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DIOPHANTINE TRIPLES AND REDUCED QUADRUPLES

WITH THE LUCAS SEQUENCE OF RECURRENCE

un = Aun−1 − un−2

Nurettin Irmak and László Szalay

University of Niğde, Turkey and University of West Hungary, Hungary

Abstract. In this study, we show that there is no positive integer
triple {a, b, c} such that all of ab+1, ac+1 and bc+1 are in the sequence
{un}n≥0 satisfies the recurrence un = Aun−1−un−2 with the initial values

u0 = 0, u1 = 1. Further, we investigate the analogous question for the
quadruples {a, b, c, d} with abc + 1 = ux, bcd + 1 = uy , cda + 1 = uz and
dab+ 1 = ut, and deduce the non-existence of such quadruples.

1. Introduction

A Diophantine m-tuple is a set {a1, a2, . . . , am} of positive integers such
that aiaj + 1 is a square for all 1 ≤ i < j ≤ m. This problem and its
variations have a rich history. Diophantus investigated first, although rational
quadruples, and found the set {1/16, 33/16, 68/16, 105/16}. Fermat was the
first who could give an integer quadruple, namely the set {1, 3, 8, 120}.

It is widely known that infinitely many integer Diophantine quadruples
exist. For instance, Hoggatt and Bergum ([5]) proved that for any positive
integer k, the set

{F2k, F2k+2, F2k+4, 4F2k+1F2k+2F2k+3}
is always quadruple. A widely believed conjecture states that no quintuple
exists. The famous theorem of Dujella ([3]) states that there are only finitely
many quintuples.

A variant of the problem is obtained if one replaces the squares by the
terms of a given binary recurrence. For details, see the articles [1, 4, 6, 7].
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The first cited paper investigates a general case and provides sufficient and
necessary conditions to have only finitely diophantine triples with terms of the
binary recurrent sequence. But the arguments in [4] give no hint how to find
the triples themselves. The other papers describe methods to determine all
Diophantine triples for Fibonacci, Lucas and balancing numbers, respectively.

In this paper, we follow the treatment of the above results, but there is an
essential difference, namely the binary recurrence we investigate here contains
a positive integer parameter A. Therefore, we must include new, additional
ideas in order to prove our theorems.

Assume that A is a given positive integer. Define the sequence {un} by

un = Aun−1 − un−2

with the initial conditions u0 = 0, u1 = 1. The Binet formula

un =
αn − βn

α− β

gives un explicitly, where α = (A +
√
A2 − 4)/2 and β = (A −

√
A2 − 4)/2.

Obviously, α + β = A and αβ = 1. Further the condition A ≥ 3 entails that
the zeros of the characteristic polynomial x2 − Ax + 1 are real, have α > 1
and β ∈ (0, 1) and moreover α increases and β decreases when A increases.
We define {vn}n≥0 as the associated sequence of {un}n≥0. The recurrence

relation for {un}n≥0 and {vn}n≥0 coincide, but the initial conditions in the
second case are v0 = 2 and v1 = A. It is well-known that

vn = αn + βn.

The main results of this work are the following.

Theorem 1.1. Suppose that A 6= 2 is a positive integer. Then there do
not exist integers 1 ≤ a < b < c such that

ab+ 1 = ux,

ac+ 1 = uy,(1.1)

bc+ 1 = uz

hold with the natural numbers 1 ≤ x < y < z.

Note that A = 2 gives that the sequence {un}n≥0 is the sequence of
all natural numbers and in this case, trivially, system (1.1) is satisfied by
arbitrary a, b and c. Clearly, it will also be true for (1.2).

Theorem 1.2. If A 6= 2 is a positive integer then the system

abc+ 1 = ux,

bcd+ 1 = uy,

cda+ 1 = uz,(1.2)

dab+ 1 = ut
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is not solvable in the integers 1 ≤ a < b < c < d and 1 ≤ x < t < z < y.

Observe, that although the last three equations of (1.2) would generalize
system (1.1) by one more unknown d, here we have the additional equation
abc+ 1 = ux.

Note that the case A = 1 provides the periodic sequence

un = 0, 1, 1, 0,−1,−1, . . . .

Hence, neither (1.1) nor (1.2) cannot be fulfilled with A = 1. Thus, in the
sequel, we assume A ≥ 3.

In the next part, we gather the auxiliary results which are needed in the
proofs of the theorems.

2. Preliminary Results

Lemma 2.1. Assume that n and m are arbitrary non-negative integers.
Then the following identities hold.

(1) gcd(un, um) = ugcd(n,m),
(2) gcd(un, vm) = 1 or 2 or vgcd(n,m), especially gcd(un, vn) = 1 or 2,
(3) (un − 1)(un + 1) = un−1un+1,
(4) u2n+1 − 1 = unvn+1,
(5) 2un+m = unvm + vnum.

Proof. The first two identities are known from [2]. Paper [9] contains
(3), the remaining identities can be proved by using Binet formula. For
instance,

unvn+1 =

(

αn − βn

α− β

)

(

αn+1 + βn+1
)

=
α2n+1 − β2n+1

α− β
− (αβ)

n
= u2n+1 − 1.

Lemma 2.2. Suppose that A ≥ 3. Then for all integers n ≥ 3, the
inequalities

(2.1) αn−1 < un < αn−0.83

and

(2.2) αn < vn < αn+0.004

hold.

Proof. Using the Binet formula of the sequence {un}n≥0, we obtain

(2.3) αn−1 <
αn − βn

α− β
= un =

αn

α− β

(

1−
(

β

α

)n)

< αn−logα(α−β).
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To justify the right hand side, we show that the function

f(α) = logα

(

α− 1

α

)

=
log(α2 − 1)

logα
− 1

is strictly increasing for α > 1. Indeed, f ′(α) > 0 is a consequence of the
arguments

(α2 − 1) log(α2 − 1) < (α2 − 1) logα2 < 2α2 logα.

Replacing α by the worst case (3 +
√
5)/2 (it corresponds to the smallest

possibility for A which is A = 3) in the exponent of the rightmost term of
(2.3), it leads to un < αn−0.83.

The lower bound in (2.2) for vn is trivial. To have an upper bound, we
evaluate

vn ≤ αn

(

1 +
1

α6

)

< 1.0032 · αn < αn+0.004.

Remark 2.3. Since the estimate of the right hand side of (2.1) does not
depend on the condition n ≥ 3, we conclude that it remains valid for any
n ∈ N. A similar observation is true for the left hand side of (2.2).

Lemma 2.4. Suppose A ≥ 3. Then logα(2(A
2 − 2)) < 3.1.

Proof. Let g(α) = log(α + 1/α)/ logα and h(α) = logα(2). It is easy
to see that the functions g(α) and h(α) are strictly decreasing when α > 1.

Thus, the largest possible value α = (3 +
√
5)/2 belonging to the case A = 3,

together with

logα(A
2 − 2) < 2 logα A = 2g(α)

shows the statement.

Lemma 2.5. Assume that n ≥ 3 and A ≥ 3 are integers. Then

gcd (un − 1, un−2 − 1) ≤ 2(A2 − 2).

Proof. Put g = gcd(un − 1, un−2 − 1). The recurrence relation of the
sequence {un}n≥0, together with Lemma 2.1 (1) and (3) yields

g = gcd (un − 1, un − un−2) ≤ gcd (un−1un+1, un − un−2)

≤ gcd (un−1, Aun−1 − 2un−2) gcd (un+1, 2un −Aun−1)

≤ 2 gcd
(

un+1, (2−A2)un +Aun+1

)

≤ 2(A2 − 2).

Lemma 2.6. Any integer n ≥ 2 satisfies

gcd (u2n−3 − 1, un − 1) < α5.7.
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Proof. Similarly to the previous lemma, put g = gcd (u2n−3 − 1, un − 1)
and apply (4) of Lemma 2.1. It implies

g = gcd (un−2vn−1, un−1un+1)

≤ gcd (un−2, un−1) gcd (un−2, un+1) gcd (vn−1, un−1) gcd (vn−1, un+1) .

By (5) of Lemma 2.1, we have 2un+1 = un−1v2+vn−1u2, which together with
(1) and (2) of Lemma 2.1 yields

g ≤ 2u3 gcd (vn−1, un−1v2 + u2vn−1) ≤ 4u3v2 < α5.7.

Lemma 2.7. Any integer n ≥ 2 satisfies

gcd (u2n−2 − 1, un − 1) < α6.4.

Proof. Put g = gcd (u2n−2 − 1, un − 1).

g = gcd (u2n−1u2n−3, un−1un+1)

≤ gcd (u2n−1, un−1) gcd(u2n−1, un+1)

× gcd (u2n−3, un−1) gcd(u2n−3, un+1)

≤ u2
1u3u5 < α6.4.

Lemma 2.8. All positive solutions of (1.1) satisfy z ≤ 2y − 1.

Proof. Considering the last two equations of system (1.1) we have

c | gcd (uy − 1, uz − 1) .

Moreover uz = bc+ 1 < c2, therefore
√
uz < c holds. By (2.1), we obtain

√
αz−1 <

√
uz < c < uy < αy−0.83,

which implies z < 2y − 0.66, so z ≤ 2y − 1.

Lemma 2.9. The solutions to system (1.2) satisfy the inequality y ≤ 2z−1.

Proof. Clearly, uy = bcd + 1 < (cd)2, so
√
uy < cd. From (1.2), we

deduce that

cd | gcd (uy − 1, uz − 1) .

By Lemma 2.2,
√
αy−1 <

√
uy < cd < uz < αz−0.83,

which leads to y ≤ 2z − 1.
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3. Proof of Theorem 2

Suppose that A ≥ 3. Further suppose 1 ≤ a < b < c and that 1 ≤ x <
y < z satisfy (1.1). Then, 1 · 2 + 1 ≤ ab + 1 = ux implies x ≥ 2. Now we
distinguish two cases.

Case 1. z ≤ 138.

Firstly, we find upper bound for the coefficient A of the sequence {un}n≥0.

Lemma 3.1. If z ≤ 138 and there exist a solution of (1.1) then A ≤ A0

with a suitable A0 ∈ N
+.

Proof. Clearly, the terms of the sequence {un} are monic polynomials
in A with deg(un(A)) = n − 1 (n ≥ 1), the first few terms are u0(A) =
0, u1(A) = 1 and

u2(A) = A, u3(A) = A2 − 1, u4(A) = A3 − 2A, . . . .

If 2 ≤ x < y < z ≤ 138 and 1 ≤ a < b < c satisfy (1.1) then

a =

√

(ux(A) − 1) (uy(A)− 1)

uz(A) − 1

must be necessarily integer for some A. Since uz(A) is monic, then by
polynomial division, there uniquely exist polynomials q(A) ∈ Z[A] and
r(A) ∈ Z[A] such that

(ux (A)− 1) (uy (A)− 1) = q (A) · (uz (A)− 1) + r (A) ,

where deg (r (A)) < deg (uz (A)).
Checking the eligible possibilities for x, y and z by computer, r(A) is

never the constant zero polynomial. Hence,

(3.1)
(ux(A) − 1) (uy(A)− 1)

uz(A)− 1
= q (A) +

r (A)

uz (A)− 1

follows. Again a computer verification shows that there is no positive integer
A ≥ 3 satisfying the equation r(A) = 0 with the condition z ≤ 138. Thus the
fraction r(A)/(uz(A)− 1) never disappears on the right hand side of (3.1).

If for some A the left hand side of the equation (3.1) is integer, then by
q (A) ∈ N, we deduce that

r (A)

uz (A)− 1

is so. But deg (r (A)) < deg (uz (A)), so A cannot be large since

lim
A→∞

r (A)

uz (A)− 1
= 0.

Consequently, |r (A) | ≥ uz (A)−1 must hold, which proves A ≤ A0 with some
positive integer A0. To obtain the exact upper bound, we run a computer
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search with the conditions 2 ≤ x < y < z ≤ 138, and we found that A0 = 2.

Then, by Lemma 3.1 we obtain immediately that there is no solution to
the system (1.1) in the first case.

Case 2. z > 138.

Put P = gcd (uz − 1, uy − 1). By (1) and (3) of Lemma 2.1, we have

P = gcd (uz−1uz+1, uy−1uy+1)

≤
∏

i,j∈{±1}

gcd (uz−i, uy−j) =
∏

i,j∈{±1}

ugcd(z−i,y−j).(3.2)

Let us say that gcd (z − i, y − j) = z−i
tij

for some positive integer tij .

Suppose that tij ≥ 8 holds for all pairs (i, j) ∈ {±1}2. Then Lemma 2.2
implies that

(3.3) α
z−1

2 <
√
uz < c ≤ P ≤ u2

z−1

8

u2
z+1

8

< α4( z+1

8
−0.83).

If we compare the exponents of α in (3.3), we arrive at a contradiction.
In what follows, we assume that tij ≤ 7 holds for some pair. Let k denote

this tij . Further suppose that

z − i

k
=

y − j

ℓ

holds for a suitable positive integer ℓ coprime to k.
Suppose for the moment that ℓ > k. Then z− i < y− j implies z = y+1

via y < z. Thus,

P = gcd (uy − 1, uy+1 − 1) = gcd (uy+1uy−1, uyuy+2)

= gcd (uy−1, uy+2) ≤ u3 < α2.2.

Hence, by the first part of (3.3), we have

α
z−1

2 < α2.2,

which leads to the contradiction z < 5.4.
Assume now that ℓ = k. Necessarily we have k = ℓ = 1. Since z−i = y−j,

we obtain z = y + 2. By Lemma 2.5,

α
z−1

2 <
√
uz < c ≤ P = gcd (uz − 1, uz−2 − 1) < 2(A2 − 2).

Using Lemma 2.4, we obtain a contradiction again from

z < 2 logα
(

2(A2 − 2)
)

+ 1 < 7.2.

In the sequel, we assume ℓ < k. First we analyze the case when 2 ≤ k/ℓ.
Here,

z =
k

ℓ
(y − j) + i ≥ 2 (y − 1)− 1 = 2y − 3,
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which, together with Lemma 2.8 implies the following three possibilities.

• When z = 2y − 1 holds, then we have

αy−1.17 =
α2y−2

αy−0.83
<

u2y−1

uy

=
bc+ 1

ac+ 1
<

b

a
.

Subsequently,

a2αy−1.17 < ab = ux − 1 < ux < αx−0.83

holds according to Remark 2.3. Thus,

a2 < αx−y+0.34 ≤ α−0.66

again a contradiction.
• Assume that z = 2y − 2. Then, by Lemma 2.7, it follows that

α
z−1

2 < P = gcd (uy − 1, u2y−2 − 1) < α6.4,

which is not possible since z ≥ 139.
• If z = 2y − 3 then, according to Lemma 2.6,

α
z−1

2 < P = gcd (uy − 1, u2y−3 − 1) < α5.7

holds, which is obviously impossible.

Finally assume that k/ℓ < 2. Note that this condition implies k ≥ 3.
Taking any pair (i0, j0) 6= (i, j), we have

z − i0 =
k

ℓ
(y − j) + i− i0.

Now the main goal is to calculate the best upper bound for P0 = gcd(z−i0,
y − j0). Starting with

P0 = gcd

(

k

ℓ
(y − j) + i− i0, y − j0

)

≤ gcd (k (y − j) + ℓ(i− i0), k(y − j0)) = |k(j0 − j) + ℓ(i− i0)|,
we need to consider the last expression. The three cases

(3.4) j 6= j0, i 6= i0, j 6= j0, i = i0, j = j0, i 6= i0,

give 2(k + ℓ), 2k, 2ℓ, respectively. Then, using the inequality (3.2), we get

α
z−1

2 ≤ P = gcd (uy − 1, uz − 1) <
∏

i,j∈{±1}

ugcd(z−i,y−j)

≤ α
z+1

k
+2(k+ℓ)+2k+2ℓ−4·0.83.

Going through the eligible pairs

(3.5) (k, ℓ) = (3, 2), (4, 3), (5, 3), (5, 4), (6, 5), (7, 4), (7, 5), (7, 6),

the previous argument provides the upper bounds

z < 105.1, 101.8, 98, 111.3, 124.1, 115.8, 127, 138.2,
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respectively. The assertion of the second part of the proof contradicts any of
these upper bounds. Thus, the proof of Theorem 2 is complete.

4. The proof of Theorem 3

Apart from the second equation, system (1.2) turns to a triple if we take
a = 1. Therefore, we may suppose that 2 ≤ a < b < c < d and with
1 ≤ x < z < v < y they satisfy system (1.2). Since 2×3×4+1 ≤ abc+1 = ux,
then 2 ≤ x < t < z < y hold. We again split the proof into two parts.

Case 3. y ≤ 138.

Repeating the treatment of Lemma 3.1 we prove the impossibility of the
existence of quadruples satisfies (1.2) with y ≤ 138.

Lemma 4.1. System (1.2) has no solution with A ≥ 3 and y ≤ 138.

Proof. We follow the approach of the proof of Lemma 3.1. Considering
the integer

a = 3

√

(ux(A)− 1)(ut(A)− 1)(uz(A)− 1)

(uy(A)− 1)2
,

and the polynomial division

(ux(A)− 1)(ut(A)− 1)(uz(A) − 1) = q(A)(uy(A)− 1)2 + r(A),

we find A ≤ 2 under the assumption y ≤ 138.

Case 4. y > 138.

The results of Lemma 2.8 and 2.9 coincide if we change the roles of y and
z. Since only the two largest variables (y and z) are used in the second part
of the proof of Theorem 1.1, we can make a step by step copy of that to show
the remaining part of Theorem 1.2. The only difference is to consider here cd
instead of c:

√
uy < cd ≤ gcd (uy − 1, uz − 1) ≤

∏

i,j∈{±1}

ugcd(y−i,z−j).

Therefore the proof is complete.
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