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SOME EXPERIMENTS WITH RAMANUJAN-NAGELL TYPE

DIOPHANTINE EQUATIONS

Maciej Ulas

Jagiellonian University, Poland

Abstract. Stiller proved that the Diophantine equation x2 + 119 =
15·2n has exactly six solutions in positive integers. Motivated by this result
we are interested in constructions of Diophantine equations of Ramanujan-
Nagell type x2 = Akn +B with many solutions. Here, A,B ∈ Z (thus A,B

are not necessarily positive) and k ∈ Z≥2 are given integers. In particular,
we prove that for each k there exists an infinite set S containing pairs of
integers (A,B) such that for each (A,B) ∈ S we have gcd(A,B) is square-
free and the Diophantine equation x2 = Akn+B has at least four solutions
in positive integers. Moreover, we construct several Diophantine equations
of the form x2 = Akn+B with k > 2, each containing five solutions in non-
negative integers. We also find new examples of equations x2 = A2n + B

having six solutions in positive integers, e.g. the following Diophantine
equations have exactly six solutions:

x2 = 57 · 2n + 117440512 n = 0, 14, 16, 20, 24, 25,
x2 = 165 · 2n + 26404 n = 0, 5, 7, 8, 10, 12.

Moreover, based on an extensive numerical calculations we state several
conjectures on the number of solutions of certain parametric families of
the Diophantine equations of Ramanujan-Nagell type.

1. Introduction

Let us consider the Diophantine equation x2 = 2n − 7 and ask about
its solutions in integers (x, n). The question concerning characterization
of all integral solutions of this equation was posed by Ramanujan in 1913.
Ljunggren posed the same question in 1943. Finally, in 1948 Nagell found all
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solutions of this equation and since then this equation is known as Ramanujan-
Nagell equation. It is nowdays well known that it has exactly five solutions
(x, n) = (1, 3), (3, 4), (5, 5), (11, 7) and (181, 15). Note that the proof of this
fact appeared in English in 1960, see [11]. This result was also independently
obtained by several writers (Lewis, Chowla, Browkin and Schinzel). This
discovery was a good motivation for mathematicians to work on more general
equations of Ramanujan-Nagell type, i.e. the equations of the form

(1.1) x2 = Akn +B, k ∈ Z≥2, A,B ∈ Z \ {0}.

Here we assume that A,B are not both negative. From the Siegel result
on prime divisors of polynomial values we know that this equation has only
finitely many solutions in integers. Many papers are devoted to the study
of integral solutions of the equation (1.1) in the case when A = 1 and k is a
prime number [1,3,4,14]. In particular, it is known that if A = 1, B < 0 and k
is an odd prime number not dividing B, then the Diophantine equation (1.1)
has at most one solution in positive integers x and n, unless (p,B) = (3, 2) or
(p,B) = (4a2 + 1, 3a2 + 1) for some a ∈ N. In these cases, there are precisely
two such solutions [1,5]. In the case A = 1, B > 0 with an odd prime number
k satisfying p ∤ B, the equation (1.1) has at most four solutions in positive
integers x, n ([4]).

More recent results on the equation (1.1) can be found in [2], where the
authors are interested with solutions satisfying n ≥ 2 (however, later in that
paper they assume n ≥ 1). One can also look into an interesting paper [12]
where the authors look for solutions of (1.1) with n ≥ 2. Typical result
proved in the cited papers state that there are at most one, two or three
solutions in positive integers x, n. More precisely, we do not know much about
Ramanujan-Nagell equations which have many solutions and this motivated us
to state the general problem of constructing Ramanujan-Nagell type equations
with many solutions in non-negative integers.

Problem 1.1. Find examples of Ramanujan-Nagell type Diophantine

equations with many solutions in non-negative integers.

We are thus interested in the solutions of (1.1) which are non-negative
integers. We are aware that the statement of the problem above is not very
precise. Here, the meaning of “many” depends on the type of equation under
consideration. For example, Stiller proved that the Diophantine equation
x2 = 15 ·2n− 119 has exactly six solutions in non-negative integers and noted
that the Diophantine equation x2 = 35·2n−391 has exactly five solutions. So,
in the case of k = 2, by many we will understand five or six. Next, if k > 3,
then according to our best knowledge there is no example of a Ramanujan-
Nagell equation which has five or more solutions. Thus, in this case by many
we will understand five (or more). Similarly, if A = ±1 then by many we will
understand three (or more).
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Let us describe the content of the paper in some detail. In section 2 we
prove that for each k ∈ Z≥2 there are infinitely many pairs of integers A,B
such that gcd(A,B) is a square-free integer and the Diophantine equation
x2 = Akn + B has at least four solutions in non-negative integers. Next, we
will describe our general search procedure which was used in our computer
experiments. In particular we present two infinite families of the equations of
the form x2 = A2n +B which have at least five solutions in integers. We also
present new examples of this form with exactly six solutions. We also present
some results concerning the equation (1.1) with k ≥ 3 having at least five
solutions. In section 3 we consider the equation x2 = kn+B. For each even k
we construct an infinite family of B’s such that the equation x2 = kn+B has
at least three solutions. We also raise the question concerning the construction
of equations of the considered type which satisfy additionally the condition
gcd(k,B) = 1 with even k. This question is motivated by the observation
made by Beukers in [3]. In particular we found three equations of the form
x2 = kn+B satisfying the condition gcd(k,B) = 1 and having three solutions.
Finally, in the last section we present some remarks concerning the equation
(1.1) with A < 0.

2. The method of search and the equation x2 = Akn +B with

A > 0

We start with the following simple result which shows that for any k ∈ Z≥2

there are infinitely many (essentially) different values of A,B such that the
Diophantine equation x2 = Akn + B has at least four solutions. This result
is an immediate corollary from our earlier results presented in [8].

Theorem 2.1. For each k ∈ Z \ {−1, 0, 1} there are infinitely many

pairs of integers A,B such that gcd(A,B) is square-free and the Diophantine

equation x2 = Akn +B has at least four solutions in non-negative integers.

Proof. In order to prove this result we use the polynomial F (x) = Px+
Q, where

P = 8
(

σ3
1 − 4σ2σ1 + 8σ3

)

, Q = σ4
1 − 8σ2σ

2
1 + 16σ2

2 − 64σ4,

and σi = σi(a, b, c, d) is the i-th elementary symmetric polynomial for i =
1, 2, 3, 4. This polynomial was constructed in [8, Corollary 2.9], and satisfies
the equalities F (a) = �, F (b) = �, F (c) = �, F (d) = �. Here a, b, c, d are
pairwise distinct integer parameters and � denotes a square of an integer. By
taking now (a, b, c, d) = (1, kp, kq, kr) we see that the Diophantine equation
x2 = Akn + B has solutions with n = 0, p, q, r. Here, we denote by A =
A(p, q, r) and B = B(p, q, r) the values of P (1, kp, kq, kr) and Q(1, kp, kq, kr),
respectively. In order to finish the proof we need to show that for infinitely
many triples of positive integers p, q, r with p < q < r we get infinitely many
different pairs (sf(A(p, q, r)), sf(B(p, q, r))), where sf(N) is square-free part of



290 M. ULAS

an integer N . In other words, it is enough to show that for any fixed triple
of integers (p′, q′, r′) there are infinitely many triples (p, q, r) satisfying the
condition p < q < r, such that the system of Diophantine equations

(2.1) aT 2 = A(p, q, r), bT 2 = B(p, q, r),

has no integer solutions in T . Here, in order to shorten the notation, we put
a = sf(A(p′, q′, r′)), b = sf(B(p′, q′, r′)). In order to find suitable values of
p, q, r we first put p = mt, q = mt + 1, r = mt + 2, where m, t are positive
integers which will be chosen later. Using the expression for A given above,
we have

A(p, p+1, p+2) = 8((k2−k−1)xm+1)((k2−k+1)xm−1)((k2+k−1)xm−1),

where we put x = kt. Let us denote the right hand side of the above equality
by Hm(x). We observe now that the (hyperelliptic) curve C : aT 2 = Hm(x)
(treated as a curve in the (x, T ) plane) is of genus g(C) = ⌊ 3m

2 ⌋. In particular,
g(C) ≥ 2 for m ≥ 2. Using now the Faltings theorem [9] we get that the
curve C has only finitely many rational solutions, say (x1, T1), . . . (xn, Tn).
However, there are only finitely many values of j ∈ {1, . . . , n} such that
xj = kt. If t′ is the biggest solution of the equation xj = kt then for each
t > t′ we immediately deduce that there are no integers satisfying the equality
Hm(kt) = aT 2. Summing up: we proved that for any given triple (p′, q′, r′)
there are infinitely many values of (p, q, r) of the form (mt,mt + 1,mt + 2)
with m ≥ 2 and sufficiently large t (depending on a finite number of rational
points on the curve C) such that the system (2.1) has no solutions in integers.

Remark 2.2. We expect that much more is true. To be more precise:
we think that for each triple (p′, q′, r′) of nonnegative integers with p′ <
q′ < r′ there are only finitely many triples (p, q, r) such that the system of
Diophantine equations given by (2.1) has a non-trivial integer solution in T .

We give now a short description of the method which allows us to find
examples of the equations x2 = Akn +B with various constraints on k,A,B,
and many solutions. First, we consider the case of A,B with A positive.
Given A, the idea is to choose an integer B in such a way that the equation
x2 = Akn +B has two fixed solutions. In particular, because we also include
the case when k | A we can assume that the first solution is given by n = 0.
This implies that B = x2

1 −A for certain A, x1 ∈ Z. Next, if we want to have
second solution with fixed n = p, where p is a given positive integer, then
necessarily x2

2 = Akp + B for certain x2 ∈ Z and x1 < x2. This implies that
the numbers x1, x2, A satisfy the equation x2

2 − x2
1 = A(kp − 1). So, for any

given A we consider the set

D := {d ∈ N : d | A(kp − 1)},
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i.e. the set of divisors of the numberK := A(kp−1). We thus see that for each
d ∈ D with d ≤ K/2 we have a solution of the equation x2

2 − x2
1 = K = d · K

d

given by

x1 =
1

2

(

K

d
− d

)

, x2 =
1

2

(

K

d
+ d

)

and the corresponding B we are looking for takes the form

B =

(

1

2

(

K

d
− d

))2

−Akp.

We thus see that for any given d ∈ D such that the value of x1 is an integer
we have values of A,B which gives an equation x2 = Akn + B with at least
two solutions in positive integers (i.e. those with n = 0, p). Moreover, in
order to reduce the number of possible solutions without loss of generality
we can assume that the number gcd(A,B) is square-free. Performing then a
brute force search of additional solutions of this equation we can find those
values of A,B which lead to equations with many solutions. Let us note that
modifications of this method were used in investigations devoted to the study
of Brocard-Ramanujan type equations ([15]) and its various generalizations
([8]).

We performed independent searches for the case of k = 2 and k > 2. In
the case of k = 2 we found some infinite families of equations which have at
least five solutions.

Theorem 2.3. For each positive integer m the Diophantine equations

x2 = (23m + 1)2n + 1− 23m+3,

x2 =
1

9
(26m − 1)2n +

1

9
(26m+3 + 1)

have at least five solutions in positive integers. The first equation has solutions

given by

(x, n) =(3, 3), (22m+1 − 2m+1 − 1,m+ 2), (23m+1 − 1, 3m+ 2),

(23m+2 + 1, 3m+ 4), (26m+3 + 23m+2 − 1, 9m+ 6).

The second equation has solutions given by

(x, n) =(23m, 0),
(1

3
(24m+1 + 22m+1 − 1), 2m+ 2

)

,
(1

3
(26m+1 + 1), 6m+ 2

)

,

(1

3
(26m+2 − 1), 6m+ 4

)

,
(1

3
(23(4m+1) − 22(3m+1) − 1), 18m+ 6

)

.

Proof. We left the simple check that the displayed solutions satisfy
corresponding equations to the reader. However, let us note that the
Ramanujan-Nagell equation x2 +7 = 2n is contained in the first family (after
division of both sides by 9) for m = 1 with additional solution for n = 4
(however, 3 = m+ 2 in this case).
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We also found new equations with six solutions extending the result of
Stiller from [13]. Our computations based on the method described above,
were performed for 0 < p ≤ 30 and A ≤ 106. In this range we were able to
find only two pairs (A,B) such that the Diophantine equation x2 = A2n +B
has six solutions. In both cases B is even and positive. More precisely, we
have the following result:

Theorem 2.4. The Diophantine equation

x2 = 57 · 2n + 117440512

has exactly six solutions in non-negative integers, given by

(x, n) = (10837, 0),(10880, 14),(11008, 16),(13312, 20),(32768, 24),(45056, 25).

Similarly, the Diophantine equation

x2 = 165 · 2n + 26404

has exactly six solutions in non-negative integers, given by

(x, n) = (163, 0), (178, 5), (218, 7), (262, 8), (442, 10), (838, 12).

Proof. We start with the first equation. By computer search one can
easily check that the only solution with n ≤ 26 is the one displayed in the
statement of the theorem. We thus can assume that n ≥ 26. Let us put
n = 26+m with m ≥ 0 and let us observe that 117440512 = 224 ·7. By putting
now x = 212X we reduce our problem to the proof that the Diophantine
equation X2 = 4 ·57 ·2m+7 has no solutions in integers with m ≥ 0. However,
this is very easy because the shape of the equation immediately implies that
X2 ≡ 3 (mod 4) which is clearly impossible.

Let us consider the second equation. We observe that in order to find
solutions it is enough to find all integer solutions of the Diophantine equations
x2 = ay3+26404 with a ∈ A, where A = {165, 2 ·165, 4 ·165}. Then solutions
in y which are powers of 2 will correspond to the solutions of our equation.
Equivalently, we are interested in the integer solutions of the Diophantine
equations x2 = Y 3 +26404a2 with Y coordinate of the form Y = a2m, where
a ∈ A. Using the Magma computational package [6] we were able to find
all integer solutions of the Diophantine equations we are interested in. More
precisely, we used IntegralPoints procedure implemented in Magma which
allows to find all integral points on given elliptic curve given by a Weierstrass
equation. We gather the results of these computations in Table 1.

A quick inspection of the corresponding solution sets reveals that the
only non-negative integer solutions of x2 = 165 · 2n + 26404 satisfy n ∈
{0, 5, 7, 8, 10, 12}.

Remark 2.5. It is possible to give a completely elementary proof of the
fact that the only solutions of the equation x2 = 165 · 2n + 26404 correspond
with n = 0, 5, 7, 8, 10, 12 using the approach presented in Stiller’s paper [13]
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Table 1

a Integral solutions (Y,±x) of x2 = Y 3 + 26404a2

165 (−780, 15630), (−264, 26466), (100, 26830), (165, 26895),
(1485, 63195), (2640, 138270)

2 · 165 (−824, 48124), (1320, 71940), (2640, 145860), (23265, 3548985)
4 · 165 (−2196, 30192), (−1440, 92280), (1320, 117480), (2640, 172920),

(3025, 197945), (5896, 465256), (29880, 5166120), (44440, 9368920)

(see also [10, 14]). In this case we need to consider solutions of two Pell type
equations: x2 = 165y2+26404 and x2 = 2 · 165y2 +26404. The set of integer

solutions of the first equation is parameterized by the sequence (x
(1)
n , y

(1)
n )

satisfying the recurrence relations

x
(1)
n+1 = 1079x(1)

n + 13860y(1)n , y
(1)
n+1 = 84x(1)

n + 1079y(1)n ,

where the initial values (x
(1)
0 , y

(1)
0 ) belong to the set V1, where

V1 = {(±163, 1), (±167, 3), (±233, 13), (±262, 16), (±383, 27), (±442, 32),

(±838, 64), (±977, 75), (±1142, 82), (±1333, 103), (±2587, 201), (±3023, 235)}.

The set of integer solutions of the second equation is parameterized by

the sequence (x
(2)
n , y

(2)
n ) satisfying the recurrence relations

x
(2)
n+1 = 109x(2)

n + 1980y(2)n , y
(2)
n+1 = 6x(2)

n + 109y(2)n ,

where the initial values (x
(2)
0 , y

(2)
0 ) belong to the set V2, where

V2 = {(±178, 4), (±218, 8), (±398, 20), (±1102, 60)}.

Performing now the careful (and very tedious) analysis of the sequence(s) y
(i)
n

(mod 2k) for k = 1, 2, . . . , 7 and the sequence y
(i)
n (mod mi) with suitable

chosen mi (depending on the initial values from the set Vi), one can find that
all non-negative integer solutions of our initial equation x2 = 2·165·2n+26404
corresponding to n = 0, 5, 7, 8, 10, 12.

Remark 2.6. From the work of Beukers ([3,4]) it is known that the only
equation of the form x2 = 2n + B,B ≡ 1 (mod 2), which has at least five
solutions satisfying n ≥ 1, corresponds to B = −7. However, if we drop
the condition on B and allow non-negative solutions, we have the equation
x2 = 2n + 1088 with five solutions given by

(x, n) = (33, 0), (40, 9), (56, 11), (72, 12), (184, 15).

Here we have 1088 = 26 · 17. However, we were unable to find more equations
with this property.
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Remarkably, in the case k > 2 which is not a power of two we have found
only a few equations of the form x2 = Akn +B (satisfying the condition that
gcd(A,B) is a square-free number), which have at least five solutions. We
gather the result of our computation in the following theorem.

Theorem 2.7. Each of the following Diophantine equations has exactly

five solutions in non-negative integers (x, n):

No. The equation The solution set for n

1 x2 = 28 · 3n + 2997, n = 0, 2, 5, 6, 10,
2 x2 = 70 · 3n + 414, n = 0, 3, 4, 5, 8,
3 x2 = 130 · 3n + 5550606, n = 0, 6, 11, 15, 16,
4 x2 = 148 · 3n + 41877, n = 0, 5, 6, 9, 17,
5 x2 = 8740 · 3n + 57402189, n = 0, 4, 9, 15, 29,
6 x2 = 6 · 5n + 11875, n = 0, 4, 5, 6, 9,
7 x2 = 14 · 5n + 6875, n = 0, 2, 4, 5, 6,
8 x2 = 248 · 6n + 23161, n = 0, 1, 3, 4, 5,
9 x2 = 1513 · 6n + 19379701008, n = 0, 7, 9, 10, 12.

Proof. Although it is possible to prove our result using only elementary
techniques we use the same computational approach as presented in the second
part of the proof of Theorem 2.4. The equations numbered 3, 5, 8, 9 were
solved with the help of IntegralQuarticPoints procedure in Magma.

(1) We consider the problem of finding all integer points on the curves
x2 = Y 3 + 2997a2 with a = 28 · 3i for i = 0, 1, 2.

Table 2

a Integral solutions (Y,±x) of x2 = Y 3 + 2997a2

28 (−108, 1044), (−63, 1449), (28, 1540), (36, 1548), (252, 4284),
(396, 8028), (441, 9387), (148932, 57475404)

3 · 28 (−252, 2268), (2268, 108108)
9 · 28 (−567, 2835), (252, 14364), (756, 24948), (5076,−361908)

(2) We consider the problem of finding all integer points on the curves
x2 = Y 3 + 414a2 with a = 70 · 3i for i = 0, 1, 2.
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Table 3

a Integral solutions (Y,±x) of x2 = Y 3 + 414a2

70 (−126, 168), (−111, 813), (−90, 1140), (70, 1540),
(105, 1785), (210, 3360), (945, 29085), (2086, 95284), (8850, 832560)

3 · 70 (−126, 4032), (225, 5445), (630, 16380)
9 · 70 (721, 23219), (1890, 83160), (5670, 427140), (10665, 1101465)

(3) We consider the problem of finding all integer points on the curves
x2 = aY 4 + 5550606 with a = 130 · 3i for i = 0, 1, 2, 3.

Table 4

a Integral solutions (±Y,±x) of x2 = aY 4 + 5550606
130 (1, 2356)
3 · 130 no integral solutions
9 · 130 (3, 2376)
27 · 130 (9, 5346), (27, 43254)

(4) We consider the problem of finding all integer points on the curves
x2 = Y 3 + 41877a2 with a = 148 · 3i for i = 0, 1, 2.

Table 5

a Integral solutions (Y,±x) of x2 = Y 3 + 41877a2

148 (148, 30340), (1332, 57276), (3996, 254412), (8361, 765117)
3 · 148 no integral solutions
9 · 148 (3996, 371628), (323676, 184147668)

(5) We consider the problem of finding all integer points on the curves
x2 = aY 4 + 57402189 with a = 8740 · 3i for i = 0, 1, 2.

Table 6

a Integral solutions (±Y,±x) of x2 = aY 4 + 57402189
8740 (1, 7577), (3, 7623)
3 · 8740 (9, 15147), (2187, 774486603)
9 · 8740 no integral solutions
27 · 8740 (27, 354213)

(6) We consider the problem of finding all integer points on the curves
x2 = Y 3 + 11875a2 with a = 6 · 5i for i = 0, 1, 2.
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Table 7

a Integral solutions (Y,±x) of x2 = Y 3 + 11875a2

6 (-75, 75), (-51, 543), (-50, 550), (6, 654), (61, 809),
(150, 1950), (486, 10734), (750, 20550), (1194750, 1305916950)

5 · 6 (-219, 429), (-50, 3250), (150, 3750), (1125, 37875)
25 · 6 (750, 26250)

(7) We consider the problem of finding all integer points on the curves
x2 = Y 3 + 6875a2 with a = 14 · 5i for i = 0, 1, 2.

Table 8

a Integral solutions (Y,±x) of x2 = Y 3 + 6875a2

14 (14, 1162), (350, 6650)
5 · 14 (-259, 4039), (-250, 4250), (350, 8750), (848750, 781933250)
25 · 14 (-875, 13125), (-250, 28750), (350, 29750), (1750, 78750),

(5614, 421638)

(8) We consider the problem of finding all integer points on the curves
x2 = aY 4 + 23161 with a = 248 · 6i for i = 0, 1, 2, 3. (9) We consider the

Table 9

a Integral solutions (±Y,±x) of x2 = aY 4 + 23161
248 (1, 153), (6, 587)
6 · 248 (1, 157), (6, 1397)
62 · 248 no integral points
63 · 248 (1,277)

problem of finding all integer points on the curves x2 = aY 4 + 19379701008
with a = 1513 · 6i for i = 0, 1, 2, 3.

Table 10

a Integral solutions (±Y,±x) of x2 = aY 4 + 19379701008
1513 (1, 139211), (216, 1820124)
6 · 1513 (36, 186084)
62 · 1513 (36, 332964)
63 · 1513 (6, 140724)

Summing up: A quick inspection of the corresponding solution sets reveals
that the only integral solutions of our equations are given in the statement of
our theorem.

Our theorem is proved.
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3. The equation x2 = kn +B

In this section we are interested in finding equations of the form x2 =
kn +B with ”many” solutions and satisfying the condition B 6≡ 0 (mod k2).
In order to find examples with at least three solutions we need a small
modification to the method presented in Section 2. Indeed, here we need
to assume that A = kq for a fixed positive integer q < p. Then we will have
the equation x2 = kn + B with at least two solutions at n = q, p. In [4, Par.
3] Beukers found that if

k = 4t2 + ǫ, B =
(km − ǫ

4t

)2

− km,

where t,m ∈ N and ǫ ∈ {−1, 1} then the Diophantine equation x2 = kn + B
has at least three solutions given by

(x, n) =
(km − ǫ

4t
− 2t, 1

)

,
(km − ǫ

4t
,m

)

,
(

2tkm + ǫ
km − ǫ

4t
, 2m+ 1

)

.

Note that in this case k is odd. A question arises whether it is possible to
find similar families with k even. In the next theorem we show that there
are infinitely many k’s such that the equation x2 = kn +B has at least three
solutions in positive integers and B 6≡ 0 (mod k2). More precisely, we have
the following result:

Theorem 3.1. For positive integer t and a non-negative integer m the

Diophantine equation

x2 = (2t)n + t2((2t)2(m+2) − 2(2t+ 1)(2t)m+2 + (2t− 1)2)

has at least three solutions in positive integers (x, n) given by:

(x, n) = (t((2t)m+2 − 2t− 1), 3), (t((2t)m+2 − 2t+ 1),m+ 4),

(t((2t)m+2 + 2t− 1),m+ 5).

Proof. We left the simple check that the displayed solutions satisfy the
corresponding equation to the reader.

Let us observe that in the Beukers family we have gcd(k,B) = 1. However,
in our family with k even this condition is not satisfied. An interesting
question arises whether we can find equations x2 = kn+B having at last three
solutions in positive integers with k,B satisfying the condition gcd(B, k) = 1
with even k and not of the form 2m or with odd k not of the form 4t2+ ǫ. It is
quite interesting that we were unable to find an odd integer k not of the form
4t2+ǫ and an integer B such that gcd(k,B) = 1 and the equation x2 = kn+B
has at least three solutions. We considered the equations x2 = kn + B with
k ∈ {7, 9, 11, 13, 19} which have two solutions n = p, q with p < q < 40. We
then searched for further solution in n ≤ 100. From the work of Bauer and
Bennett ([2]) we know that if k is a prime number and B is positive then
the equation x2 = kn +B has at most three solutions satisfying n ≥ 1. This
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suggests the following natural problem, which, in the case ǫ = 1, was stated
by Bauer and Bennett in [2].

Problem 3.2. Find an integer B and an odd positive integer k not of

the form 4t2 + ǫ with t ∈ N, ǫ ∈ {−1, 1}, such that gcd(k,B) = 1 and the

Diophantine equation x2 = kn + B has at least three solutions in positive

integers.

What is going on in the case of even values of k? The first candidates
which should be investigated are k = 6, 10, 12, .... Using the method described
in Section 2 we performed numerical calculations and found that if the
equation x2 = kn + B has at least three solutions in non-negative integers
for k ∈ {6, 10, 12, 14, 18, 20} with the smallest solution ≤ 40, n ≤ 100 and
gcd(B, k) = 1, then they are exactly three solutions of our problem. More
precisely, we have the following result.

Theorem 3.3. Each of the following Diophantine equations has exactly

three solutions in positive integers (x, n):

x2 = 6n + 2185, n = 3, 4, 6,
x2 = 6n + 274837012705, n = 4, 12, 13,
x2 = 12n + 25029865, n = 2, 6, 8.

Proof. As before we consider the problem of finding all integral points on
the curve x2 = Y 3 +2185a2 with a ∈ {1, 6, 36}. Using Magma one more time
we have obtained the characterizations of integral points on corresponding
curves. We gather these results in the table below.

Table 11

a Integral solutions (Y,±x) of x2 = Y 3 + 2185a2

1 (6, 49), (36, 221), (39, 248), (156, 1949)
6 (36, 354)
36 (9, 1683), (16, 1684), (144, 2412), (864, 25452), (231336, 111266604)

A quick look into the Table 11 reveals all instances of integral points for
which Y -th coordinate is a power of 6.

We consider now the problem of finding all integral points on the curves
x2 = aY 4+274837012705 with a ∈ {1, 6, 36, 216}. The cases a = 1 and a = 62

are easy because we are dealing with equations which can be easily solved by
factorization. The cases a = 6 and a = 216 were solved with the help of the
IntegralQuarticPoints procedure in Magma. All integral solutions of the
considered equations are given below.

The third equation is very easy. Indeed, if n is even, say n = 2m, we
write (x− 12m)(x+12m) = 25029865. Considering all possible factorizations
of 25029865 we get the solutions (x,m) = (5003, 1), (x,m) = (5293, 3) and
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Table 12

a Integral solutions (±Y,±x) of x2 = aY 4 + 274837012705
1 (384, 524303), (1296, 526321), (1325424, 1525921777)
6 (216, 536561)
36 no integral solutions
216 no integral solutions

(x,m) = (21331, 4). If n is odd, say n = 2m+1, then we consider the equation
x2 − 12y2 = 25029865, where y = 12m. However, one can easily check this
equation has no solutions mod 5. Summing up, we proved that all solutions
of x2 = 12n + 25029865 correspond to n = 2, 6, 8.

Motivated by the above examples we state the following series of
conjectures concerning the solutions of certain Lebesgue-Nagell-Ramanujan
type equations.

Conjecture 3.4. If (x, y, n), where x, y are positive integers and n ≥ 3,
are solutions of the Diophantine equation x2 = yn + 2185, then:

n = 3, (x, y) = (49, 6), (221, 36), (248, 39), (1949, 156),
n = 4, (x, y) = (59, 6)
n = 6, (x, y) = (221, 6).

Conjecture 3.5. If (x, y, n), where x, y are positive integers and n ≥ 3,
are solutions of the Diophantine equation x2 = yn + 274837012705, then:

n = 3, (x, y) = (524303, 384), (526321, 1296), (1525921777, 1325424),
n = 4, (x, y) = (526321, 216)
n = 6, (x, y) = (526321, 36),
n = 12, (x, y) = (526321, 6),
n = 13, (x, y) = (536561, 6).

Conjecture 3.6. If (x, y, n), where x, y are positive integers and n ≥ 3,
are solutions of the Diophantine equation x2 = yn + 25029865, then:

n = 3, (x, y) = (5293, 144),
n = 4, (x, y) = (21331, 144), (736181, 858),
n = 6, (x, y) = (5293, 12),
n = 8, (x, y) = (21331, 12).

4. The equation x2 = Akn +B with A < 0

In this section we consider the Diophantine equation x2 = Akn +B with
constraint A < 0. Of course, in this case the equation has only finitely many
solutions in integers and we have a useful bound for solutions: each n which

solves the equation x2 = Akn +B with A < 0 satisfies n ≤ logk

(

B
|A|

)

.
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However, we are mainly interested in the case A = −1. Thus we consider
the equation x2 + kn = B and ask about characterization of those positive
integers k such that there exists an infinite set B such that for each B ∈ B we
have B 6≡ 0 (mod k2) and our equation has at least three solutions in positive
integers. We propose the following result:

Theorem 4.1. Let t be an indeterminate and put k = t2 + 1. Then for

each positive integer m, the Diophantine equation

x2 + kn =
k2

4(k − 1)

(

k2m+2 + 2(k − 2)km + 1
)

,

treated as an equation in polynomials, has exactly three solutions in (x, n) ∈
Z[t]× N, with the solutions corresponding to n = 0, m+ 2, 2m+ 2.

Proof. Let us denote the right hand side of our equation byHm(t). First
we need to show that Hm is indeed a polynomial with rational coefficients. In
order to do this we need to check that t = 0 is a double root of Hm. This is
true form = 0, 1 and thus we can assumem ≥ 2. It is clear that t = 0 is a root
of the polynomial hm(t) = k2m+2 + 2(k − 2)km + 1, where k = k(t) = t2 + 1.
Moreover, we know that k′(0) = 0 and from the identity

h′
m(t) = 2k′(t)k(t)m−1((m+ 1)k(t)m+2 + (m+ 1)k(t)− 2m)

we easily deduce that Hm is a polynomial in Q[t]. Let us observe that the
following pairs (x, n) are solutions of our equation:

(x, n) =
(km+2 + k − 2

2t
, 0
)

,
(k(km+1 − 1)

2t
,m+ 2

)

,

(k(km(k − 2) + 1)

2t
, 2m+ 2

)

.

We show now that there are no more solutions. In order to see this we note
that a necessary condition for existence of a polynomial x ∈ Q[t] such that
x(t)2 + kn = Hm(t) is the condition x(1)2 + k(1)n = Hm(1) = 22(m+1) +
1. We are thus interested in integer solutions of the Diophantine equation
x(1)2 + 2n = 22(m+1) + 1. Remarkably, this equation (with slightly different
notation) was considered by Beukers in [3, Theorem 2]. He proved that the
only solutions correspond to n = 0,m+ 2 and 2m+ 2 which are exactly our
values for n. Our theorem is proved.

It is clear that for any given integer value of t we can compute k and get
the equation x2 + kn = B with at least three solutions in integers. The first
few values of k from the above theorem are k = 2, 5, 10, 17, 26, 37, 50, . . .. A
question arises whether for k not of the form t2 + 1 we can find B such that
the equation x2 + kn = B has at least three solutions in integers. This seems
to be a rather difficult question. We performed calculations for each k < 50
not covered by Theorem 4.1 in order to find integers B with the property
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that the equation x2 + kn = B has at least three solutions in n with n ≤ 50.
We collect these values together with corresponding solutions in Table 13. In
fact, for the value of B which was computed, the solutions presented in the
third column of the table contain all solutions of the corresponding equation.
It is interesting to note that we were unable to construct an infinite family of
equations with k 6= t2 + 1 and having at least three solutions in integers.

Table 13

k B values of n such that B − kn is a square
6 8865 3,4,5
6 48177 3,5,6
6 2538945 4,7,8
6 334401777 7,9,10
6 1410808185 7,10,11
12 448206057 5,7,8
14 166113185 4,6,7
18 4598905354020657 7,9,12
21 5340742 1,3,5
22 61234181657 5,7,8
30 739595025 3,5,6
34 170442204313460705 8,10,11
40 109475600 3,4,5
40 17264710025 3,5,6

In the case of the equation x2 = A2n+B with A < 0 we offer the following
two conjectures.

Conjecture 4.2. For each positive integer m the Diophantine equation

x2 + (2m+1 + 1)2n = 24(m+1) + 23(m+1) + 22m + 2m+1 + 1

has exactly four solutions in integers (x, n) with n = 0,m+2, 2m+3, 3m+3.

Conjecture 4.3. For each positive integer m the Diophantine equation

x2 +
1

3
(22m+6 − 1)2n =

1

9

(

49 · 42m+5 − 11 · 4m+3 + 1
)

has exactly four solutions in integers (x, n) with n = 0, 3, 2m+ 7, 2m+ 8.

Based on our numerical experiments concerning the equation x2+Akn =
B with positive A and general k, we dare to state the following.

Conjecture 4.4. For any given k ∈ Z≥2 and positive integer B
the number of solutions in non-negative integers (x, n) of the Diophantine

equation x2 + kn = B is at most 3.
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Conjecture 4.5. For any given k ∈ Z≥2 and positive integers A, B
the number of solutions in non-negative integers (x, n) of the Diophantine

equation x2 +Akn = B is at most 4.
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