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Abstract. We study an eigenvalue problem for the Laplace operator with a boundary
condition containing a parameter. We estimate the rate of convergence of the eigenvalues
to the eigenvalues of the Dirichlet problem for large positive values of the parameter.
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1. Introduction

We consider the eigenvalue problem
Au+Adu=0 in £, (1)

0
8—1: +ac(x)u=0 on T, (2)
where Q C R™, n > 2, is a bounded domain with boundary I' = 9Q € C?. By v we
denote the outward unit normal vector to I', « is a real parameter. The function
o(x) € CY(T) is positive:
0<o09<o(zx) <oy, 00 = inf o(z) and 01 = supo(z).
zel zel

Problem (1), (2) with o(z) = 1 is known as the Robin (Fourier) problem for
a > 0 (see [6, Ch. 7, Par. 7.2]), and the generalized Robin problem for all « ([5]).

There is a sequence of eigenvalues A1 () < Aa(a) < ... of problem (1) - (2)
enumerated according to their multiplicities with

lim Ag(a) = +o0.

k—o0
We also consider the sequence of eigenvalues 0 < AP < AP < ... of the Dirichlet
eigenvalue problem
Au+Au=0 in €, (3)

u=0 on T, (4)
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with
lim A\f = +oc.
k— o0

Note that the eigenvalues A\;(a) and AP are simple and the corresponding eigenfunc-
tions u; o(z) and uP (x) are positive.

In this paper, we estimate Ag(«) for large values of a. We now give some known
results.

It is easy to see that A\r(a) < AP, k =1,2,.... These inequalities give the upper
bound of A\(a) for all values of a. It was announced in ([2, Ch. 6, Par. 2, No. 1])
that for n = 2 and a smooth boundary QEIEOO Ae(a) = AP,

Later the properties of the first eigenvalue A;(«) were studied more precisely.
Consider the case o(z) = 1. The following two-sided estimates:

AP ! 47 -1
AP 14 2 <A <A (14— 0
1 ( + OZQ1) — 1((1) = 1 + 04|F| 3 o >0,

were obtained in [12] for n = 2. Here |T'| is the length of T' and ¢ is the first
eigenvalue of the Steklov problem
A?u=0 in Q,

u =20, Au—q@:() on TI.
v

In [4], for any n > 2 we establish the following asymptotic expansion:
2
Ir (agf ) ds
)\1(01) = )‘? - T !
Jo(uP)" dz

The case @ < 0 has recently attracted attention (see, for instance, [9]). It was
shown in [9] that for a piecewise-C! boundary

+o (ofl) , o — +00.

liminf Ay (a)/(—a?) > 1.

a—r — 00
For C! boundaries it was proved ([10]) that

. A2y —
QEIPOO A(a)/(—a”) = 1.
The C*-condition is optimal. In [9], the authors constructed plane triangle domains
for which
lim A (a)/(—a?) > 1.

a—r—00

In [3], the authors proved that for C! boundaries

forallk=1,2,....
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2. Main results
The main result of this paper reads as follows.
Theorem 1. The eigenvalues Ag(a), k =1,2,..., satisfy the estimates
0< A —M(@) <Cra2(\P), a>o0, (6)
where the constant Cy does not depend on k.

In the following theorem we gather the qualitative properties of eigenvalues of
problem (1) - (2) (see also [2, Ch. 6] for i) and [9] for ii) and iii) for o(z) = 1)

Theorem 2. The eigenvalues have the following properties:
i) M\(a), k=1,2,..., are continuous functions of « and
Ap(ar) < Ap(az), a1 < ay; (7)
i) A(a) is a concave function of a:
A (Bar + (1 — Baz) > BAr(ar) + (1 — B)A1(az), 0<pB<l; (8)

iii) A («) is differentiable and

Jpou?, ds
Xi(a) = "> 0; 9
o) = e 0 )
i) the following estimate
/
lim inf 2109 5 o2 (10)
a——00 —

holds.

3. Operator treatment

In this section, we introduce two linear operators associated with problems (1) - (2)
and (3) - (4) to derive the eigenvalue estimates (6).

Consider problem (1) - (2) in the space H*(9) ([1, 11]). We define an eigenvalue of
problem (1), (2) as a value X for which there exists the non-zero function u € H*(Q)
satisfying the integral identity

/(Vu, Vv)dx—l—oe/auvds:)\/ uvdzx (11)
Q r Q

for any v € H'(). Relation (11) can be rewritten as

Juvds:(/\—i-M)/uvdx, M > 0. (12)
Q

/Q((Vu, Vo) + Muv) dx + a/

r
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Let us define an equivalent scalar product in the space H'(Q2) by the formula
[, o] s = /Q((Vu, Vo) + Muv)dz,  |ul2, = [, ular. (13)

Now (12) transforms to

[u,v]pr + a[Tu, vy = (A + M)[Bu, v]m,

where the linear self-adjoint non-negative operators 7 : H'(2) — H'(Q) and B :
HY(Q) — H'(Q) were defined by the bilinear forms

[Tu,v]n = / ouwvds, [Bu,v]y = / wodzr, u,v€ H'(Q). (14)
r Q
Hence we have an equation in the space H'({2) with the norm || - || as:
(I+aT)u= (\+ M)Bu. (15)

Now we use the inequality ([11, Ch. 3, Par. 5, Formula 19])
0%,y < el VollZ, @) + CellvllZ, o), (16)

which is valid for v € H(Q) with an arbitrary e > 0. Using (14), (16), we obtain

ITuls = [T, Tulyr = / cuTuds < o ull oy | Tl Loy

C 1/2
o€ </ <|VTu|2 + —E(Tu)2> dx)
Q €
C 1/2
X </ <|Vu|2 + ?Euz) dx) < Coc||Tull ar|w| s, (17)
Q

where € > 0, M = M,. It follows from (17) that

IN

ITullar. < Coellullar,

and for any arbitrary small ¢ we have |[aT| g1 ()—m1() < 1 for [a] < 1/Cse.
Therefore, the inverse operator (I + oT)~! is bounded and

I+ aD)7H < (1= Ja|T])~"
Hence, equation (15) is equivalent to
(I—(A+M)I+aT)'B)u=0.

The operator B is compact ([11, Ch. 3, Par. 5, Th. 3]) and the operator (I +
oT)™ 1B : HY(Q) — HY(Q) is also compact. Hence the spectrum of problem (15)
consists of real eigenvalues Aj(a), j = 1,2,..., of finite multiplicity with the only
limit point at the infinity. From (14), (15) we obtain the inequality

lujallds
Aj(a) > =M + (1 — |af||T]]) W > =M.
el Ty (0)
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with the corresponding eigenfunction wu; o. Thus, A;(a) — 400, j — cc.
By the variational principle ([11, Ch. 4, Par. 1, No. 4]) we have

Jo IVol?de + a [ ov?ds

(@) = sup inf , (18)
V1, Ve—1€L2(Q) UV E H' () fQ vidx
(v,v;)Ly(2) =0
j=1...,k-1
Vol2d
M= sup g JolVel'd Z' L ok=12... (19
V1, vk—1€L2(Q) v €FY(Q) fszv dx

(vsv)Ly) =0
i=1 E—1

et

To prove inequalities (6) we apply the following statement (see [6, Ch. 2,
Th. 2.3.1)).

Theorem 3. Let T and Ts be two linear self-adjoint, compact and positive operators
on a separable Hilbert space H. Assume also that uy(Ty) and pi(T2) are their k-th
respective eigenvalues. Then

|k (Th) — i (T2)| < | Ty — T2l - (20)
Now we give the proof of Theorem 1.
Proof. Consider the boundary value problem
—Au+u=~h in Q (21)

% +ac(x)u=0 on I, a>0, (22)
v

with b € La(2). A weak solution u € H(Q) of problem (21), (22) satisfy the
integral identity

/Q((Vu, Vo) + uv)de + a/

ouvds = / hv dx (23)
r Q

for all v € H'(Q). Let us define the scalar product in the space H!(Q) as

(U7 U)Hl(sz),a = /

((Vu, Vv) + uv)dx + a/ ouv ds (24)
Q

r

and the corresponding norm by
[l F ()0 = (4 w) () .0-
Due to (16), scalar product (24) is equivalent to the standard one
(u,v) 1) = /Q((Vu, Vv) + uv)dz. (25)
Using (23), (24), we obtain the relation

(u, V) 51 ()0 = (M V) Ly () (26)
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Hence, consider the linear functional

Ih(v) = (hvv)LQ(Q)-
This functional is bounded on the space H():

(V)] < ([Pl o) V]l L) (27)

Now, by the Riesz lemma there exists the unique function v € H'(f) satisfying
integral identity (23). Applying (26) with v = u, we obtain

H“H%{l(sz),a < HhHLz(Q)”u”Hl(Q),a-
Therefore,
lullLy) < llullar@),a < Mo, (28)

and we can define the bounded linear operator A, : L2(2) — L2(Q2) such that
u = Ayh and ||A,|| < 1. Moreover, if the domain Q with C? boundary is bounded,
then the space H!(Q2) embeds compactly into the space L2(Q) ([6, Ch. 1, Th. 1.1.1]).
It means that the operator A, is compact. Note that

(hy Aag) o) :/hAagdajz/hvdx
Q Q

= / ((Vu, Vo) + wv)dx + a/ ouvds
Q r

= / ug dx = (Aahug)Lg(Q)a fag € L2(Q)7 (29)
Q

with u = Ayh, v = Ang, u,v € H(Q). Relation (29) means that A, is a self-adjoint
operator. Now, by relation (29) we have

(h,Aah)LQ(Q) :/uhda:
Q

= [(vul + o+ [ o ds = Jullp o0 > 0. B0

Hence, the operator A, is positive. Finally, A, is a self-adjoint positive compact
operator in the Hilbert space H = Ly(2). By the well-known theorem ([6, Ch. 1,
Th. 1.2.1]), A, has a sequence of eigenvalues {ur(c)}, & = 1,2,... with finite
multiplicities such that pg () > 0, pr(a) N0, & — oo. Let us denote by uy o(z) €
L2(9) the eigenfunction satisfying Aquk,o = pr()ug,o. Thus,

M (a) (Ulc,ou U)HI(Q)7Q = (Ulc,on U)LQ(Q)

and

pr (@) (/ ((Vug,a, VU) 4+ ug qv)dz + a/ OU, QU ds) = / Uk, U diT.
Q r Q
It can be seen that 1

pe(a) = W-
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Let us note that for o > 0 we have

1
a) L ——— < 1,
(@) < Ar(a) +1
so ||Aqll < 1.
Furthermore, consider a Dirichlet problem
—Ay+y=h in (30)
y=0 on T. (31)

For h € Ly(§2) a weak solution y cH! (Q) of problem (30), (31) satisfies the integral
identity

/ (Vy, Vo) + yo)da = / ho da (32)
Q Q

for all v € ! (). Define the scalar product in the space Jid (Q) by (25). Using (25),
(32), we obtain the relation

(y, U)j}l(g) = Ip(v). (33)

Now, by (27) and the Riesz lemma there exists the unique function y € }OI L(Q)
satisfying integral identity (32). Using (32) with v =y, we obtain

lyll% (34)

e < Il oyl

)

Therefore,
a9 < 18] gy 0 < Illzace); (3)

and we can define the bounded linear operator AP : Ly(2) — L2(Q) such that

u = APh and ||[AP| < 1. If the domain € is bounded, then the space i L)
embeds compactly into the space L2(2) ([6, Ch. 1, Th. 1.1.1]). Hence, the operator
AP is compact. Note that

(h, APg) L) :/hAngx:/hvdw:/((vy,WHyv)dﬂﬂ
Q Q Q

- /Q ygde = (APh,g) iy fr9 € La(), (36)

withy = APh, v = APg, y,v cH' (Q). Relation (36) means that A? is a self-adjoint
operator. Now, by (36) we have

(0 AP0y = [ yhda = [ (Vo +32)de = [y, > 0. b0,
Q Q

Hence, the operator AP is positive. Finally, AP is a self-adjoint positive compact
operator in the Hilbert space H = L2(Q2). By ([6, Ch. 1, Th. 1.2.1]), there exists a
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sequence of eigenvalues {uP}, k = 1,2, ..., of the operator AP with finite multiplic-

ities such that uP > 0, uP N\, 0, k — co. Denote by yi(z) € L2(2) the respective
eigenfunction satisfying APy, = pPyy,. Thus, u? (yk, U)ﬁl(ﬂ) = (Yk, U)L2(Q) and

UkD/((Vyk,VU)+ykv)d$:/ykvdaz.
Q2 Q

Then,
1
D _
SV
Note that 1
P _— <1
He =3P~ >
so ||AP] < 1.

Now we estimate the norm || A, — A" | o ()= Lo () for large positive values of a.

Let us remind that in domains with C2-class boundaries and positive o(z) €
CH(I') the functions u = A,h and y = APh are strong solutions and belong to
H?(Q) ([11, Ch. 4, Par. 2, Th. 4]). Moreover, the following estimate

lyllz2(2) < CallhllLa@) (37)
holds. Now we use estimate (16) with ¢ = 1:

1Yl oy < Csllyllz (o) (38)

Combining (37) and (38) we derive the inequality

IVYllLyy < Callyll 20 (39)
Since % < |Vy| on T, from (37), (39) we obtain the estimate
9y
= < Gsllhlly(e)- (40)
H v Lo(T) 2

Suppose that w = (AP — A,) h. By (21), (22), (30), (31) the function w is a
solution of the boundary value problem

—Aw+w=0 in Q, (41)
ow 0y
5 + aow = 5 . (42)

Multiplying equation (41) by w and integrating it over £ with respect to boundary
condition (42), we get the relation

2
/(|Vw|2+w2)dw+l/(aw) ds _ 1 [Owdyds a> 0. (43)
Q aJr

w) o afpovovo’
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Then we obtain the inequality

ow||?

ow
2
e

<C
D

L2 (T) a

dy
v

L2 (T) L2 (T)

and, consequently,

owl|?
D

1
2c

s3]

Jwl? H
Lo(@) ov Lo(T Lo(T) ov Lg(F

Therefore, we have the estimate

ol < 7o go)
Combining (44) with (40), we get

|wllzy(0) < Cra™ 2 ||hl L), >0,
with the constant Cg independent of a. Thus, for all h € Ly(€2) we have the estimate

1A = Aa) bl ) < Cra™ llhll )

and
« — ! ) *
HAD 4 H <C7(Y /2 (1>0 (15)

Now we apply (20) to the operators Ty = A,, To = A”. Then, by the relations

1 1

_ D _
/Lk(a) - )\k(a) + 15 i

and inequalities (20), (45) we get the estimate

1 1
_ < C —-1/2
Me(a) +1 AP +1]— T

(46)

Therefore,
AP = Ae(@)] < Cra™2 (AP +1) (Ai(@) +1). (47)

and taking into account inequalities (49) (see Section 4), we obtain the estimate
0< AP = Me(a) < Cra™ 2 (AP +1)° < Cra™ 2 (AP)?. (48)

The proof of Theorem 1 is completed. O
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4. General properties of eigenvalues
In this Section, we give the proof of Theorem 2.

Proof. Due to (18), Ax(-) is an increasing function. Using (19) and the inclusion
]?[1(9) C H'(Q), we have

Jo IVoPdz + o [ ov?ds

k(@) = sup inf
V1 vp—1€L2(Q) v € HY(Q) fQ v2dx
(v,95)Ly(2) =0
j=1,..., k—1
< . fQ |V'U|2dfl/'+04fr 0"U2d8
< sup inf 5
v1,..., Vp—1E€L2(Q) v 6;11(9) fQ veax
(v,v;)Ly(2) =0

j=1...,k-1

fQ |Vo|?dx D

= sup inf i (49)
v, ve1€L2(Q) w eFH(Q) fQ vide
(v;vj)Ly) =0
j=1,..., —

The continuity of Ag(a) was proved in ([2, Ch. 6, Par. 2, No. 6]).
Inequality (8) can be proved by the following:

M(Bor + (1 Ba) = i JolVoldet (Bt 0= Fas) Jyovds

ve H(Q) Jov?dx
. o Jo Vo[ dz —1—2041 Jrov?ds
ve H1(Q) va dx
g i delViPdedas foovids

ve H1(Q) fQ v2dx
:ﬁ)\l(al)—i—(l—ﬁ))\l(ag), 0<p<l1.

The eigenvalue A;(«) is simple for all —oo < a < oo. The family of self-adjoint
operators (I + aT)~ !B in the space H'(2) with norm (13) satisfies the conditions
of the asymptotic perturbation theorem ([7, Ch. 8, Par. 4, Th. 2.9]). It means that
the eigenvalue A1 () is a differentiable function of a. So

i (@) = Au(@)

Jj—00 a; —«

= Ai(a) (50)

for an arbitrary sequence o; — o, j — 00, a; # a. Let a; = «, j — oo, and
lu1,0, L) = 1, U1,0; = 0. Therefore, ||u1,q;lg1(0) < Cs. By (11), the functions
U1,q; satisfy

/(Vulyaj,Vv) dz + «; / oUL 0,0 ds = Al(aj)/ U1,0,0 d2. (51)
Q r Q
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Now, we can choose a subsequence u1o, — u weakly in H*(Q) and [uj o, —
ullL, = 0, lur,a; — ullL,y — 0. It means that w > 0 and |jul[z,) = 1.
Due to (51), u satisfies the integral identity

/Q(Vu,Vv) dx + a/Fauv ds =\ (a)/ uv dx. (52)

Q

Hence, by the uniqueness of the first positive normalized eigenfunction v = u; o and
lut,a; —v1,allL,) =0, J — oo. (53)

Now, we have
/ IV (1,0, — u1,q)?dz + a/ o(u1,0, — u1,0)’ds
Q r
= )\1 (a)/(ul)aj - ’U,LQ)de
Q
+ (M (o) — )\1(04))/ U1 ,a, (U1,0; — UL,a)dT
Q
— (o — @) / oUl o, (U1,a; — U1,0)ds. (54)
r
It follows from (54) that
1.0, = wr.alifs gy < Co(Jalllura, — uraldum
+ (@) + Dllur,a; = u1,6l?, 0
+ alay) = M@ lur,a; = wallzo@)llur,0; | o)
+lag = al lur,a, = w10l o, ). (55)
Applying (50) and (16) with sufficiently small € we obtain
1.0, = el < Cro (lut.a, = ural e + (0 = @) lura e ) - (56)
Due to (16), (53) and (56) we get

lu1,0;, = ut,all,ry < Crillur,e; — utallgr@) — 0, J— oo.

Therefore,
/Juiajds%/auiads, Jj — o0. (57)
r r

Now, to obtain (9) we use the inequalities
_ Jo IVv]2de + o [ ov? ds
A(aj) — A = M (ay) — f
1(a;) 1(@) 1(a;) ’UEII’IIII(Q) [ v da
oIVt [ do + a fp 00, ds

2
fﬂ Uy g, dx

2
Jr oui o, ds

2
fﬂ Uy g, dx

2 /\1(0@') = (O[j —
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and

Jo IVv?dz + o [ ov?ds

A(aj) — A = inf -2
1(eg) = M) = . [ v7dz 1(a)
Jo IVural? de + o [ ouf , ds Jpou? ,ds
< T2 d —A(a) = (a; — ) 5 )
Q Ul,a 0T fQ uj o dx
Therefore, for o; >
2
Jroula, ds _ Miley) = M) _ Jrouiads (58)

Jo uiaj dr — aj — = Joulgdr
Finally, it follows from (50), (57) and (58) that

_ [roui, ds
B Jo u%)a dr

By ([11, Ch. 4, Par. 2, Th. 4]), u1,, € H*(Q) and it satisfies equation (1) almost
everywhere and the boundary condition in the sense of trace (the so-called strong
solution). In the case [j.ouf ,ds =0, by (2) we have:

A (@)

8ul,a
ov

=0 on TI.

Ul,a0 =

Applying the uniqueness theorem to the Cauchy problem for second-order elliptic
equations ([8, Ch. 1, Par. 3, Th. 1.46]), we get u; o = 0 in Q. This contradiction
proves that Aj(a) > 0 for all . Taking into account (9), we have the inequality
A1 (Oé) < /\f)

By combining the result from [10] with (9) we obtain the relations

afpouinds _ [o|[Vuiel?de+a fpouf , ds

a\)(a) = <
! Jo uia dx Jo “ia dx
= M(a) = —0420%(1 + o(a)), o) =0, a— —oo.
Hence,
A(e)

> 0%(1 +o(a)), a<0,

and inequality (10) is proved.
This completes the proof of Theorem 2. O
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