
GLASNIK MATEMATIČKI
Vol. 49(69)(2014), 333 – 336
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Abstract. We determine up to isomorphism finite non-Dedekindian
p-groups G (i.e., p-groups which possess non-normal subgroups) such that
the normal closure of each non-normal cyclic subgroup in G is nonabelian.
It turns out that we must have p = 2 and G has an abelian maximal
subgroup A of exponent 2e, e ≥ 3, and an element v ∈ G−A such that for

all h ∈ A we have either hv = h−1 or hv = h−1+2e−1

.

Let G be a finite p-group. Then it is well known (see [3, Theorem 224.1])
that the normal closure of each cyclic subgroup in G is abelian if and only
if each two-generator subgroup of G is of class ≤ 2. If each two-generator
subgroup of a p-group G is of class ≤ 2, then either G is of class ≤ 2 or p = 3
and G is of class 3.

It is natural to ask what happens if G is a non-Dedekindian finite p-group
in which the normal closure of each non-normal cyclic subgroup is nonabelian.
It turns out as a big surprise that in this case we must have p = 2 and G can
be determined up to isomorphism (Theorem 2).

All groups considered here are finite p-groups and our notation is standard
(see [1]).

Definition 1. Let M be a 2-group possessing an abelian maximal
subgroup H of exponent ≥ 4 such that there is an element v ∈ M −H which
inverts each element of H. Then o(v) ≤ 4 since v inverts 〈v2〉 ≤ H.

If o(v) = 2, then all elements in M −H are involutions and M is called
”quasidihedral” (or generalized dihedral).
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If o(v) = 4, then all elements in M − H are of order 4 with the same
square v2 and then M is called ”quasi-generalized quaternion”.

Theorem 2. Let G be a non-Dedekindian p-group in which the normal
closure of any non-normal cyclic subgroup is nonabelian. Then p = 2, G has
an abelian maximal subgroup A of exponent 2e, e ≥ 3, and for an element

v ∈ G−A and for all h ∈ A we have either hv = h−1 or hv = h−1+2
e−1

.
Conversely, let G be a 2-group just defined. Then each subgroup of A

is G-invariant and for each v ∈ G − A, o(v) ≤ 4, 〈v〉 is non-normal in G
and 〈v〉G = [A, 〈v〉]〈v〉, where v inverts each element of [A, 〈v〉] = G′ (of
exponent 2e−1 ≥ 4) so that 〈v〉G is either quasidihedral (in case o(v) = 2) or
quasi-generalized quaternion (in case o(v) = 4) and so in any case 〈v〉G is
nonabelian.

In the proof of Theorem 2, we shall use [2, Theorem 125.1] and therefore
we state here that theorem for convenience:

Lemma 3. Let G be a nonabelian p-group containing a maximal subgroup
H such that all subgroups of H are G-invariant. Then there is an element
g ∈ G−H such that one of the following holds:

(i) p = 2, H is Hamiltonian, i.e., H = Q×V , where Q ∼= Q8, exp(V ) ≤ 2,
and g ∈ Z(G), o(g) ≤ 4.

(ii) p = 2, H is abelian of exponent 2e, e ≥ 2, and g either inverts each

element in H, or e ≥ 3 and hg = h−1+2
e−1

for all h ∈ H. In both
cases Z(G) = CH(g) = Ω1(H) is elementary abelian and o(g) ≤ 4.

(iii) p = 2, H is abelian of exponent 2e, e ≥ 3, and hg = h1+2
e−1

for all
h ∈ H, where Z(G) = CH(g) = Ωe−1(H).

(iv) p > 2, H is abelian of exponent pe, e ≥ 2, and hg = h1+pe−1

for all
h ∈ H, where Z(G) = CH(g) = Ωe−1(H).

Proof of Theorem 2. Suppose that G is a title p-group. Let A < G
be a maximal normal abelian subgroup of G. Since each cyclic subgroup in
A is normal in G, it follows that each subgroup in A is G-invariant.

Suppose p > 2. Let B/A be a normal subgroup of order p in G/A.
Applying Lemma 3 on the subgroup B, we get exp(A) = pe, e ≥ 2, and there

is g ∈ B − A such that for all h ∈ A, hg = h1+pe−1

. Since B is nonabelian,
there is b ∈ B−A such that 〈b〉 is not normal in B (and so 〈b〉 is not normal in
G) so that (replacing b with a suitable power bi, i 6≡ 0 (mod p), if necessary)

we have for all h ∈ H , hb = h1+pe−1

and M = 〈b〉G is nonabelian with
M ≤ B. Also, B′ = [A, 〈b〉] is elementary abelian and B′ ≤ Z(G) because
each subgroup of A is G-invariant. There is k ∈ G such that [b, bk] 6= 1,
where bk ∈ M − A. Note that 〈bp〉 = 〈b〉 ∩ A and so 〈bp〉 E G and therefore
〈bk〉 ∩ 〈b〉 = 〈bp〉. There is b′ ∈ 〈bk〉 − A such that (b′)p = b−p and [b, b′] 6= 1.
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We compute

(bb′)p = bp(b′)p[b′, b](
p

2
) = 1,

and so o(bb′) = p. Set bb′ = s and assume s ∈ Z(G). But then

[b, b′] = [b, b−1s] = 1,

a contradiction. Thus, s is an element of order p in B − A and 〈s〉 is not
normal in G. By our basic assumption, 〈s〉G ≤ B is nonabelian and so there
is l ∈ G such that setting s′ = sl ∈ B −A, we have [s, s′] 6= 1. But [s, s′] = z
is an element of order p in Z(G) (noting that B′ ≤ Z(G) and B′ is elementary
abelian). It follows that K = 〈s, s′〉 ∼= S(p3) (the nonabelian group of order
p3 and exponent p). Since K ≤ B, we have K ∩A ∼= Ep2 . On the other hand,
K ∩ A ≤ Z(G) and |K : (K ∩ A)| = p so that K is abelian, a contradiction.
We have proved that we must have p = 2.

Since each subgroup of A is G-invariant and CG(A) = A, we have
exp(A) ≥ 4. Now assume, by way of contradiction, that exp(A) = 4. Let B/A
be any subgroup of order 2 in G/A. By Lemma 3, each element b ∈ B − A
inverts each element in A. This implies that G/A has only one subgroup
of order 2 and so G/A is either cyclic or generalized quaternion. Suppose
|G/A| > 2. Then there is g ∈ G − A such that (A〈g〉)/A ∼= C4, where g2

inverts each element in A. Let y ∈ A be an element of order 4. Since 〈y〉EG,
g normalizes 〈y〉 ∼= C4 and g2 inverts 〈y〉, a contradiction. Hence |G/A| = 2
and so exp(G) = 4. Indeed, since each element v ∈ G−A inverts each element
in A, we get o(v) ≤ 4. Because (by our assumption) G is not Dedekindian,
there is v ∈ G−A such that 〈v〉 is not normal in G, where o(v) ≤ 4. We have
[A, 〈v〉] = G′ is elementary abelian and G′ ≤ Z(G). Set R = 〈v〉G so that our
basic assumption implies that R is nonabelian. On the other hand,

[A, 〈v〉]〈v〉 ≤ R and [A, 〈v〉]〈v〉 = G′〈v〉EG

so that R ≤ [A, 〈v〉]〈v〉 and R = 〈v〉G = [A, 〈v〉]〈v〉 = G′〈v〉.

But G′ ≤ Z(G) implies that v centralizes G′ and so R is abelian, a
contradiction. We have proved that exp(A) = 2e with e ≥ 3.

Suppose, by way of contradiction, that G/A possesses a subgroup B/A

of order 2 such that for all b ∈ B − A and h ∈ A, we have hb = h1+2
e−1

. In
this case B′ = [A, 〈b〉] is elementary abelian and B′ ≤ Z(G). Also, we have
Z(B) = CA(b) = Ωe−1(A). If B is not normal in G, then there is x ∈ G
such bx ∈ G − B for some b ∈ G − A. But then bbx ∈ G − A and bbx

centralizes A ( since bx acts on A the same way as b does), a contradiction.
Hence B E G. Because B is nonabelian and exp(B) ≥ 8, it follows that B
is not Dedekindian. Hence there is b ∈ B − A such that 〈b〉 is not normal
in B. By our basic assumption, 〈b〉G ≤ B is nonabelian. There is g ∈ G
such that bg ∈ B − A and [b, bg] 6= 1. On the other hand, 〈b2〉 E G and so
〈b〉 ∩ 〈bg〉 = 〈b2〉. There is c ∈ 〈bg〉 − A such that c2 = b−2 and [b, c] 6= 1. We
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compute (bc)2 = b2c2[c, b] = [c, b] 6= 1. Since [c, b] is of order 2, it follows that
d = bc is an element of order 4 and d ∈ A. Hence d ∈ Z(B) and so we get

[b, c] = [b, b−1d] = [b, b−1][b, d] = 1,

a contradiction. We have proved that such a group B/A of order 2 in G/A
does not exist. Then using again Lemma 3, we see that G/A has exactly one
subgroup C/A of order 2 such that for all c ∈ C − A and h ∈ A, we have

either hc = h−1 or hc = h−1+2
e−1

. In any case o(c) ≤ 4.
Assume |G/A| > 2. Then there is g ∈ G−A such that g2 ∈ C−A so that

if h is an element of order 4 in A, then g normalizes 〈h〉EG and g2 inverts 〈h〉,
a contradiction. We have proved that |G/A| = 2, all elements in G − A are
of order ≤ 4, exp(A) = 2e, e ≥ 3, and for each v ∈ G − A and h ∈ A, either

hv = h−1 or hv = h−1+2
e−1

. The structure of our group G is determined.
Conversely, let G be a 2-group defined above and let v be any element

in G − A. Then o(v) ≤ 4 and the way in which v acts on A insures that
each subgroup of A is G-invariant. Set R = 〈v〉G EG and then [A, 〈v〉]〈v〉 ≤
R. On the other hand, [A, 〈v〉] = G′ and therefore [A, 〈v〉]〈v〉 E G so that
R ≤ [A, 〈v〉]〈v〉. We have proved that [A, 〈v〉]〈v〉 = R. But exp([A, 〈v〉]) =
2e−1 ≥ 4 and so v inverts each element of [A, 〈v〉] = G′ so that 〈v〉G is either
quasidihedral (if o(v) = 2) or quasi-generalized quaternion (if o(v) = 4).
Hence in any case 〈v〉G is nonabelian. Our theorem is proved.
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