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FINITE p-GROUPS IN WHICH THE NORMAL CLOSURE
OF EACH NON-NORMAL CYCLIC SUBGROUP IS
NONABELIAN

ZVONIMIR JANKO
University of Heidelberg, Germany

ABSTRACT. We determine up to isomorphism finite non-Dedekindian
p-groups G (i.e., p-groups which possess non-normal subgroups) such that
the normal closure of each non-normal cyclic subgroup in G is nonabelian.
It turns out that we must have p = 2 and G has an abelian maximal
subgroup A of exponent 2¢, ¢ > 3, and an element v € G — A such that for
all h € A we have either b = h=1 or hv = h=1+2°7".

Let G be a finite p-group. Then it is well known (see [3, Theorem 224.1])
that the normal closure of each cyclic subgroup in G is abelian if and only
if each two-generator subgroup of G is of class < 2. If each two-generator
subgroup of a p-group G is of class < 2, then either G is of class < 2 or p =3
and G is of class 3.

It is natural to ask what happens if G is a non-Dedekindian finite p-group
in which the normal closure of each non-normal cyclic subgroup is nonabelian.
It turns out as a big surprise that in this case we must have p = 2 and G can
be determined up to isomorphism (Theorem 2).

All groups considered here are finite p-groups and our notation is standard

(see [1]).

DEFINITION 1. Let M be a 2-group possessing an abelian mazximal
subgroup H of exponent > 4 such that there is an element v € M — H which
inverts each element of H. Then o(v) < 4 since v inverts (v?) < H.

If o(v) = 2, then all elements in M — H are involutions and M s called
"quasidihedral” (or generalized dihedral).
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If o(v) = 4, then all elements in M — H are of order 4 with the same
square v and then M is called ”quasi-generalized quaternion”.

THEOREM 2. Let G be a non-Dedekindian p-group in which the normal
closure of any non-normal cyclic subgroup is nonabelian. Then p = 2, G has
an abelian mazimal subgroup A of exponent 2¢, e > 3, and for an element
vEG— A and for all h € A we have either h* = h=1 or hY = h=1+2°",

Conversely, let G be a 2-group just defined. Then each subgroup of A
is G-invariant and for each v € G — A, o(v) < 4, (v) is non-normal in G
and (V)¢ = [A, (v)](v), where v inverts each element of [A, (v)] = G’ (of
exponent 2671 > 4) so that (v)€ is either quasidihedral (in case o(v) = 2) o
quasi-generalized quaternion (in case o(v) = 4) and so in any case (v)9 is
nonabelian.

In the proof of Theorem 2, we shall use [2, Theorem 125.1] and therefore
we state here that theorem for convenience:

LEMMA 3. Let G be a nonabelian p-group containing a mazimal subgroup
H such that all subgroups of H are G-invariant. Then there is an element
g € G — H such that one of the following holds:

(i) p=2, H is Hamiltonian, i.e., H = QxV, where Q = Qs, exp(V) < 2,
and g € Z(G), o(g) < 4.

(ii) p = 2, H is abelian of exponent 2°, e > 2, and g either inverts each
element in H, or e > 3 and h9 = po12e for all h € H. In both
cases Z(G) = Cu(g) = Qi (H) is elementary abelian and o(g) < 4.

(iii) p = 2, H is abelian of exponent 2¢, ¢ > 3, and h9 = B2 for all
h € H, where Z(G) = Cy(g) = Qe—1(H).

(iv) p > 2, H is abelian of exponent p°, e > 2, and h9 = K" for all
h e H, where Z(G) = Cu(g) = Qe_1(H).

PRrROOF OF THEOREM 2. Suppose that G is a title p-group. Let A < G
be a maximal normal abelian subgroup of G. Since each cyclic subgroup in
A is normal in G, it follows that each subgroup in A is G-invariant.

Suppose p > 2. Let B/A be a normal subgroup of order p in G/A.
Applying Lemma 3 on the subgroup B, we get exp(A) = p¢, e > 2, and there
is g € B— A such that for all h € A, h9 = h1+?°"". Since B is nonabelian,
there is b € B— A such that (b) is not normal in B (and so (b) is not normal in
G) so that (replacing b with a suitable power b, i # 0 (mod p), if necessary)
we have for all h € H, h* = h'*?" and M = (b)S is nonabelian with
M < B. Also, B’ = [A, (b)] is elementary abelian and B’ < Z(G) because
each subgroup of A is G-invariant. There is k € G such that [b,b*] # 1,
where b8 € M — A. Note that (b?) = (b) N A and so (b?) < G and therefore
(b*) N (b) = (bP). There is b’ € (b¥) — A such that (b')P = b~P and [b,b'] # 1.
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We compute
p

(bb)P = bP ()P [, b)(B) = 1,
and so o(bb’) = p. Set b’ = s and assume s € Z(G). But then
[bab/] = [babils] =1,

a contradiction. Thus, s is an element of order p in B — A and (s) is not
normal in G. By our basic assumption, (s)¢ < B is nonabelian and so there
is [ € G such that setting s’ = s € B — A, we have [s,s] # 1. But [s,s'] = 2
is an element of order p in Z(G) (noting that B’ < Z(G) and B’ is elementary
abelian). It follows that K = (s,s’) = S(p?) (the nonabelian group of order
p? and exponent p). Since K < B, we have K N A = Ep2. On the other hand,
KNA<Z(G) and |K : (KN A)| =p so that K is abelian, a contradiction.
We have proved that we must have p = 2.

Since each subgroup of A is G-invariant and Cg(A) = A, we have
exp(A) > 4. Now assume, by way of contradiction, that exp(A) = 4. Let B/A
be any subgroup of order 2 in G/A. By Lemma 3, each element b € B — A
inverts each element in A. This implies that G/A has only one subgroup
of order 2 and so G/A is either cyclic or generalized quaternion. Suppose
|G/A| > 2. Then there is ¢ € G — A such that (A(g))/A = C4, where g*
inverts each element in A. Let y € A be an element of order 4. Since (y) <G,
g normalizes (y) = C,4 and g2 inverts (y), a contradiction. Hence |G/A| = 2
and so exp(G) = 4. Indeed, since each element v € G— A inverts each element
in A, we get o(v) < 4. Because (by our assumption) G is not Dedekindian,
there is v € G — A such that (v) is not normal in G, where o(v) < 4. We have
[4, (v)] = G is elementary abelian and G’ < Z(G). Set R = (v)¢ so that our
basic assumption implies that R is nonabelian. On the other hand,

[A, ()]{v) < Rand [4, (v)](v) = G'(v) G

so that R < [A, (v)](v) and R = ()¢ = [A, (v)](v) = G’ (v).
But G’ < Z(G) implies that v centralizes G’ and so R is abelian, a
contradiction. We have proved that exp(A) = 2¢ with e > 3.

Suppose, by way of contradiction, that G/A possesses a subgroup B/A
of order 2 such that for all b€ B — A and h € A, we have h® = h1+2" " In
this case B’ = [A, (b)] is elementary abelian and B’ < Z(G). Also, we have
Z(B) = C4(b) = Qe_1(A). If B is not normal in G, then there is z € G
such b* € G — B for some b € G — A. But then bb* € G — A and bb*
centralizes A ( since b* acts on A the same way as b does), a contradiction.
Hence B < G. Because B is nonabelian and exp(B) > 8, it follows that B
is not Dedekindian. Hence there is b € B — A such that (b) is not normal
in B. By our basic assumption, (b)¢ < B is nonabelian. There is g € G
such that b9 € B — A and [b,b9] # 1. On the other hand, (b*) < G and so
(b) N (b9) = (b?). There is ¢ € (b9) — A such that ¢> = b=2 and [b,c] # 1. We
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compute (be)? = b?c?[c,b] = [c,b] # 1. Since [c, b] is of order 2, it follows that
d = be is an element of order 4 and d € A. Hence d € Z(B) and so we get

[bv C] - [babild] - [babil][bv d] =1,

a contradiction. We have proved that such a group B/A of order 2 in G/A
does not exist. Then using again Lemma 3, we see that G/A has exactly one
subgroup C/A of order 2 such that for all c € C' — A and h € A, we have
either h¢ = h=! or h¢ = h=1%2" In any case o(c) < 4.

Assume |G/A| > 2. Then there is g € G — A such that g? € C'— A so that
if h is an element of order 4 in A, then g normalizes (h) JG and g? inverts (h),
a contradiction. We have proved that |G/A| = 2, all elements in G — A are
of order < 4, exp(A) = 2¢, e > 3, and for each v € G — A and h € A, either
RY = h=! or k¥ = h=1+2°"", The structure of our group G is determined.

Conversely, let G be a 2-group defined above and let v be any element
in G — A. Then o(v) < 4 and the way in which v acts on A insures that
each subgroup of A is G-invariant. Set R = (v)¢ < G and then [A, (v)](v) <
R. On the other hand, [A, (v)] = G’ and therefore [A, (v)](v) < G so that
R < [A, (v)](v). We have proved that [4, (v)]{(v) = R. But exp([4, (v}]) =
2¢1 > 4 and so v inverts each element of [A, (v)] = G so that (v)€ is either

quasidihedral (if o(v) = 2) or quasi-generalized quaternion (if o(v) = 4).
Hence in any case (v)¢ is nonabelian. Our theorem is proved. O
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