of a left-symmetric
algebras. To our knowledge, this notion has been considered for the first time in [14].
Suppose we are given a vector space A as an extension of a left-symmetric algebra K
by another left-symmetric algebra E. We want to define a left-symmetric structure
on A in terms of the left-symmetric structures given on K and E. In other words,
we want to define a left-symmetric product on A for which E becomes a two-sided
ideal in A such that A/E ∼= K; or equivalently, 0 → E → A → K → 0 becomes a
short exact sequence of left-symmetric algebras.

Theorem 1 (See [14]). There exists a left-symmetric structure on A extending a
left-symmetric algebra K by a left-symmetric algebra E if and only if there exist two
linear maps λ, ρ : K → End (E) and a bilinear map g : K ×K → E such that, for
all x, y, z ∈ K and a, b ∈ E, the following conditions are satisfied.

(i) λx (a · b) = λx (a) · b+ a · λx (b)− ρx (a) · b,

(ii) ρx ([a, b]) = a · ρx (b)− b · ρx (a) ,

(iii) [λx, λy] = λ[x,y] + Lg(x,y)−g(y,x), where Lg(x,y)−g(y,x) denotes the left multipli-
cation in E by g (x, y)− g (y, x),

(iv) [λx, ρy] = ρx·y−ρy ◦ρx+Rg(x,y), where Rg(x,y) denotes the right multiplication
in E by g (x, y),
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(v) g(x, y · z) − g(y, x · z) + λx(g(y, z)) − λy(g(x, z)) − g([x, y], z) − ρz(g(x, y) −
g(y, x)) = 0.

If the conditions of Theorem 1 are fulfilled, then the extended left-symmetric
product on A ∼= K × E is given by

(x, a) · (y, b) = (x · y, a · b+ λx (b) + ρy (a) + g (x, y)) . (8)

It is remarkable that if the left-symmetric product of E is trivial, then the conditions
of Theorem 1 simplify to the following three conditions:

(i) [λx, λy] = λ[x,y], i.e., λ is a representation of Lie algebras,

(ii) [λx, ρy] = ρx·y − ρy ◦ ρx,

(iii) g(x, y · z) − g(y, x · z) + λx(g(y, z)) − λy(g(x, z)) − g([x, y], z) − ρz(g(x, y) −
g(y, x)) = 0.

In this case, E becomes a K-bimodule and the extended product given in (8)
simplifies, too. Recall that if K is a left-symmetric algebra and V is a vector space,
then we say that V is aK-bimodule if there exist two linear maps λ, ρ : K → End (V )
which satisfy conditions (i) and (ii) stated above.

Let K be a left-symmetric algebra, and let V be a K-bimodule. Let Lp (K,V )
be the space of all p-linear maps from K to V, and define two coboundary operators
δ1 : L1 (K,V ) → L2 (K,V ) and δ2 : L2 (K,V ) → L3 (K,V ) as follows: For a linear
map h ∈ L1 (K,V ) we set

δ1h (x, y) = ρy (h (x)) + λx (h (y))− h (x · y) , (9)

and for a bilinear map g ∈ L2 (K,V ) we set

δ2g (x, y, z) = g (x, y · z)− g (y, x · z) + λx (g (y, z))− λy (g (x, z)) (10)

−g ([x, y] , z)− ρz (g (x, y)− g (y, x)) .

It is straightforward to check that δ2 ◦ δ1 = 0. Therefore, if we set Z2
λ,ρ (K,V ) =

ker δ2 and B2
λ,ρ (K,V ) = Im δ1, we can define a notion of second cohomology for the

actions λ and ρ by simply setting H2
λ,ρ (K,V ) = Z2

λ,ρ (K,V ) /B2
λ,ρ (K,V ) . As in the

case of extensions of Lie algebras, we can prove that for given linear maps λ, ρ : K →
End (V ), the equivalence classes of extensions 0 → V → A → K → 0 of K by V
are in one-to-one correspondence with the elements of the second cohomology group
H2

λ,ρ (K,V ) . We close this subsection with the following lemma on completeness of
left-symmetric algebras (see [6, Proposition 3.4]).

Lemma 1. Let 0 → E → A → K → 0 be a short exact sequence of left-symmetric
algebras. Then, A is complete if and only if E and K are so.
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3.2. Central extensions of left-symmetric algebras

The notion of central extensions known for Lie algebras may analogously be defined
for left-symmetric algebras. Let A be a left-symmetric extension of a left-symmetric
algebra K by another left-symmetric algebra E, and let G be the Lie algebra asso-
ciated to A. Define the center of A to be C (A) = T (A) ∩ Z (G), that is,

C (A) = {x ∈ A : x · y = y · x = 0, for all y ∈ A} , (11)

where Z (G) is the center of the Lie algebra G and T (A) is the two-sided ideal of A
defined by (7).

Definition 1. The extension 0 → E
i
→ A

π
→ K → 0 of left-symmetric algebras is

said to be central (resp. exact) if i (E) ⊆ C (A) (resp. i (E) = C (A)).

Remark 3. It is not difficult to show that if the extension 0 → E
i
→ A

π
→ K → 0

is central, then both the left-symmetric product and the K-bimodule on E are trivial
(i.e., a · b = 0 for all a, b ∈ E, and λ = ρ = 0). It is also easy to show that if [g] is
the cohomology class associated to this extension, and if

I[g] = {x ∈ K : x · y = y · x = 0 and g (x, y) = g (y, x) = 0, for all y ∈ K} ,

then the extension is exact if and only if I[g] = 0 (see [14]). We note here that
I[g] is well defined because any other element in [g] takes the form g + δ1h, with
δ1h (x, y) = −h (x · y) .

Let now K be a left-symmetric algebra, and E a trivial K-bimodule. Denote
by (A, [g]) the central extension 0 → E → A → K → 0 corresponding to the
cohomology class [g] ∈ H2 (K,E) . Let (A, [g]) and (A′, [g′]) be two central extensions
of K by E, and let µ ∈ Aut (E) = GL (E) and η ∈ Aut (K) , where Aut (E) and
Aut (K) are the groups of left-symmetric automorphisms of E and K, respectively.
It is clear that if h ∈ L1 (K,E) , then the linear mapping ψ : A → A′ defined
by ψ (x, a) = (η (x) , µ (a) + h (x)) is an isomorphism provided g′ (η (x) , η (y)) =
µ (g (x, y))− δ1h (x, y) for all (x, y) ∈ K ×K, i.e. η∗ [g′] = µ∗ [g] . This allows us to
define an action of the group G = Aut (E)×Aut (K) on H2 (K,E) by setting

(µ, η) . [g] = µ∗η
∗ [g] , (12)

or equivalently, (µ, η) .g (x, y) = µ (g (η (x) , η (y))) for all x, y ∈ K.
Denoting the set of all exact central extensions of K by E by

H2
ex (K,E) =

{
[g] ∈ H2 (K,E) : I[g] = 0

}
,

and the orbit of [g] by G[g], it turns out that the following result is valid (see [14]).

Proposition 1. Let [g] and [g′] be two classes in H2
ex (K,E) . Then, the central

extensions (A, [g]) and (A′, [g′]) are isomorphic if and only if G[g] = G[g′]. In other
words, the classification of the exact central extensions of K by E is, up to left-
symmetric isomorphism, the orbit space of H2

ex (K,E) under the natural action of
G = Aut (E)×Aut (K) .
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3.3. Complexification of a real left-symmetric algebra

Let A be a real left-symmetric algebra of dimension n, and let AC denote the real
vector space A⊕A. Let J : A⊕A→ A⊕A be the linear map on A⊕A defined by
J (x, y) = (−y, x) . For α+ iβ ∈ C and x, x′, y, y′ ∈ A, we define

(α+ iβ) (x, y) = (αx− βy, αy + βx) , (13)

(x, y) · (x′, y′) = (xx′ − yy′, xy′ + yx′) . (14)

We endow the set AC with the componentwise addition, multiplication by complex
numbers defined by (13), and the product defined by (14). It is then straightforward
to verify that AC, when endowed with the product defined by (14), becomes a
complex left-symmetric algebra called the complexification of A. The left-symmetric
algebra A can be identified with the set of elements in AC of the form (x, 0) , where
x ∈ A. If e1, . . . , en is a basis of A, then the elements (e1, 0) , . . . , (en, 0) form a basis
of the complex vector space AC. It follows that dimC

(
AC

)
= dimR (A) .

SinceAC is a left-symmetric algebra, we know that the commutator [(x, y) ,(x′, y′)]
= (x, y) · (x′, y′) − (x′, y′) · (x, y) defines a Lie algebra GC on AC. Computing this
commutator, we get the following lemma.

Lemma 2. The complex Lie algebra GC associated to the complex left-symmetric
algebra AC is isomorphic to the complexification of the Lie algebra G associated to
the left-symmetric algebra A.

Therefore, if e1, . . . , en is a basis of A, then the elements (e1, 0) , . . . , (en, 0) form
a basis of GC, and the structural constants of GC are real since they coincide with
the structural constants of G in the basis e1, . . . , en.

4. Left-symmetric structures on the oscillator algebra

Recall that the Heisenberg group H3 is the 3-dimensional Lie group diffeomorphic
to R× C with the group law

(v1, z1) · (v2, z2) = (v1 + v2 +
1

2
Im(z1z2), z1 + z2),

for all v1, v2 ∈ R and z1, z2 ∈ C. Let λ > 0, and let G = R⋉H3 be equipped with
the group law

(t1, v1, z1) · (t2, v2, z2) = (t1 + t2, v1 + v2 +
1

2
Im(z1z2e

iλt1), z1 + z2e
iλt1),

for all t1, t2 ∈ R and (v1, z1), (v2, z2) ∈ H3. This is a 4-dimensional Lie group with
Lie algebra G having a basis {e1, e2, e3, e4} such that

[e1, e2] = e3, [e4, e1] = λe2, [e4, e2] = −λe1,

and all the other brackets are zero. It follows that the derived series is given by

D1G = [G,G] = span{e1, e2, e3}, D
2G = span{e3}, D

3G = {0},
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and therefore G is a (non-nilpotent) 3-step solvable Lie algebra. When λ = 1, G is
known as the oscillator group. We will denote it by O4, and we shall denote its Lie
algebra by O4 and call it the oscillator algebra.

From now on, A4 will be a complete real left-symmetric algebra whose associated
Lie algebra is O4.We begin by proving the following proposition which will be crucial
to the classification of complete left-symmetric structures on O4.

Proposition 2. A4 is not simple (i.e., A4 contains a proper two-sided ideal).

Proof. Assume to the contrary that A4 is simple, and let AC
4 be its complexification.

By [15], Lemma 2.10, it follows that AC
4 is either simple or a direct sum of two simple

ideals having the same dimension. If AC
4 is simple, then we can apply Proposition

5.1 in [5] to deduce that, being simple and complete, AC
4 is necessarily isomorphic

to the complex left-symmetric algebra B4 having a basis {e1, e2, e3, e4} such that

e1 · e2 = e2 · e1 = e4, e2 · e3 = 2e1,

e3 · e2 = e4 · e1 = e1, e4 · e2 = −e2, e4 · e3 = 2e3,

and all other products are zero. It follows that the Lie algebra G4 associated to B4

admits a basis {e1, e2, e3, e4} such that

[e2, e3] = [e4, e1] = e1, [e2, e4] = e2, [e3, e4] = −2e3.

This leads to a contradiction since, according to Lemma 2, G4 should be isomorphic
to the complexification of the Lie algebra O4, but this is obviously not the case.
This contradiction shows that AC

4 cannot be simple.

If AC
4 is a direct sum of two simple ideals having the same dimension, say AC

4 =
A1⊕A2, it follows that dimA1 = dimA2 = 1

2 dimAC
4 = 2. In this case, by Corollary

4.1 in [5], A1 and A2 are both isomorphic to the unique two-dimensional complex
simple left-symmetric algebra having a basis

B2 = 〈e1, e2 : e1 · e1 = 2e1, e1 · e2 = e2, e2 · e2 = e1〉 .

This is a contradiction, since A1 and A2 are complete but B2 is not. This contra-
diction shows that AC

4 cannot be direct sum of two simple ideals. We deduce that
A4 is not simple, and this completes the proof of the proposition.

Before we return to the algebra A4, we need to give the following lemmas.

Lemma 3. Let A be a left-symmetric algebra with Lie algebra G, and R a two-sided
ideal in A. Then, the Lie algebra R associated to R is an ideal in G.

Proof. Let x ∈ R and y ∈ G. Since R is a two-sided ideal, then x ·y and y ·x belong
to R. It follows that [x, y] = x · y − y · x ∈ R, and therefore R is an ideal in G.

Lemma 4. The oscillator algebra O4 contains only two proper ideals which are
Z (O4) ∼= R and [O4,O4] ∼= H3.
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Proof. It is clear that Z (O4) ∼= R and [O4,O4] ∼= H3 are proper ideals in O4. If
I is a proper ideal in O4, then I should be unimodular. If dim (I) = 1, then I is
isomorphic to Z (O4) ∼= R. If dim (I) = 2, then being unimodular, I is isomorphic to
R

2. In particular, I contains Z (O4) and thus O4/I is abelian, a contradiction since
O4 is not nilpotent. Hence, O4 contains no two-dimensional ideals. If dim (I) = 3,
then being unimodular and solvable, I is isomorphic to either H3, the Lie algebra
E (2) of the group of the rigid motions of the plane, or the Lie algebra E (1, 1) of the
group of the rigid motions of the Minkowski plane. However, it is straightforward
to show that O4 cannot be obtained as an extension of E (2) or E (1, 1) . We have
therefore proved the lemma.

By the above proposition, A4 is not simple and hence it has a proper two-sided
ideal I, so we get a short exact sequence of complete left-symmetric algebras

0 → I
i
→ A4

π
→ J → 0. (15)

In fact, according to Lemma 1, the completeness of I and J comes from that of A4.
If I is the Lie subalgebra associated to I then, by Lemma 3, I is an ideal in O4.
From Lemma 4, it follows that there are two cases to consider according to whether
I is isomorphic to H3 or R. Next, we will focus on the case where I is isomorphic
to H3

∼= [O4,O4] . In this case, the short exact sequence (15) becomes

0 → I3
i
→ A4

π
→ I0 → 0, (16)

where I3 is a complete 3-dimensional left-symmetric algebra whose Lie algebra is H3,
and I0 = {e0 : e0 · e0 = 0} the trivial one-dimensional real left-symmetric algebra.
It is easy to prove the following proposition (cf. [10, Theorem 3.5]).

Proposition 3. Up to left-symmetric isomorphism, the complete left-symmetric
structures on the Heisenberg algebra H3 are classified as follows: There is a basis
{e1, e2, e3} of H3 relative to which the left-symmetric product is given by one of the
following classes:

(i) e1 · e1 = pe3, e2 · e2 = qe3, e1 · e2 = 1
2e3, e2 · e1 = − 1

2e3, where p, q ∈ R.

(ii) e1 · e2 = me3, e2 · e1 = (m− 1) e3, e2 · e2 = e1, where m ∈ R.

Remark 4. It is noticeable that the left-symmetric products on H3 belonging to
class (i) in Proposition 3 are obtained by central extensions (in the sense of fixed in
Subsection 3.1) of R2 endowed with some complete left-symmetric structure by I0.
However, the left-symmetric products on A3 belonging to class (ii) are obtained by
central extensions of the non-abelian two-dimensional Lie algebra G2 endowed with
its unique complete left-symmetric structure by I0.

Now we return to the short exact sequence (16). First, let σ : I0 → A4 be
a section, and set σ (e0) = x0 ∈ A4. Define two linear maps λ, ρ ∈ End (I3) by
putting λ (y) = x0 · y and ρ (y) = y · x0, and put e = x0 · x0 (clearly e ∈ I3). Let
g : I0× I0 → I3 be the bilinear map defined by g (e0, e0) = e. It is obvious, using the
notation of Subsection 3.1, to verify that δ2g = 0, i.e. g ∈ Z2

λ,ρ (I0, I3). The extended
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left-symmetric product on I3 ⊕ I0 given by (8) turns out to take the simplified form
(x, ae0) · (y, be0) = (x · y + aλ (y) + bρ (x) + abe, 0) , for all x, y ∈ I3 and a, b ∈ R.
The conditions in Theorem 1 can be simplified to the following conditions:

λ (x · y) = λ (x) · y + x · λ (y)− ρ (x) · y (17)

ρ ([x, y]) = x · ρ (y)− y · ρ (x) (18)

[λ, ρ] + ρ2 = Re (19)

Let φ : R → End (H3) be the linear map defined by formula (2). As we men-
tioned in Remark 1, R acts on H3 by derivations, that is, φ : R → Der (H3) . In
particular, we deduce in view of (3) that λ = D+ρ for some derivation D of H3. The
derivations of H3 are given by the following lemma, whose proof is straightforward
and is therefore omitted.

Lemma 5. In a basis {e1, e2, e3} of H3 satisfying [e1, e2] = e3, a derivation D of
H3 takes the form

D =




a1 b1 0
a2 b2 0
a3 b3 a1 + b2



 .

On the other hand, observe that (x, ae0) ∈ T (A4) if and only if (x, ae0)·(y, be0) =
(0, 0) for all (y, be0) ∈ I3 ⊕ I0, or equivalently, x · y+ aλ (y) + bρ (x) + abe = 0 for all
(y, be0) ∈ I3⊕I0. Since y and b are arbitrary, we conclude that this is also equivalent
to say that (Lx)|A3

= −aλ and ρ (x) = −ae. In particular, an element x ∈ I3 belongs

to T (A4) if and only if (Lx)|I3
= 0 and ρ (x) = 0, or equivalently,

I3 ∩ T (A4) = T (I3) ∩ ker ρ. (20)

The following lemma will be crucial for the next section.

Lemma 6. The center C (A4) = T (A4) ∩ Z (O4) is non-trivial.

Proof. In view of Proposition 3, we have to consider two cases.
Case 1. Assume that there is a basis {e1, e2, e3} of H3 relative to which the

left-symmetric product of I3 is given by : e1 · e1 = pe3, e2 · e2 = qe3, e1 · e2 = 1
2e3,

e2 · e1 = − 1
2e3, where p, q ∈ R. Substituting x = e1 and y = e2 into (18), we find

that the operator ρ takes the form

ρ =



α1 β1 0
α2 β2 0
α3 β3 γ3


 ,

with γ3 = pβ1 − qα2 + 1
2 (α1 + β2) . Since λ = D + ρ for some D ∈ H3, we use

Lemma 5 to deduce that

λ =




α1 + a1 β1 + b1 0
α2 + a2 β2 + b2 0
α3 + a3 β3 + b3 γ3 + a1 + b2



 .
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Since (Le3)|I3
= 0 and e ∈ I3, then (19), when applied to e3, gives

γ23e3 = e3 · e = 0,

from which we get γ3 = 0, i.e., ρ (e3) = 0. It follows from (20) that e3 ∈ T (A4) .
Since Z (O4) = Re3, we deduce that C (A4) = T (A4) ∩ Z (O4) 6= 0, as required.

Case 2. Assume now that there is a basis {e1, e2, e3} of H3 relative to which
the left-symmetric product of I3 is given by : e1 · e2 = me3, e2 · e1 = (m− 1) e3,
e2 · e2 = e1, where m is a real number.

Substituting successively x = e1, y = e2 and x = e2, y = e3 into equation (18),
we find that the operator ρ takes the form

ρ =




α1 β1 −α2

α2 β2 0
α3 β3 mβ2 − (m− 1)α1



 , (21)

with (m− 1)α2 = 0.
We claim that α2 = 0. To prove this, let us assume to the contrary that α2 6= 0.

It follows that m = 1, and therefore

ρ (e3) = −α2e1 + β2e3

ρ2 (e3) = −α2 (α1 + β2) e1 − α2
2e2 +

(
β2
2 − α2α3

)
e3

Since α2 6= 0, we deduce that e3, ρ (e3) , ρ
2 (e3) form a basis of I3. Since ρ is

nilpotent (by completeness of the left-symmetric structure), it follows that ρ3 (e3) =
0. In other words, ρ has the form

ρ =




0 0 1
−1 0 0
0 0 0


 ,

with respect to the basis e′1 = −ρ (e3) , e
′
2 = ρ2 (e3) , e

′
3 = −e3.

Using the fact that α1 + 2β2 = 0 which follows from the identity ρ3 (e3) = 0, we
see that e′1 · e

′
2 = α3

2e
′
3, e

′
2 · e

′
2 = α3

2e
′
1, and all other products are zero.

For simplicity, assume without loss of generality that α2 = 1. Since λ = D + ρ
for some D ∈ H3, Lemma 5 tells us that, with respect to the basis e′1, e

′
2, e

′
3, the

operator λ takes the form

λ =




a1 b1 1
a2 − 1 b2 0
a3 b3 a1 + b2


 .

Applying formula (19) to e′3 and recalling that e′3 · e = 0 since e ∈ I3, we deduce
that a2 = 1 and b2 = a3 = 0. Then, substituting x = y = e′2 into equation (17), we
get a1 = b1 = 0. Thus, the form of λ reduces to

λ =




0 0 1
0 0 0
0 b3 0



 .
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Now, by setting e = ae1 + be2 + ce3 and applying (19) to e1, we get that b3 = −b.
By using (8), we deduce that the nonzero left-symmetric products are

e′1 · e
′
2 = e′3, e′2 · e

′
2 = e′1,

e′1 · e
′
4 = −e′2, e′4 · e

′
2 = −be′3

e′3 · e
′
4 = e′4 · e

′
3 = e′1, e′4 · e

′
4 = e.

This implies, in particular, that dim [O4,O4] = dim [A4, A4] = 2, a contradiction.
It follows that α2 = 0, as desired.

We now return to (21). Since α2 = 0, we have

ρ =




α1 β1 0
0 β2 0
α3 β3 mβ2 − (m− 1)α1



 ,

and since λ = D + ρ for some D ∈ H3 then, in view of Lemma 5, the operator λ
takes the form

λ =



α1 + a1 β1 + b1 0
a2 β2 + b2 0

α3 + a3 β3 + b3 a1 + b2 +mβ2 − (m− 1)α1


 .

Once again, by applying (19) to e3 and recalling that e3 · e = 0 since e ∈ I3, we

deduce that (mβ2 − (m− 1)α1)
2
= 0, thereby showing that ρ (e3) = 0. Now, in

view of (20) we get e3 ∈ T (A4) , and since Z (O4) = Re3 we deduce that C (A4) =
T (A4) ∩ Z (O4) 6= 0, as desired. This completes the proof of the lemma.

5. Classification

We know from Section 4 that A4 has a proper two-sided ideal I which is isomorphic to
either the trivial one-dimensional real left-symmetric algebra I0 = {e0 : e0 · e0 = 0}
or a 3 -dimensional left-symmetric algebra I3 (as described in Proposition 3) whose
associated Lie algebra is the Heisenberg algebra H3. In the case where I ∼= I3, we
know by Lemma 6 that C (A4) 6= {0} . Since in our situation dimZ (O4) = 1, it
follows that C (A4) ∼= I0, so that we have a central short exact sequence of left-
symmetric algebras of the form

0 → I0 → A4 → I3 → 0. (22)

In general, one has that the center of a left-symmetric algebra is a part of the center
of the associated Lie algebra, and therefore the following lemma is proved.

Lemma 7. The Lie algebra associated to I3 is isomorphic to the Lie algebra E (2)
of the group of Euclidean motions of the plane.

Recall that E (2) is solvable non-nilpotent and has a basis {e1, e2, e3} which sat-
isfies [e1, e2] = e3 and [e1, e3] = −e2.

In the case where I ∼= I0, we know by Lemma 3 that the associated Lie algebra is
I ∼= R. Since, by Lemma 4, O4 has only two proper ideals which are Z (O4) ∼= R and
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[O4,O4] ∼= H3, it follows that I ∼= R coincides with the center Z (O4) . We deduce
from this that, if J denotes the Lie algebra of the left-symmetric algebra J in the
short exact sequence (15), then J is isomorphic to E (2) . Therefore, we have a short
sequence of left-symmetric algebras which looks like (22), except that it would not
necessarily be central. But, as we will see a little later, this is necessarily a central
extension (i.e., I ∼= C (A4) ∼= I0).

To summarize, each complete left-symmetric structure on O4 may be obtained by
an extension of a complete 3-dimensional left-symmetric algebraA3 whose associated
Lie algebra is E (2) by I0. Next, we shall determine all the complete left-symmetric
structures on E (2) . These are described by the following lemma that we state with-
out proof (see [10], Theorem 4.1).

Lemma 8. Up to left-symmetric isomorphism, any complete left-symmetric struc-
ture on E (2) is isomorphic to the following one which is given in a basis {e1, e2, e3}
of E (2) by the relations e1 · e2 = e3, e1 · e3 = −e2, e2 · e2 = e3 · e3 = εe1.

There are exactly two non-isomorphic conjugacy classes according to whether
ε = 0 or ε 6= 0.

From now on, A3 will denote the vector space E (2) endowed with one of the
complete left-symmetric structures described in Lemma 8. The extended Lie bracket
on E (2)⊕ R is given by

[(x, a) , (y, b)] = ([x, y] , ω (x, y)) , (23)

with ω ∈ Z2 (E (2) ,R) . The extended left-symmetric product on A3⊕ I0 is given by

(x, ae0) · (y, be0) = (x · y, bλx (e0) + aρy (e0) + g (x, y)) , (24)

with λ, ρ : A3 → End (I0) and g ∈ Z2
λ,ρ (A3, I0).

As we have noticed in Section 3, I0 is an A3-bimodule, or equivalently, the
conditions in Theorem 1 simplify to the following conditions:

(i) λ[x,y] = 0,

(ii) ρx·y = ρy ◦ ρx,

(iii) g(x, y · z) − g(y, x · z) + λx(g(y, z)) − λy(g(x, z)) − g([x, y], z) − ρz(g(x, y) −
g(y, x)) = 0.

By using (23) and (24), we deduce from [(x, a) , (y, b)] = (x, ae0)·(y, be0)−(y, be0)·
(x, ae0) that

ω (x, y) = g (x, y)− g (y, x) and λ = ρ. (25)

By applying identity (ii) above to ei · ei, 1 ≤ i ≤ 3, we deduce that ρ = 0, and a
fortiori λ = 0. In other words, the extension A4 is always central (i.e., I ∼= C (A4)
even in the case where I ∼= R). In fact, we have

Claim 1. The extension 0 → I0 → A4 → A3 → 0 is exact.
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Proof. We recall from Subsection 3.1 that the extension given by the short sequence
(22) is exact, i.e., i (I0) = C (A4), if and only if I[g] = 0, where

I[g] = {x ∈ A3 : x · y = y · x = 0 and g (x, y) = g (y, x) = 0, for all y ∈ A3} .

To show that I[g] = 0, let x be an arbitrary element in I[g], and put x = ae1 + be2 +
ce3 ∈ I[g]. Now, by computing all the products x · ei = ei ·x = 0, 1 ≤ i ≤ 3, we easily
deduce that x = 0.

Our aim is to classify complete left-symmetric structures on O4, up to left-
symmetric isomorphisms. By Proposition 1, the classification of exact central ex-
tensions of A3 by I0 is nothing but the orbit space of H2

ex (A3, I0) under the natural
action of G = Aut (I0) × Aut (A3) . Accordingly, we must compute H2

ex (A3, I0) .
Since I0 is a trivial A3-bimodule, we see first from (9) and (10) that the coboundary
operator δ simplifies as follows:

δ1h (x, y) = −h (x · y) , δ2g (x, y, z) = g (x, y · z)− g (y, x · z)− g ([x, y] , z) ,

where h ∈ L1 (A3, I0) and g ∈ L2 (A3, I0) .
In view of Lemma 8, there are two cases to be considered.
Case 1. A3 = 〈e1, e2, e3 : e1 · e2 = e3, e1 · e3 = −e2〉 .
In this case, using the first formula above for δ1, we get

δ1h =




0 h12 h13
0 0 0
0 0 0


 ,

where h12 = −h (e3) and h13 = h (e2) . Similarly, using the second formula above for
δ2, we verify easily that if g is a cocycle (i.e. δ2g = 0) and gij = g (ei, ej), then

g =



g11 g12 g13
0 g22 g23
0 −g23 g22


 ,

that is, g21 = g31 = 0, g32 = −g23, and g33 = g22. We deduce that, in the basis
above, the class [g] ∈ H2 (A3,R) of a cocycle g takes the simplified form

g =



α 0 0
0 β γ
0 −γ β


 .

We can now determine the extended left-symmetric structure on A4. By setting
ẽi = (ei, 0), 1 ≤ i ≤ 3, and ẽ4 = (0, 1) , and using formula (24) which (since
λ = ρ = 0) reduces to

(x, ae0) · (y, be0) = (x · y, g (x, y)) , (26)

we obtain

ẽ1 · ẽ1 = αẽ4, ẽ2 · ẽ2 = ẽ3 · ẽ3 = βẽ4

ẽ1 · ẽ2 = ẽ3, ẽ1 · ẽ3 = −ẽ2, (27)

ẽ2 · ẽ3 = γẽ4, ẽ3 · ẽ2 = −γẽ4,
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and all the other products are zero. We observe here that we should have γ 6= 0,
given that the underlying Lie algebra is O4.We denote by A4 (α, β, γ) the Lie algebra
O4 endowed with the above complete left-symmetric product.

Let now A4 (α, β, γ) and A4 (α
′, β′, γ′) be two arbitrary left-symmetric structures

on O4 given as above, and let [g] and [g′] be the corresponding classes in H2
ex (A3, I0).

By Proposition 1, we know that A4 (α, β, γ) is isomorphic to A4 (α
′, β′, γ′) if and only

if the exists (µ, η) ∈ Aut (I0)×Aut (A3) such that for all x, y ∈ A3, we have

g′ (x, y) = µ (g (η (x) , η (y))) . (28)

We shall first determine Aut (I0) × Aut (A3) . We have Aut (I0) ∼= R∗, and it
is easy too to determine Aut (A3) . Indeed, recall that the unique left-symmetric
structure of A3 is given by e1 · e2 = e3, e1 · e3 = −e2, and let η ∈ Aut (A3) be given
in the basis {e1, e2, e3} by

η =




a1 b1 c1
a2 b2 c2
a3 b3 c3



 .

From the identity η (e3) = η (e1 · e2) = η (e1) · η (e2) , we get c1 = 0, c2 = −a1b3,
and c3 = a1b2. From the identity −η (e2) = η (e1 · e3) = η (e1) · η (e3) we get b1 = 0,
b2 = a1c3, and b3 = −a1c2. Since det η 6= 0, we deduce that a1 = ±1. It follows,
by setting ε = ±1, that b3 = −εc2 and c3 = εb2. From the identity η (e1) · η (e1) =
η (e1 · e1) = 0, we obtain a2 = a3 = 0. Therefore, η takes the form

η =



ε 0 0
0 b2 c2
0 −εc2 εb2


 , b22 + c22 6= 0.

We now apply formula (28). For this we recall first that in the basis above the
classes [g] and [g′] corresponding to A4 (α, β, γ) and A4 (α

′, β′, γ′), respectively, have
the forms

g =



α 0 0
0 β γ
0 −γ β


 and g′ =



α′ 0 0
0 β′ γ′

0 −γ′ β′


 ,

respectively. From g′ (e1, e1) = µg (η (e1) , η (e1)) , we get

α′ = µα, (29)

and from g′ (e2, e2) = µg (η (e2) , η (e2)), we get

β′ = µ
(
b22 + c22

)
β. (30)

Similarly, from g′ (e2, e3) = µg (η (e2) , η (e3)) we get

γ′ = µε
(
b22 + c22

)
γ. (31)

Recall here that µ 6= 0, γ 6= 0, and b22 + c22 6= 0.

Claim 2. Each A4 (α, β, γ) is isomorphic to some A4 (α
′, β′, 1). Precisely, A4(α, β, γ)

is isomorphic to A4

(
εα
γ
, εβ

γ
, 1
)
.
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Proof. By (29), (30), and (31), A4 (α, β, γ) is isomorphic to A4 (α
′, β′, 1) if and only

if there exists µ ∈ R∗ and b, c ∈ R, with b2 + c2 6= 0, such that

α′ = µα, β′

= µ
(
b2 + c2

)
β, 1

= µε
(
b2 + c2

)
γ.

Now, by taking b2 + c2 = 1 (for instance, b = cos θ0 and c = sin θ0 for some
θ0), the third equation yields µ = ε

γ
. Substituting the value of µ in the two first

equations, we deduce that α′ = εα
γ
and β′ = εβ

γ
. Consequently, each A4 (α, β, γ) is

isomorphic to A4

(
εα
γ
, εβ

γ
, 1
)
.

Case 2. A3 = 〈e1, e2, e3 : e1 · e2 = e3, e1 · e3 = −e2, e2 · e2 = e3 · e3 = e1〉 .
Similarly to the first case, we get

δ1h =




0 h12 h13
0 h22 0
0 0 h22


 and g =




0 g12 g13
0 g22 g23
0 −g23 g22


 ,

where h12 = −h (e3) , h13 = h (e2) , h22 = −h (e1) , and gij = g (ei, ej) . It follows
that in this case the class [g] ∈ H2 (A3,R) of a cocycle g takes the reduced form

g =




0 0 0
0 0 γ
0 −γ 0


 , γ 6= 0.

By setting ẽi = (ei, 0), 1 ≤ i ≤ 3, and ẽ4 = (0, 1) , and using formula (26) we find
that the nonzero relations are

ẽ1 · ẽ2 = ẽ3, ẽ1 · ẽ3 = −ẽ2, ẽ2 · ẽ2 = ẽ3 · ẽ3 = ẽ1 (32)

ẽ2 · ẽ3 = γẽ4, ẽ3 · ẽ2 = −γẽ4, γ 6= 0.

We can now state the main result of this paper.

Theorem 2. Let A4 be a complete non-simple real left-symmetric algebra whose
associated Lie algebra is O (4) . Then A4 is isomorphic to one of the following left-
symmetric algebras:

(i) A4 (s, t): There exist real numbers s, t, and a basis {e1, e2, e3, e4} of O (4)
relative to which the nonzero left-symmetric relations are

e1 · e1 = se4, e2 · e2 = e3 · e3 = te4

e1 · e2 = e3, e1 · e3 = −e2,

e2 · e3 =
1

2
e4, e3 · e2 = −

1

2
e4.

The conjugacy class of A4 (s, t) is given as follows: A4 (s
′, t′) is isomorphic to

A4 (s, t) if and only if (s′, t′) = (αs,±t) for some α ∈ R
∗.
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(ii) B4: There is a basis {e1, e2, e3, e4} of O (4) relative to which the nonzero left-
symmetric relations are

e1 · e2 = e3, e1 · e3 = −e2, e2 · e2 = e3 · e3 = e1

e2 · e3 =
1

2
e4, e3 · e2 = −

1

2
e4.

Proof. According to the discussion above, there are two cases to be considered.

Case 1. A3 = 〈e1, e2, e3 : e1 · e2 = e3, e1 · e3 = −e2〉 .

In this case, Claim 2 asserts that A4 is isomorphic to some A4 (α, β, 1); and
according to equations (27), we know that there is a basis {ẽ1, ẽ2, ẽ3, ẽ4} of O4

relative to which the nonzero relations for A4 (α, β, 1) are:

ẽ1 · ẽ1 = αẽ4, ẽ2 · ẽ2 = ẽ3 · ẽ3 = βẽ4

ẽ1 · ẽ2 = ẽ3, ẽ1 · ẽ3 = −ẽ2,

ẽ2 · ẽ3 = ẽ4, ẽ3 · ẽ2 = −ẽ4.

Now, it is clear that by setting s = α
2 , t =

β
2 , ei = ẽi for 1 ≤ i ≤ 3, and e4 = 2ẽ4,

we get the desired two-parameter family A4 (s, t) . On the other hand, we see from
(29), (30), and (31) that A4 (s

′, t′) is isomorphic to A4 (s, t) if and only if there exists
α ∈ R

∗ and b, c ∈ R, with b2 + c2 6= 0, such that

s′ = αs,

t′ = α
(
b2 + c2

)
t,

1 = αε
(
b2 + c2

)
.

From the third equation, we get b2 + c2 = ε
α
; and by substituting the latter into

the second equation, we get t′ = εt. In other words, we have shown that A4 (s
′, t′)

and A4 (s, t) are isomorphic if and only if there exists α ∈ R∗ such that s′ = αs and
t′ = ±t.

Case 2. A3 = 〈e1, e2, e3 : e1 · e2 = e3, e1 · e3 = −e2, e2 · e2 = e3 · e3 = e1〉 .

In this case, by (32), there is a basis {ẽ1, ẽ2, ẽ3, ẽ4} of O4 relative to which the
nonzero relations in A4 are:

ẽ1 · ẽ2 = ẽ3, ẽ1 · ẽ3 = −ẽ2, ẽ2 · ẽ2 = ẽ3 · ẽ3 = ẽ1

ẽ2 · ẽ3 = γẽ4, ẽ3 · ẽ2 = −γẽ4, γ 6= 0.

By setting ei = ẽi for 1 ≤ i ≤ 3, and e4 = 2γẽ4, we see that A4 is isomorphic to
B4. This finishes the proof of the main theorem.

Remark 5. Recall that a left-symmetric algebra A is called Novikov if it satisfies
the condition (x · y) · z = (x · z) · y, for all x, y, z ∈ A.

Novikov left-symmetric algebras were introduced in [2] (see also [24] for some
important results concerning this). We note here that A4 (s, 0) is Novikov and that
B4 is not.
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We can explicitly compute the exponential map exp : O4 → O4 of the oscillator
group in the parametrization given in Section 4. Details of the argument are left to
the reader (see [11]). It is given by

exp (v, z, t) =

{(
v + |z|2

4t

(
1− sin 2t

2t

)
, z sin t

t
, t
)
, t 6= 0

(v, z, 0) , t = 0

On the other hand, we note that the mapping X 7→ (LX , X) is a Lie algebra repre-
sentation of O4 in aff

(
R4

)
= End

(
R4

)
⊕ R4. By using the exponential map of the

affine group Aff
(
R4

)
= GL

(
R4

)
⋉ R4, Theorem 2 can now be stated, in terms of

simply transitive actions of subgroups of Aff
(
R4

)
, as follows. To state it, define

the continuous functions

f (x) =

{
sin x
x
, x 6= 0

1, x = 0
, g (x) =

{
1−cosx

x
, x 6= 0

0, x = 0
,

h (x) =

{
x−sin x

x2 , x 6= 0
0, x = 0

, k (x) =

{
1−cosx

x2 , x 6= 0
0, x = 0

,

and set

Φt (x) =
(y
2
+ tz

)
g (x)−

(z
2
− ty

)
f (x) ,

Ψt (x) =
(y
2
+ tz

)
f (x) +

(z
2
− ty

)
g (x) .

Theorem 3. Suppose that the oscillator group O4 acts simply transitively by affine
transformations on R4. Then, as a subgroup of Aff

(
R4

)
= GL

(
R4

)
⋉ R4, O4 is

conjugate to one of the following subgroups:

(i)

G4 =









1 yf (x) + zg (x) zf (x) − yg (x) 0

0 cosx − sinx 0
0 sinx cosx 0
0 Φ0 (x) Ψ0 (x) 1


×




x+
(
y2 + z2

)
k (x)

yf (x)− zg (x)
zf (x) + yg (x)

w +
(y2+z2)

2 h (x)




: x, y, z, w ∈ R






,

(ii)

G4 (s, t) =









1 0 0 0
0 cosx − sinx 0
0 sinx cosx 0
sx Φt (x) Ψt (x) 1


×




x
yf (x) − zg (x)
zf (x) + yg (x)

w + s
2x

2 +
(
y2 + z2

)(
h(x)
2 + tk (x)

)




: x, y, z, w ∈ R






,

where s, t ∈ R. The only pairs of conjugate subgroups in Aff
(
R4

)
are G4 (s, t)

and G4 (αs,±t) where α ∈ R∗.
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79–87.
[18] B.A.Kupershmidt, Left-symmetric algebras in hydrodynamics, Lett. Math. Phys.

76(2006), 1–18.
[19] J.Milnor, On fundamental groups of complete affinely flat manifolds, Advances in

Math. 25(1977), 178–187.
[20] M.Mori, On the three-dimensional cohomology group of Lie algebras, J. Math. Soc.

Japan 5(1953), 171–183.
[21] K.H.Neeb, Non-abelian extensions of topological Lie algebras, Comm. in Algebra

34(2006), 991–1041.
[22] D.Segal, The structure of complete left-symmetric algebras, Math. Ann. 293(1992),

569–578.
[23] E.B.Vinberg, Convex homogeneous cones, Transl. Moscow Math. Soc. 12(1963),

340–403.
[24] E. Zelmanov, On a class of local translation invariant Lie algebras, Soviet Math.

Dokl. 35(1987), 216–218.


