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Abstract. In this paper we prove the following result. Let n ≥ 1
be some fixed integer and let R be a prime ring with 2n < char(R) 6= 2.
Suppose there exist additive mappings S, T : R → R satisfying the relations

S(x2n) = S(x)x2n−1 + xT (x)x2n−2 + x2S(x)x2n−3 + · · ·+ x2n−1T (x),

T (x2n) = T (x)x2n−1 + xS(x)x2n−2 + x2T (x)x2n−3 + · · ·+ x2n−1S(x)

for all x ∈ R. In this case S and T are of the form 2S(x) = D(x) + ζ(x),
2T (x) = D(x) − ζ(x) for all x ∈ R, where D : R → R is a derivation
and ζ is an additive mapping, which maps R into its extended centroid.
Besides, ζ(x2n) = 0 for all x ∈ R. Functional equations related to bicircular
projections are also investigated.

This research is a continuation of a recent work of M. Fošner and Vukman
([14]). Throughout the paper, R will represent an associative ring with center
Z(R). Given an integer n > 1, a ring R is said to be n-torsion free if for x ∈ R,
nx = 0 implies x = 0. As usual the commutator xy − yx will be denoted by
[x, y]. An additive mapping x 7→ x∗ on a ring R is called an involution if
(xy)∗ = y∗x∗ and x∗∗ = x hold for all pairs x, y ∈ R. A ring equipped with
an involution is called a ring with involution or ∗-ring. Recall that a ring R

is prime if for a, b ∈ R, aRb = (0) implies that either a = 0 or b = 0 and
is semiprime in case aRa = (0) implies a = 0. We denote by char(R) the
characteristic of a prime ring R. An additive mapping D : R → R, where R is
an arbitrary ring, is called a derivation if D(xy) = D(x)y+xD(y) holds for all
pairs x, y ∈ R and is called a Jordan derivation in caseD(x2) = D(x)x+xD(x)
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is fulfilled for all x ∈ R. A derivation D is inner in case there exists a ∈ R

such that D(x) = [a, x] holds for all x ∈ R.
Every derivation is a Jordan derivation. The converse is in general not

true. A classical result of Herstein ([15]) asserts that any Jordan derivation on
a 2-torsion free prime ring is a derivation. Cusack ([8]) generalized Herstein
theorem to 2-torsion free semiprime rings.

We denote by Qmr, QS and C the maximal right ring of quotients,
symmetric Martidale ring of quotients and extended centroid of a semiprime
ring R, respectively. For the explanation of Qmr, QS and C we refer the
reader to [1]. Given some X ⊂ R we denote C(X) = {r ∈ R | [r,X ] = 0}.

Let X be a complex Banach space and let L(X) be the algebra of all
bounded linear operators on X . A projection P ∈ L(X) is bicircular in case
all mappings of the form eiαP + eiβ(I − P ), where I denotes the identity
operator, are isometric for all pairs of real numbers α, β.

Beidar, Brešar, Chebotar and Martindale ([3]) have proved the following
result, which fairly generalizes Herstein theorem.

Theorem 1. Let n > 1 be some fixed integer and let R be a prime ring
with char(R) 6= 2. Suppose there exists an additive mapping D : R → R

satisfying the relation

D(xn) =

n
∑

i=1

xi−1D(x)xn−i

for all x ∈ R. In this case D is a derivation.

Recently, M. Fošner and Vukman ([14]) proved the following result.

Theorem 2. Let n ≥ 1 be some fixed integer and let R be a prime ring
with 2n ≤ char(R) 6= 2. Suppose there exists an additive mapping T : R → R

satisfying the relation

(1) T (x2n+1) =

2n+1
∑

i=1

(−1)i+1xi−1T (x)x2n+1−i

for all x ∈ R. In this case T is of the form T (x) = qx+ xq for all x ∈ R and
some fixed q ∈ QS.

It seems natural to ask what can be proved in case we have an even
number in the relation (1). More precisely, we are talking about the solution
of the functional equation

T (x2n) =

2n
∑

i=1

(−1)i+1xi−1T (x)x2n−i.

It is our aim in this paper to prove the following result.
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Theorem 3. Let n ≥ 1 be some fixed integer and let R be a prime ring
with 2n < char(R) 6= 2. Suppose there exists an additive mapping T : R → R

satisfying

(2) T (x2n) =

2n
∑

i=1

(−1)i−1xi−1T (x)x2n−i

for all x ∈ R. In this case T maps R into C and T (x2n) = 0 for all x ∈ R.

In the proof of Theorem 3 we use as the main tool the theory of functional
identities (Beidar - Brešar - Chebotar theory). The theory of functional
identities considers set-theoretic maps on rings that satisfy some identical
relations. When treating such relations, one usually concludes that the form
of the maps involved can be described, unless the ring is very special. For the
full treatment on this theory, we refer the reader to [7].

For the proof of Theorem 3 we need Theorem 4, which might be of
independent interest. Let R be an algebra over a commutative ring ξ and
let

p(x1, x2, . . . , x2n) =
∑

π∈S2n

xπ(1)xπ(2) · · ·xπ(2n)

be a fixed multilinear polynomial in noncommuting indeterminates x1, x2, . . . ,

x2n. Further, let L be a subset of R closed under p, which means p(x̄2n) ∈ L
for all x1, x2, . . . , x2n ∈ L, where x̄2n = (x1, x2, . . . , x2n). We shall consider a
mapping T : L → R satisfying

(3) T (p(x̄2n)) =
∑

π∈S2n

2n
∑

i=1

(−1)i−1xπ(1) · · ·xπ(i−1)T (xπ(i))xπ(i+1) · · ·xπ(2n)

for all x1, x2, . . . , x2n ∈ L. Let us mention that the idea of considering the
expression [p(x̄2n), p(ȳ2n)] in its proof is taken from [2].

Theorem 4. Let L be a 4n-free Lie subring of R closed under p. If
T : L → R is an additive mapping satisfying (3), then T maps L into C and
T (x2n) = 0 for all x ∈ L.

Proof. Let us write k = 2n for brevity. Note that for any a ∈ R and
x̄k ∈ Lk, we have

[p(x̄k), a] =

k
∑

i=1

p(x1, x2, . . . , xi−1, [xi, a], xi+1, . . . , xk).

Thus

T [p(x̄k), a] =

k
∑

i=1

T (p(x1, x2, . . . xi−1, [xi, a], xi+1, . . . , xk)).
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Let f, g : N → N be mappings with properties f(1) = g(k) = 0 and f(i) = 1
for i = 2, 3, . . . , k and g(i) = 1 for i = 1, 2, . . . , k − 1. Therefore

T [p(x̄k), a]

=
∑

π∈Sk

k
∑

i=1

(−1)i−1

(

f(i)[xπ(1) . . . xπ(i−1), a]T (xπ(i))xπ(i+1) . . . xπ(k)

+ xπ(1) . . . xπ(i−1)T [xπ(i), a]xπ(i+1) . . . xπ(k)

+ g(i)xπ(1) . . . xπ(i−1)T (xπ(i))[xπ(i+1) . . . xπ(k), a]

)

.

In particular, we have

(4)

T [p(x̄k), p(ȳk)]

=
∑

π∈Sk

k
∑

i=1

(−1)i−1

(

f(i)[xπ(1) . . . xπ(i−1), p(ȳk)]T (xπ(i))xπ(i+1) . . . xπ(k)

+ xπ(1) . . . xπ(i−1)T [xπ(i), p(ȳk)]xπ(i+1) . . . xπ(k)

+ g(i)xπ(1) . . . xπ(i−1)T (xπ(i))[xπ(i+1) . . . xπ(k), p(ȳk)]

)

.

For i = 1, 2, . . . , k let us denote ϕ(xπ(i)) = T [xπ(i), p(ȳk)]. We therefore have

ϕ(xπ(i)) = T [xπ(i), p(ȳk)] = −T [p(ȳk), xπ(i)]

=
∑

σ∈Sk

k
∑

j=1

(−1)j−1

(

f(j)[xπ(i), yσ(1) . . . yσ(j−1)]T (yσ(j))yσ(j+1) . . . yσ(k)

+ yσ(1) . . . yσ(j−1)T [xπ(i), yσ(j)]yσ(j+1) . . . yσ(k)

+ g(j)yσ(1) . . . yσ(j−1)T (yσ(j))[xπ(i), yσ(j+1) . . . yσ(k)]

)

.

Therefore (4) can be written as

(5)

T [p(x̄k), p(ȳk)]

=
∑

π∈Sk

∑

σ∈Sk

k
∑

i=1

(−1)i−1f(i)[xπ(1) . . . xπ(i−1), yσ(1) . . . yσ(k)]·

· T (xπ(i))xπ(i+1) . . . xπ(k)

+
∑

π∈Sk

∑

σ∈Sk

k
∑

i=1

(−1)i−1xπ(1) . . . xπ(i−1)ϕ(xπ(i))xπ(i+1) . . . xπ(k)

+
∑

π∈Sk

∑

σ∈Sk

k
∑

i=1

(−1)i−1g(i)xπ(1) . . . xπ(i−1)T (xπ(i))·

· [xπ(i+1) . . . xπ(k), yσ(1) . . . yσ(k)].
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If we replace the roles of denotations π and σ, we obtain from (5) that

(6)

T [p(x̄k), p(ȳk)]

=
∑

π∈Sk

∑

σ∈Sk

k
∑

i=1

(−1)i−1f(i)[xπ(1) . . . xπ(k), yσ(1) . . . yσ(i−1)]·

· T (yσ(i))yσ(i+1) . . . yσ(k)

+
∑

π∈Sk

∑

σ∈Sk

k
∑

i=1

(−1)i−1yσ(1) . . . yσ(i−1)ϕ̄(yσ(i))yσ(i+1) . . . yσ(k)

+
∑

π∈Sk

∑

σ∈Sk

k
∑

i=1

(−1)i−1g(i)yσ(1) . . . yσ(i−1)T (yσ(i))·

· [xπ(1) . . . xπ(k), yσ(i+1) . . . yσ(k)],

where ϕ̄(yσ(i)) = T [p(x̄k), yσ(i)]. One can easily check that

ϕ̄(xπ(i)) = −ϕ(xπ(i))

for all i = 1, 2, . . . , k. Comparing (5) and (6) we obtain the identity

0 =

=
∑

π∈Sk

∑

σ∈Sk

k
∑

i=1

(−1)i−1f(i)[xπ(1) . . . xπ(i−1), yσ(1) . . . yσ(k)]·

· T (xπ(i))xπ(i+1) . . . xπ(k)

+
∑

π∈Sk

∑

σ∈Sk

k
∑

i=1

(−1)i−1xπ(1) . . . xπ(i−1)ϕ(xπ(i))xπ(i+1) . . . xπ(k)

+
∑

π∈Sk

∑

σ∈Sk

k
∑

i=1

(−1)i−1g(i)xπ(1) . . . xπ(i−1)T (xπ(i))·

· [xπ(i+1) . . . xπ(k), yσ(1) . . . yσ(k)]

−
∑

π∈Sk

∑

σ∈Sk

k
∑

i=1

(−1)i−1f(i)[xπ(1) . . . xπ(k), yσ(1) . . . yσ(i−1)]·

· T (yσ(i))yσ(i+1) . . . yσ(k)

+
∑

π∈Sk

∑

σ∈Sk

k
∑

i=1

(−1)i−1yσ(1) . . . yσ(i−1)ϕ(yσ(i))yσ(i+1) . . . yσ(k)

−
∑

π∈Sk

∑

σ∈Sk

k
∑

i=1

(−1)i−1g(i)yσ(1) . . . yσ(i−1)T (yσ(i))·

· [xπ(1) . . . xπ(k), yσ(i+1) . . . yσ(k)]
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for all x1, . . . , xk, y1, . . . , yk ∈ L. The last relation can be written as

(7)

0 =
∑

π∈Sk

∑

σ∈Sk

(

T (yσ(1))yσ(2) . . . yσ(k)xπ(1) . . . xπ(k−1)

+ ϕ(xπ(1))xπ(2) . . . xπ(k−1)

− T (xπ(1))yσ(1) . . . yσ(k)xπ(2) . . . xπ(k−1)

+

k−1
∑

i=2

(−1)i−1xπ(1) . . . xπ(i−1)ϕ(xπ(i))xπ(i+1) . . . xπ(k−1)

+

k−1
∑

i=2

(−1)i−1[xπ(1) . . . xπ(i−1), yσ(1) . . . yσ(k)]·

· T (xπ(i))xπ(i+1) . . . xπ(k−1)

)

xπ(k)

+
∑

π∈Sk

∑

σ∈Sk

(

T (xπ(1))xπ(2) . . . xπ(k)yσ(1) . . . yσ(k−1)

+ ϕ(yσ(1))yσ(2) . . . yσ(k−1)

− T (yσ(1))xπ(1) . . . xπ(k)yσ(2) . . . yσ(k−1)

+

k−1
∑

i=2

(−1)i−1yσ(1) . . . yσ(i−1)ϕ(yσ(i))yσ(i+1) . . . yσ(k−1)

+

k−1
∑

i=2

(−1)i−1[yσ(1) . . . yσ(i−1), xπ(1) . . . xπ(k)]·

· T (yσ(i))yσ(i+1) . . . yσ(k−1)

)

yσ(k)

+
∑

π∈Sk

∑

σ∈Sk

xπ(1)

(

− xπ(2) . . . xπ(k−1)yσ(1) . . . yσ(k)T (xπ(k))

+ xπ(2) . . . xπ(k)yσ(1) . . . yσ(k−1)T (yσ(k))

− xπ(2) . . . xπ(k−1)ϕ(xπ(k))

+

k−1
∑

i=2

(−1)i−1xπ(2) . . . xπ(i−1)T (xπ(i))·

· [xπ(i+1) . . . xπ(k), yσ(1) . . . yσ(k)]
)

+
∑

π∈Sk

∑

σ∈Sk

yσ(1)

(

− yσ(2) . . . yσ(k−1)xπ(1) . . . xπ(k)T (yσ(k))

+ yσ(2) . . . yσ(k)xπ(1) . . . xπ(k−1)T (xπ(k))

− yσ(2) . . . yσ(k−1)ϕ(yσ(k))

+

k−1
∑

i=2

(−1)i−1yσ(2) . . . yσ(i−1)T (yσ(i))·

· [yσ(i+1) . . . yσ(k), xπ(1) . . . xπ(k)]
)
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for all x1, . . . , xk, y1, . . . , yk ∈ L. Let us define mappings E,F : L2k−1 → R

by the rule

E(u1, u2, u3, . . . , u2k−1) = T (uk)uk+1 . . . u2k−1u1 . . . uk−1

+ ϕ(u1)u2 . . . uk−1 − T (u1)uk . . . u2k−1u2u3 . . . uk−1

+

k−1
∑

i=2

(−1)i−1u1 . . . ui−1ϕ(ui)ui+1 . . . uk−1

+

k−1
∑

i=2

(−1)i−1[u1 . . . ui−1, uk . . . u2k−1]T (ui)ui+1 . . . uk−1

and

F (u1, u2, u3, . . . , u2k−1) = −u1u2 . . . uk−2ukuk+1 . . . u2k−1T (uk−1)

+ u1u2 . . . uk−1ukuk+1 . . . u2k−2T (u2k−1)− u1u2 . . . uk−2ϕ(uk−1)

+

k−2
∑

i=1

(−1)i−1u1u2 . . . ui−1T (ui)[ui+1 . . . uk−1, uk . . . u2k−1]

for all ū2k−1 ∈ L2k−1. Accordingly, (7) can be rewritten as

0 =
∑

π∈Sk

∑

σ∈Sk

E
(

xπ(1), xπ(2), . . . , xπ(k−1), yσ(1), yσ(2), . . . , yσ(k)
)

xπ(k)

+
∑

π∈Sk

∑

σ∈Sk

E
(

yσ(1), yσ(2), . . . , yσ(k−1), xπ(1), xπ(2), . . . , xπ(k)

)

yσ(k)

+
∑

π∈Sk

∑

σ∈Sk

xπ(1)F
(

xπ(2), xπ(3), . . . , xπ(k), yσ(1), yσ(2), . . . , yσ(k)
)

+
∑

π∈Sk

∑

σ∈Sk

yσ(1)F
(

yσ(2), yσ(3), . . . , yσ(k), xπ(1), xπ(2), . . . , xπ(k)

)

and hence

0 =

k
∑

i=1

(

∑

π∈Sk

π(k)=i

∑

σ∈Sk

E
(

xπ(1), xπ(2), . . . , xπ(k−1), yσ(1), yσ(2), . . . , yσ(k)
)

)

xi

+

2k
∑

i=k+1

(

∑

π∈Sk

∑

σ∈Sk

σ(k)=i

E
(

yσ(1), yσ(2), . . . , yσ(k−1), xπ(1), xπ(2), . . . , xπ(k)

)

)

yi

+

k
∑

j=1

xj

(

∑

π∈Sk

π(1)=j

∑

σ∈Sk

F
(

xπ(2), xπ(3), . . . , xπ(k), yσ(1), yσ(2), . . . , yσ(k)
)

)
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+
2k
∑

j=k+1

yj

(

∑

π∈Sk

∑

σ∈Sk

σ(1)=j

F
(

yσ(2), yσ(3), . . . , yσ(k), xπ(1), xπ(2), . . . , xπ(k)

)

)

.

Let s : Z → Z be a mapping defined by s(i) = i − k. For each σ ∈ Sk

the mapping s−1σs : {k + 1, . . . , 2k} → {k + 1, . . . , 2k} will be denoted by
σ̄. Writting xk+i instead of yi, i = 1, 2, . . . , k in the above identity, we can
express this relation as

2k
∑

i=1

Ei(x̄
i
2k)xi +

2k
∑

j=1

xjFj(x̄
j
2k) = 0.

According to the theory of functional identities (see [7, Chapter 3.2]) there
exist mappings pk,i : L

k−2 → R, i = 1, . . . , k − 1 and λk : Lk−1 → C(L) such
that

∑

π∈Sk

π(1)=1

∑

σ∈Sk

F
(

xπ(2), xπ(3), . . . xπ(k), xσ̄(k+1), xσ̄(k+2), . . . , xσ̄(2k)

)

=

k−1
∑

i=1

pk,i(x̄
i
k−1)xi + λk(x̄k−1)

for all x̄k−1 ∈ Lk−1. Recalling the definition of a mapping F leads to

∑

π∈Sk

π(1)=1

∑

σ∈Sk

xπ(2)

(

− xπ(3) . . . xπ(k−1)yσ(1) . . . yσ(k)T (xπ(k))

+ xπ(3) . . . xπ(k)yσ(1) . . . yσ(k−1)T (yσ(k))

− xπ(3) . . . xπ(k−1)ϕ(xπ(k))
)

+
∑

π∈Sk

π(1)=1

∑

σ∈Sk

(

k−1
∑

i=2

(−1)i−1xπ(2) . . . xπ(i−1)·

· T (xπ(i))xπ(i+1) . . . xπ(k)yσ(1) . . . yσ(k−1)

)

yσ(k)

−
∑

π∈Sk

π(1)=1

∑

σ∈Sk

(

k−1
∑

i=2

(−1)i−1xπ(2) . . . xπ(i−1)·

· T (xπ(i))yσ(1) . . . yσ(k)xπ(i+1) . . . xπ(k−1)

)

xπ(k)

−

k−1
∑

i=1

pk,i(x̄
i
k−1)xi ∈ C(L)
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for all x̄k−1 ∈ Lk−1. Applying the theory of functional identities it follows
that

∑

π∈Sk

π(1)=1
π(2)=2

∑

σ∈Sk

−xπ(3) . . . xπ(k−1)yσ(1) . . . yσ(k)T (xπ(k))

+ xπ(3) . . . xπ(k)yσ(1) . . . yσ(k−1)T (yσ(k))

− xπ(3) . . . xπ(k−1)ϕ(xπ(k))

−

k−2
∑

i=1

pk,i(x̄
i
k−2)xi ∈ C(L)

for all x̄k−1 ∈ Lk−1. Recalling the definition of a mapping ϕ(xπ(k)) leads to

∑

π∈Sk

π(1)=1
π(2)=2

∑

σ∈Sk

xπ(3)

(

− xπ(4) . . . xπ(k−1)yσ(1) . . . yσ(k)T (xπ(k))

+ xπ(4) . . . xπ(k)yσ(1) . . . yσ(k−1)T (yσ(k))

+ xπ(4) . . . xπ(k)yσ(1) . . . yσ(k−1)T (yσ(k))

− xπ(4) . . . xπ(k−1)yσ(1) . . . yσ(k−1)xπ(k)T (yσ(k))

+ xπ(4) . . . xπ(k−1)yσ(1) . . . yσ(k−1)T [xπ(k), yσ(k)]
)

+
∑

π∈Sk

π(1)=1
π(2)=2

∑

σ∈Sk

k−1
∑

j=1

(

xπ(3) . . . xπ(k−1)yσ(1) . . . yσ(j−1)·

· T (yσ(j))yσ(j+1) . . . yσ(k)

)

xπ(k)

+
∑

π∈Sk

π(1)=1
π(2)=2

∑

σ∈Sk

k−1
∑

j=1

(

− f(j)xπ(3) . . . xπ(k−1)[xπ(i), yσ(1) . . . yσ(j−1)]·

· T (yσ(j))yσ(j+1) . . . yσ(k−1)

− xπ(3) . . . xπ(k−1)yσ(1) . . . yσ(j−1)T [xπ(k), yσ(j)]yσ(j+1) . . . yσ(k−1)

− xπ(3) . . . xπ(k−1)yσ(1) . . . yσ(j−1)T (yσ(j))xπ(k)yσ(j+1) . . . yσ(k−1)

)

yσ(k)

−

k−2
∑

i=1

pk,i(x̄
i
k−2)xi ∈ C(L).
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Applying the theory of functional identities gives
∑

π∈Sk

π(1)=1
π(2)=2
π(3)=3

∑

σ∈Sk

− xπ(4) . . . xπ(k−1)yσ(1) . . . yσ(k)T (xπ(k))

+ xπ(4) . . . xπ(k)yσ(1) . . . yσ(k−1)T (yσ(k))

+ xπ(4) . . . xπ(k)yσ(1) . . . yσ(k−1)T (yσ(k))

− xπ(4) . . . xπ(k−1)yσ(1) . . . yσ(k−1)xπ(k)T (yσ(k))

+ xπ(4) . . . xπ(k−1)yσ(1) . . . yσ(k−1)T [xπ(k), yσ(k)]

−
k−3
∑

i=1

pk,i(x̄
i
k−3)xi ∈ C(L).

After finite number of steps we arrive at

(8) 2T (x) = px+ µ(x)

for all x ∈ L, where p ∈ L and µ : L → C(L). Putting xk for x in the above
relation leads to

(9) 2T (xk) = pxk + µ(xk).

Combining the above relation and (2) we obtain

0 = pxk + µ(xk)−

k
∑

i=1

(−1)i−1xi−1(px+ µ(x))xk−i

and few calculations lead to

0 = µ(xk)− µ(x)xk−1 −

k
∑

i=2

(−1)i−1xi−1(px+ µ(x))xk−i.

Since µ(x) ∈ C(L) for all x ∈ L, the above relation reduces to

(10) 0 = µ(xk)−
k
∑

i=2

(−1)i−1xi−1pxk+1−i.

After a complete linearization of the last relation we obtain

0 = µ(xπ(1) · · ·xπ(k)) +
∑

π∈Sk

xπ(1)

(

pxπ(2) . . . xπ(k) − xπ(2)pxπ(3) . . . xπ(k)

+ · · · − xπ(2) · · ·xπ(k−2)pxπ(k−1)xπ(k) + xπ(2) · · ·xπ(k−1)pxπ(k)

)

.

The theory of functional identities implies

0 =
∑

π∈Sk

π(1)=1

(

pxπ(2) . . . xπ(k−1)

)

xπ(k)
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+
∑

π∈Sk

π(1)=1

xπ(2)

(

− pxπ(3) . . . xπ(k) + · · · − xπ(3) . . . xπ(k−2)pxπ(k−1)xπ(k)

+ xπ(3) . . . xπ(k−1)pxπ(k)

)

.

After a finite number of steps we obtain

(11) px = xq + λ(x)

for all x ∈ L, where q ∈ L and λ : L → C(L). Right multiplication of the
relation (11) by y ∈ L gives pxy = xqy + λ(x)y. Putting xy for x in the
relation (11) leads to pxy = xyq + λ(xy). Comparing the last two relations
we obtain

0 = x[q, y] + λ(x)y − λ(xy),

which implies [q, y] = 0 for all y ∈ L. Note that (11) can now be rewritten
as (p − q)x = λ(x). From the last relation we obtain p = q and λ(x) = 0.
Considering that p ∈ C(L) in the relation (10) gives

0 = pxk + µ(xk).

Considering the above relation in (9) gives T (xk) = 0 for all x ∈ L. After a
complete linearization of the above relation and using the theory of functional
identities, we obtain p = 0. The relation (8) now implies that 2T (x) = µ(x),
which means that T (x) ∈ C(L). Thereby the proof is complete.

We are now in the position to prove Theorem 3.

Proof of Theorem 3. The complete linearization of (2) gives (3).
Assume first that R is not a PI ring. According to Theorem 4 we have
T (R) ∈ C. Now suppose that R is a PI ring. It is well-known that in this case
R has a nonzero center (see [21]). Let c be a nonzero central element and let
us write k for 2n for brevity. Putting x1 = x2 = . . . = xk = c in (3) leads to

T (ck) = 0.

Pick any x ∈ R and set x1 = cx2 and x2 = x3 = . . . = xk = c in (3). Hence
we obtain

k!T (ckx2) = (k − 1)!T (cx2)ck−1 + (k − 1)(k − 1)!T (c)x2ck−1

− (k − 1)!T (cx2)ck−1 − (k − 1)!x2T (c)ck−1 − (k − 2)(k − 1)!T (c)x2ck−1

+ (k − 1)!T (cx2)ck−1 + 2(k − 1)!x2T (c)ck−1 + (k − 3)(k − 1)!T (c)x2ck−1

− · · ·

+ (k − 1)!T (cx2)ck−1 + (k − 2)(k − 1)!x2T (c)ck−1 + (k − 1)!T (c)x2ck−1

− (k − 1)!T (cx2)ck−1 − (k − 1)(k − 1)!x2T (c)ck−1.
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The above relation reduces to

(12) 2k!T (ckx2) = k(k − 1)!ck−1

(

T (c)x2 − x2T (c)

)

.

Putting x1 = x2 = cx and x3 = x4 = . . . = xk = c in (3) gives, after some
calculations,

2k!T (ckx2) = k(k − 2)!ck−1
(

2T (cx)x− 2xT (cx)

+ (k − 2)
(

T (c)x2 − x2T (c)
)

)

.

Comparing the last two relations leads to

(13) 2T (cx)x− 2xT (cx) = T (c)x2 − x2T (c).

Putting x1 = x and x2 = ck−1 in the complete linearization of the above
relation we obtain

T (ck)x− xT (ck) = T (c)xck−1 − xT (c)ck−1.

Since T (ck) = 0, it follows from the above relation that

(14) T (c)x = xT (c).

Considering the above relation in (13) gives

(15) T (cx)x = xT (cx).

Putting x1 = x, x2 = c2x and x3 = x4 = . . . = xk = c in (3) and also
considering (14) and (15) gives

2k!T (ckx2) = k(k − 2)!ck−2
(

T (x)xc2 − xT (x)c2
)

.

Since T (ckx2) = 0 by relations (12) and (14), the above relation reduces to

(16) [T (x), x] = 0

for all x ∈ R. Considering the above relation in (2) leads to

(17) T (xk) = 0

for all x ∈ R. The relation (16) implies the existence of such λ ∈ R and
µ : R → C that

(18) T (x) = λx + µ(x)

for all x ∈ R. By (17) we also have

0 = λxk + µ(xk)

for all x ∈ R. Therefore λxk ∈ C, whence it follows that

(19) [λxk, y] = 0

for all x, y ∈ R. Putting x1 = x2 = . . . = xk = c in the complete linearization
of the above relation gives [λ, y] = 0 for all y ∈ R, which implies that λ ∈
Z(R). Now putting x1 = x and x2 = x3 = . . . = xk = c in the complete
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linearization of the relation (19) leads to [λx, y] = 0. Left multiplication of
the last relation by z ∈ R and considering λ ∈ Z(R) gives λz[x, y] = 0 for all
x, y, z ∈ R. Since R is prime, it follows that λ = 0 or [x, y] = 0 for all x, y ∈ R.
If λ = 0 the relation (18) gives T (x) = µ(x) and therefore T (x) ∈ C for all
x ∈ R. In case [x, y] = 0 it is obvious that [T (x), y] = 0 for all x, y ∈ R, which
means that T (x) ∈ Z(R). The proof of the theorem is therefore complete.

We proceed with the following result.

Theorem 5. Let n ≥ 1 be some fixed integer and let R be a prime ring
with 2n < char(R) 6= 2. Suppose there exist additive mappings S, T : R → R

satisfying the relations

(20)
S(x2n) = S(x)x2n−1 + xT (x)x2n−2 + x2S(x)x2n−3 + · · ·+ x2n−1T (x),

T (x2n) = T (x)x2n−1 + xS(x)x2n−2 + x2T (x)x2n−3 + · · ·+ x2n−1S(x).

In this case S and T are of the form

2S(x) = D(x) + ζ(x),

2T (x) = D(x)− ζ(x)

for all x ∈ R, where D : R → R is a derivation and ζ : R → C is an additive
mapping such that ζ(x2n) = 0 for all x ∈ R.

Proof. Combining relations (20) we obtain

D(x2n) = D(x)x2n−1 + xD(x)x2n−2 + x2D(x)x2n−3 + · · ·+ x2n−1D(x),

where D stands for S + T . According to the above relation and Theorem 1,
D is a derivation. Subtracting relations (20) we obtain

(21) ζ(x2n) = ζ(x)x2n−1 − xζ(x)x2n−2 + x2ζ(x)x2n−3 + · · · − x2n−1ζ(x),

where ζ denotes S − T . From (21) and Theorem 3 it follows that ζ maps R

into C and ζ(x2n) = 0 for all x ∈ R. We therefore have S + T = D and
S− T = ζ, whence it follows that 2S(x) = D(x) + ζ(x), 2T (x) = D(x)− ζ(x)
for all x ∈ R, which completes the proof of the theorem.

Let us point out that in Theorem 3 we have not assumed that the ring
has an identity element. In case the ring has an identity element, the proof is
considerably simpler and one can prove the result below even in case R is an
arbitrary ring with some torsion restrictions.

Theorem 6. Let n ≥ 1 be some fixed integer and let R be a 2n!-free
semiprime ring with the identity element. Suppose there exists an additive
mapping T : R → R satisfying

(22) T (x2n) =

2n
∑

i=1

(−1)i−1xi−1T (x)x2n−i

for all x ∈ R. In this case T (x) = 0 for all x ∈ R.
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Proof. Let e be the identity element. Putting e for x in the relation
(22) gives

(23) T (e) = 0.

Let y be any element of Z(R). Linearization in the relation (22) leads to

2n
∑

i=0

(

2n
i

)

T (x2n−iyi) = T (x+ y)

( 2n−1
∑

i=0

(

2n−1
i

)

x2n−1−iyi
)

− (x+ y)T (x+ y)

( 2n−2
∑

i=0

(

2n−2
i

)

x2n−2−iyi
)

+ (x2 + 2xy + y2)T (x+ y)

( n−3
∑

i=0

(

n−3
i

)

xn−3−iyi
)

− · · ·

−

( n−3
∑

i=0

(

n−3
i

)

xn−3−iyi
)

T (x+ y)(x2 + 2xy + y2)

+

( 2n−2
∑

i=0

(

2n−2
i

)

x2n−2−iyi
)

T (x+ y)(x+ y)

−

( 2n−1
∑

i=0

(

2n−1
i

)

x2n−1−iyi
)

T (x+ y).

Using (22) and rearranging the above relation in sense of collecting
together terms involving equal number of factors of y, we obtain

2n−1
∑

i=1

fi(x, y) = 0,

where fi(x, y) stands for the expression of terms involving i factors of y.
Replacing x by x + 2y, x + 3y, . . . , x + (2n − 1)y in turn in the relation
(22) and expressing the resulting system of 2n− 1 homogeneous equations of
variables fi(x, y), i = 1, 2, . . . , 2n− 1, we see that the coefficient matrix of the
system is a van der Monde matrix











1 1 . . . 1
2 22 . . . 22n−1

...
...

. . .
...

2n− 1 (2n− 1)2 . . . (2n− 1)2n−1











.
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Since the determinant of this matrix is different from zero, it follows that
the system has only a trivial solution. In particular,

f2n−1(x, e) = −
(

2n
2n−1

)

T (x)

+ T (x) +
(

2n−1
2n−2

)

T (e)x

− T (x)− xT (e)−
(

2n−2
2n−3

)

T (e)x

+ T (x) + 2xT (e) +
(

2n−3
2n−4

)

T (e)x

− · · ·

− T (x)−
(

2n−3
2n−4

)

xT (e)− 2T (e)x

+ T (x) +
(

2n−2
2n−3

)

xT (e) + T (e)x

− T (x)−
(

2n−1
2n−2

)

xT (e).

The relation (23) reduces the above relation to

2nT (x) = 0

and since R is 2n!-torsion free, we obtain T (x) = 0 for all x ∈ R. The proof
of the theorem is therefore complete.

Kosi-Ulbl and Vukman ([19]) have proved the following result.

Theorem 7. Let n > 1 be some fixed integer and let R be a n!-torsion
free semiprime ring with the identity element. Suppose there exists an additive
mapping D : R → R satisfying the relation

D(xn) =

n
∑

i=1

xi−1D(x)xn−i

for all x ∈ R. In this case D is a derivation.

Applying Theorem 6 and Theorem 7 we obtain the result below.

Theorem 8. Let n ≥ 1 be some fixed integer and let R be a 2n!-torsion
free semiprime ring with the identity element. Suppose there exist additive
mappings S, T : R → R satisfying the relations

S(x2n) = S(x)x2n−1 + xT (x)x2n−2 + x2S(x)x2n−3 + · · ·+ x2n−1T (x),

T (x2n) = T (x)x2n−1 + xS(x)x2n−2 + x2T (x)x2n−3 + · · ·+ x2n−1S(x)

for all x ∈ R. In this case S and T are derivations and S = T .

Stachó and Zalar ([22,23]) investigated bicircular projections on C∗–alge-
bra L(H), where H is a complex Hilbert space. According to [22, Proposition
3.4] every bicircular projection P : L(H) → L(H) satisfies the functional
equation

(24) P (ABA) = P (A)BA −AP (B∗)∗A+ABP (A)
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for all pairs A,B ∈ L(H), where B∗ stands for the adjoint operator of
B ∈ L(H). Fošner and Ilǐsević ([11]) investigated the above functional
equation on 2-torsion free semiprime ∗-ring. They expressed the solution
of the equation (24) in terms of derivation and so-called double centralizers.
Bicircular projections and related functional equations have been extensively
investigated during the last few years (see [5,6,9–14,16–18,20,24]). M. Fošner
and Vukman ([13]) investigated the following system of functional equations
on prime ∗-rings with char(R) 6= 2.

P (x3) = P (x)x2 + xQ(x∗)∗x+ x2P (x),

Q(x3) = Q(x)x2 + xP (x∗)∗x+ x2Q(x).

Recently, in [14] they considered the following much more general situation

P (x2n+1) = P (x)x2n + xQ(x∗)∗x2n−1 + x2P (x)x2n + · · ·+ x2nP (x),

Q(x2n+1) = Q(x)x2n + xP (x∗)∗x2n−1 + x2Q(x)x2n + · · ·+ x2nQ(x).

In this paper we prove the following theorem.

Theorem 9. Let n ≥ 1 be some fixed integer and let R be a prime ∗-ring
with 2n < char(R) 6= 2. Suppose there exist additive mappings P,Q : R → R

satisfying the relations

(25) P (x2n) = P (x)x2n−1 + xQ(x∗)∗x2n−2 + · · ·+ x2n−1Q(x∗)∗,

(26) Q(x2n) = Q(x)x2n−1 + xP (x∗)∗x2n−2 + · · ·+ x2n−1P (x∗)∗

for all x ∈ R. In this case P and Q are of the form

4P (x) = D(x) +G(x) + ζ(x) + θ(x),

4Q(x) = D(x)−G(x) + ζ(x) − θ(x)

for all x ∈ R, where D,G :R → R are derivations with properties D(x∗)∗ =
D(x), G(x∗)∗ = −G(x) and ζ, θ : R → C are additive mappings with
properties ζ(x∗)∗ = −ζ(x), θ(x∗)∗ = θ(x), ζ(x2n) = θ(x2n) = 0 for all x ∈ R.

Proof. The proof goes through in three steps.
First step. Let us first assume that Q = P. In this case, we have the

relation

(27) P (x2n) = P (x)x2n−1 + xP (x∗)∗x2n−2 + · · ·+ x2n−1P (x∗)∗

for all x ∈ R. It is our aim to prove that P is of the form

2P (x) = D(x) + ζ(x)

for all x ∈ R, where D : R → R is a derivation and ζ : R → C is an additive
mapping such that ζ(x2n) = 0 for all x ∈ R. Besides, D(x∗)∗ = D(x) and
ζ(x∗)∗ = −ζ(x) for all x ∈ R. Let us introduce mappings D, ζ : R → R by

(28) D(x) = P (x) + P (x∗)∗,

(29) ζ(x) = P (x)− P (x∗)∗
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for all x ∈ R. We therefore have D(x∗)∗ = (P (x∗) + P (x)∗)∗ = P (x) +
P (x∗)∗ = D(x). Hence,

D(x∗)∗ = D(x)

for all x ∈ R and similarly we obtain

ζ(x∗)∗ = −ζ(x)

for all x ∈ R. From (27) one can easily obtain that

(30) D(x2n) =

2n
∑

i=1

xi−1D(x)x2n−i

and

(31) ζ(x2n) =
2n
∑

i=1

(−1)i+1xi−1ζ(x)x2n−i

for all x ∈ R. Now it follows from (30) and Theorem 1 that D is a derivation.
On the other hand, one can conclude from (31) and Theorem 3 that ζ maps
R into C and

ζ(x2n) = 0

for all x ∈ R. Combining (28) and (29) gives

2P (x) = D(x) + ζ(x)

for all x ∈ R, which completes the proof of the first step.
Second step. Let us now assume that Q = −P , which according to (25)

and (26) gives

(32) Q(x2n) = Q(x)x2n−1 − xQ(x∗)∗x2n−2 + · · · − x2n−1Q(x∗)∗

for all x ∈ R. In this case, Q is of the form

2Q(x) = G(x) + θ(x)

for all x ∈ R, where G : R → R is a derivation and θ : R → C is an additive
mapping such that θ(x2n) = 0 for all x ∈ R. Besides, G(x∗)∗ = −G(x) and
θ(x∗)∗ = θ(x) for all x ∈ R. The proof of the second step goes through by
using the same arguments as in the first step and will therefore be omitted.

Third step. We are now in the position to prove the theorem in its full
generality. We have the relations

P (x2n) = P (x)x2n−1 + xQ(x∗)∗x2n−2 + · · ·+ x2n−1Q(x∗)∗,

Q(x2n) = Q(x)x2n−1 + xP (x∗)∗x2n−2 + · · ·+ x2n−1P (x∗)∗

for all x ∈ R. Adding (subtracting) the above relations gives, respectively,

F (x2n) = F (x)x2n−1 + xF (x∗)∗x2n−2 + · · ·+ x2n−1F (x∗)∗,

H(x2n) = H(x)x2n−1 − xH(x∗)∗x2n−2 + · · ·+−x2n−1H(x∗)∗
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for all x ∈ R, where F denotes P +Q and H stands for P −Q. Now according
to the results regarding (27) and (32) in first and second step, we obtain from
the above relations that

2P (x) + 2Q(x) = D(x) + ζ(x),

2P (x)− 2Q(x) = G(x) + θ(x)

for all x ∈ R, where D,G : R → R are derivations with properties
D(x∗)∗ = D(x), G(x∗)∗ = −G(x) and ζ, θ : R → C are additive mappings
with properties ζ(x∗)∗ = −ζ(x), θ(x∗)∗ = θ(x), ζ(x2n) = θ(x2n) = 0 for all
x ∈ R. The last two relations imply

4P (x) = D(x) +G(x) + ζ(x) + θ(x),

4Q(x) = D(x)−G(x) + ζ(x) − θ(x)

for all x ∈ R, which completes the proof of the theorem.
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[3] K. I. Beidar, M. Brešar, M. A. Chebotar and W. S. Martindale 3rd, On Herstein’s Lie

map Conjectures II, J. Algebra 238 (2001), 239–264.
[4] K. I. Beidar, A. V. Mikhalev and M. A. Chebotar, Functional identities in rings and

their applications, Russian Math. Surveys 59 (2004), 403–428.

[5] F. Botelho and J. Jamison, Generalized bicircular projections on minimal ideals of

operators, Proc. Amer. Math. Soc. 136 (2008), 1397–1402.
[6] F. Botelho and J. Jamison, Generalized bi-circular projections on spaces of analytic

functions, Acta Sci. Math. (Szeged) 75 (2009), 527–546.
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