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Abstract. We give a characterization of the scaling functions and low
pass filters in a translation invariant multiresolution analysis on L2(Rn).
Our conditions involve the notion of locally non-zero function. We write
our results in a general context where one considers a dilation given by
a fixed expansive linear map on R

n preserving the integer lattice Z
n.

Indeed, for any such a linear map we construct a scaling function where
the support of the Fourier transform is bounded and does not contain any

open neighborhood of the origin.

1. Introduction

Let A : Rn → Rn, n ≥ 1, be an expansive linear map such that AZn ⊂ Z
n.

A linear map A is said to be expansive if all (complex) eigenvalues of A have
absolute value greater than 1. Here and further we use the same notation for
the linear map A and its corresponding matrix with respect to the canonical
base.

In this paper, we write a characterization of the orthonormal scaling

functions φ ∈ L2(Rn) such that |φ̂| = χS , where φ̂ means the Fourier
transform of φ. Our starting point is the main result in [5]. Using the
notion of locally non-zero function, we achieve more understanding on the

behavior of φ̂ in a neighborhood of the origin. It is known the existence
of scaling functions in a multiresolution analysis defined in L2(R) and with
dyadic dilation such that the origin is not a continuity point for their Fourier
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transform. Sometimes, these are considered as pathological cases of scaling
functions. Here, our characterization let us construct a bounded measurable
set G ⊂ Rn such that G and Rn \ G do not contain any open neighborhood

of the origin and also the function θ ∈ L2(Rn) defined by θ̂ = χG is an
orthonormal scaling function in a multiresolution analysis associated to the
dilation A.

Moreover, if we have a scaling function φ ∈ L2(Rn) such that |φ̂| =
χS in a multiresolution analysis associated to the dilation A, we will see
that its associated low pass filter H is Zn-periodic and such that |H | = χE

for a measurable set E ⊂ Rn. We characterize those low pass filters in a
multiresolution analysis associated to the dilation A. A first approach to
characterize those low pass filters in a multiresolution analysis with the dyadic
dilation and n = 1 was presented in the paper by E. Hernández, X. Wang and
G. Weiss [15]. They assume that E contains a neighborhood of the origin.
Here we do not use any extra assumptions on the regularity at the origin of
χE .

A multiresolution analysis (MRA) is a general method introduced by
Mallat [21] and Meyer [22] for constructing wavelets. Afterwards, the concept
of MRA was considered on L2(Rn), n ≥ 1, (see [11,20,28,30]) in a more general
context where instead of the dyadic dilation one considers the dilation given
by a fixed expansive linear map A preserving the integer lattice. Given such
a linear map A one defines an A-MRA as a sequence of closed subspaces Vj ,
j ∈ Z, of the Hilbert space L2(Rn) that satisfies the following conditions:

(i) for any j ∈ Z, Vj ⊂ Vj+1;
(ii) for any j ∈ Z, f(x) ∈ Vj ⇔ f(Ax) ∈ Vj+1;

(iii) ∪j∈ZVj = L2(Rn);
(iv) There exists a function φ ∈ V0, that is called scaling function, such

that {φ(x − k) : k ∈ Z
n} is an orthonormal basis for V0.

One of the possible ways for constructing a multiresolution analysis is
to start with a scaling function φ ∈ L2(Rn). Beginning from Mallat’s work
[21], several authors have studied properties of the scaling functions. Let us
suggest the paper by Soto-Bajo [27] where a survey on previous results of
characterizations of scaling functions appears.

A key tool to work with scaling functions is the Fourier transform. We
adopt the convention that the Fourier transform of a function f ∈ L1(Rn) ∩
L2(Rn) is defined by

f̂(y) =

∫

Rn

f(x)e−2πix·ydx,

where x · y means the inner product in R
n of x and y.

If φ is a scaling function of an A-MRA, then d−1
A φ(A−1x) ∈ V−1 ⊂ V0

where dA = |detA|. By the condition (iv) we express this function in terms
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of the orthonormal basis {φ(x− k) : k ∈ Z
n} as

d−1
A φ(A−1x) =

∑

k∈Zn

akφ(x − k),

where the convergence is in L2(Rn) and
∑

k∈Zn |ak|2 < ∞. Taking the Fourier
transform we obtain

φ̂(A∗t) = H(t)φ̂(t) a.e. on R
n,

where A∗ is the adjoint map of A and

H(t) =
∑

k∈Zn

ake
−2πik·t

is a Zn-periodic function which is called low pass filter associated to the scaling
function φ in an A-MRA, or shortly low pass filter in an A-MRA. We will see
a discussion on previous results on low pass filters at the end of Section 3.

In this paper, we focus on the notion of translation invariant A-MRA. It
was introduced by W. R. Madych ([20]).

Definition 1.1. Let {Vj}j∈Z be an A-MRA. If for any f ∈ V0 and u ∈ Rn

we have f(x+u) ∈ V0, then {Vj}j∈Z is called a translation invariant A-MRA.

A classical example of a scaling function in a translation invariant multire-
solution analysis defined on L2(R) with the dyadic dilation is the well known
Shannon scaling function.

The following characterization of the scaling functions in a translation
invariant A-MRA was proved by W. R. Madych ([20]).

Theorem A. Let φ ∈ L2(Rn). Then the function φ generates a

translation invariant A-MRA if and only if |φ̂| = χS where χS is the
characteristic function of the measurable set S ⊂ Rn which has the following
properties:

(A) S ⊂ A∗S (except a null measurable set);
(B) S

⋂
{S + k} ≃ ∅ for any element k in Zn \ {0};

(C) ⋃

k∈Z
n

{S + k} ≃ R
n;

(D)

lim
j→∞

1

|A∗−jQ|

∫

A∗−jQ

χS(t)dt = 1

for every cube Q of finite diameter in Rn where A∗ is the adjoint of
A.

In addition, the condition (D) can be replaced by any one of the following
properties was observed in [20]:

•
⋃

j∈Z
L2(A∗jS) is dense in L2(Rn);



380 A. SAN ANTOLÍN

•
⋃

j∈Z
(A∗jS) ≃ Rn.

The scaling functions φ such that φ̂ = χS are sometime called Minimally
Supported Frequency (MSF) scaling functions. A characterization of the

measurable sets S ⊂ R for which a function φ ∈ L2(R) such that |φ̂| = χS

is a scaling function in a classical multiresolution analysis was proved by M.
Papadakis ([23]) independently of W. R. Madych’s work. Afterwards, M.
Papadakis, H. Šikić and G. Weiss ([24]) observed that one condition obtained
in [23] is redundant. Moreover, they construct examples of such bounded
measurable sets S. In the paper by M. Bownik, Z. Rzeszotnik and D. Speegle
([3]), other necessary and sufficient conditions on measurable sets S ⊂ R

n for

which a function φ ∈ L2(Rn) such that |φ̂| = χS is a scaling function of an
A-MRA have been proved. The same question for some subspaces of L2(Rn)
was addressed in a joint work with K. S. Kazarian ([17]). Furthermore, a

characterization of the functions φ ∈ L2(Rn) such that |φ̂| is a characteristic
function and it generates a Parseval Frame A-MRA was proved by Bakić and
Wilson ([1]). A set S ⊂ R

n as above was constructed by Q. Gu and D. Han
([12]) assuming dA = 2, and afterward, by M. Bownik, Z. Rzeszotnik and D.
Speegle ([3]) without that additional hypothesis. An abstract relationship
between translation invariant MRA and Minimally Supported Frequency
wavelets is presented in L2(R) with dyadic dilation in the paper by Weber
([29]).

Let us introduce some notation and definitions before formulating the
results. T

n = R
n/Zn and with some abuse of the notation we consider also

that T
n is the unit cube [0, 1)n. If we write f ∈ L2(Tn) we will understand

that f is defined on the whole space R
n as a Z

n-periodic function.
We will denote Br(y) = {x ∈ R

n : |x − y| < r} and will write Br if y is
the origin. For a set E ⊂ R

n we will denote Ec = Rn \ E, the closure of the
set E by E and A(E) = {x ∈ R

n : x = At for t ∈ E}. If x ∈ R
n then we will

write x+ E = {x+ y : for y ∈ E}. Further, ETn = (E + Zn) ∩ [0, 1)n.
We say that E ⊂ Rn is a measurable set if it is Lebesgue measurable. Its

Lebesgue measure will be denoted by |E|n. If we do not indicate the contrary,
the equalities and inclusions between measurable sets will be understood
except on a set of measure zero. Here and further, χS is the characteristic
function of a measurable set S ⊂ R

n.
We need the following definition.

Definition 1.2. Let A : Rn → Rn be an expansive linear map. A
measurable function f : Rn → C is said to be A-locally nonzero at a point
x0 ∈ Rn if for any ε, r > 0 there exists j ∈ N such that

(1.1) |{y ∈ A−jBr + x0 : f(y) = 0}|n < ε|A−jBr|n.
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Given a measurable set E ⊂ Rn, if the function f = χE is A-locally
nonzero at a point x0 ∈ Rn we will say that x0 ∈ Rn is a point of weak
A-density for the set E.

The paper is structured as follows. In Section 2 we will write necessary
and sufficient conditions on the scaling functions in a translation invariant
A-MRA (Theorem 1). Moreover, we will construct a scaling function φ
in a translation invariant A-MRA with the property that the support of

φ̂ is bounded and does not contain any open neighborhood of the origin
(Theorem 2). Section 3 will be devoted to characterization of low pass
filters associated to a scaling function in a translation invariant A-MRA
(Theorem 3). The proofs of Theorem 1, Theorem 2 and Theorem 3 are given
in Sections 4, 5 and 6, respectively.

2. Scaling functions

According to Theorem A, in order to study the scaling functions in a
translation invariant A-MRA one must study the scaling functions φ such

that |φ̂| = χS where S ⊂ Rn is a measurable set.
We prove the following.

Theorem 2.1. Let A : Rn → R
n be an expansive linear map such that

AZn ⊂ Z
n. Let φ ∈ L2(Rn) such that |φ̂| = χS where S ⊂ R

n is a measurable
set. Then φ is a scaling function of an A-MRA if and only if the following
conditions hold:

1) the origin is a point of weak A∗-density for the set S,
2) |S|n = 1 and STn = [0, 1)n,
3) (A∗)−1S ⊂ S.

Condition 1) in Theorem 2.1 explains the behavior of the Fourier
transform of a scaling function in a neighborhood of the origin. Evidently,
if a measurable set contains an open neighborhood of the origin, then the
condition 1) in Theorem 2.1 holds. It is well known that there exist measurable
sets S ⊂ R which do not contain any open neighborhood of the origin

and the function φ ∈ L2(R) such that φ̂ = χS is a scaling function in a
translation invariant multiresolution analysis defined on L2(R) and with the
dyadic dilation.

The following example was given by W. R. Madych ([20]). The function

φ ∈ L2(R) such that φ̂ = χS where

S =
( ∞⋃

j=1

[−(1− 2−j−1)2−j−1,−2−j−1]
)
∪ [0,

1

2
]

∪
( ∞⋃

j=1

[(1− (1− 2−j−1)2−j−1), (1 − 2−j−1)]
)
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is a scaling function of a multiresolution analysis.
We prove the following.

Theorem 2.2. Let A : Rn → R
n be an expansive linear map such that

AZn ⊂ Z
n. There exists a bounded measurable set S ⊂ Rn such that for

any open neighborhood of the origin U , there exists an open set included in

Sc ∩ U . The function φ ∈ L2(Rn) defined by φ̂ = χS is a scaling function in
an A-MRA.

3. Low pass filters

In this section we characterize the measurable functions H ∈ L2(Tn) to
be a low pass filter in a translation invariant A-MRA.

It is well known that for a scaling function in an A-MRA there exists an
unique low pass filter associated. So, in the proof of Theorem A (see [20]) it
is showed that if H is a low pass filter associated to a scaling function φ such

that |φ̂| = χS , then |H | = χE , where E ⊂ Rn is a measurable set.
On the other hand, observe that the inverse implication is also true due

to if H ∈ L2(Tn) such that |H | = χE is a low pass filter associated to a scaling

function φ in an A-MRA, then |φ̂| = χS a.e. on R
n where S = ∩∞

j=1(A
∗)jE.

This is a consequence of the fact that if H ∈ L2(Tn) is a low pass filter
associated to a scaling function φ in an A-MRA, then (see [25])

(3.1) |φ̂(t)| =
∞∏

j=1

|H((A∗)−jt)| a.e. on R
n.

Let us introduce more notation that we will need in this section.
For a given φ ∈ L2(Rn), set

(3.2) Φφ(t) =
∑

k∈Zn

|φ̂(t+ k)|2.

If A : Rn → R
n is an expansive linear map such that AZn ⊂ Z

n, then
the quotient group Z

n/AZn is well defined. We will denote by ∆A ⊂ Z
n a

full collection of representatives of the cosets of Zn/AZn. Recall that there

are exactly dA cosets (see [11] and [30, p. 109]). Let us fix ∆A∗ = {pi}
dA−1
i=0

where p0 = 0.

Given H ∈ L∞(Tn) the continuous linear operator P̃ : L1(Tn) → L1(Tn)
defined by

(3.3) P̃ f(t) =

dA−1∑

i=0

|H((A∗)−1(t+ pi))|
2f((A∗)−1(t+ pi))

is well defined. This operator was first introduced by M. Bownik [2] as a
generalization of the analogous operator introduced by W. Lawton [18] for
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dyadic dilations. In the particular case when |H | = χE , where E ⊂ Rn is a
measurable set, such an operator will be denoted by P .

In order not to repeat conditions let us introduce the following class of
functions:

ΠA ={f ∈ L1(Tn) : f = χF where F ⊂ R
n is a measurable set

and the origin is a point of weak A∗-density for the set F}.

If H ∈ L2(Tn) such that |H | = χE is a low pass filter in an A-MRA

associated to a scaling function φ such that |φ̂| = χS , then E = E + Zn and

χ(A∗)−1S(t) = χE(t)χS(t) a.e. on R
n.

Further, according to the condition 1) in Theorem 2.1 the origin is a point of
weak A∗-density for the set S, then the origin is a point of weak A∗-density
for the set (A∗)−1S. Moreover, by the condition 3) in Theorem 2.1, we have
(A∗)−1((A∗)−1S) ⊂ (A∗)−1S. Therefore, if we callG = (A∗)−1S, we conclude
that there exists a measurable set G ⊂ E such that (A∗)−1G ⊂ G and the
origin is a point of weak A∗-density for the set G.

We prove the following result.

Theorem 3.1. Let A : Rn → R
n be an expansive linear map such that

AZn ⊂ Z
n. Let E ⊂ Rn, E = E + Zn, be a measurable set and there exists

a measurable set G ⊂ E such that (A∗)−1G ⊂ G and the origin is a point of
weak A∗-density for the set G. The following conditions are equivalents.

(I) A function H ∈ L2(Tn) such that |H(t)| = χE(t) a.e. on Rn is a low
pass filter in an A-MRA.

(II) (a) 1 =
∑dA−1

i=0 χE(t+ (A∗)−1pi) a.e. on Rn.
(b) There exists a measurable set K ⊂ R

n such that |K|n = 1 and
(A∗)−jK ⊂ E, ∀j ≥ 1.

(III) The only function f ∈ ΠA invariant under the linear operator P
associated to E is the function f ≡ 1.

Remark 1. The condition (b) can be replaced by any one of the following
conditions:

(b1) There exists a measurable set K ⊂ Rn such that KTn = [0, 1)n and
(A∗)−jK ⊂ E, ∀j ≥ 1.

(b2) |
⋂∞

j=1(A
∗)jE|n = 1.

(b3) (
⋂∞

j=1(A
∗)jE)Tn = [0, 1)n.

The first step for the study of a function H ∈ L∞(Tn) which is a low
pass filter in an A-MRA is to assume conditions on the regularity of H at the
origin in order to have that the infinite product

(3.4)

∞∏

j=1

| H((A∗)−jt) | .
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converges almost everywhere on R
n. Assuming regularity at the origin on H ,

previous results on low pass filters can be found in [2,6,7,9,11,16,18–20,24].
A first approach to characterize the low pass filters in a translation invariant
multiresolution analysis with the dyadic dilation and n = 1 was presented
in [15]. Furthermore, assuming that the infinite product (3.4) converges a.e.,
characterizations of low pass filters are proved in [10, 13, 24, 25] (see also [26]
in a more general context of frame multiresolution analysis).

The condition (III) in Theorem 3.1 follows the strategy by Lawton and
looks like the conditions in the main results in [25] and in [26]. Here, the
main differences are: first, that the set where we look for the fix point for

the operator P̃ defined in (3.3) is not considered previously, in addition, we
present a new sufficient condition on H in order to have that the infinite
product (3.4) converges a.e.. Such a condition does not involve regularity
at the origin on H . Finally, the condition (II) in Theorem 3.1 is of different
nature and recalls the conditions given by Cohen for trigonometric polynomial
low pass filters.

4. Proof of Theorem 2.1

The proof of Theorem 2.1 that we present here is a consequence of the
following theorem proved in [5].

Theorem B. Let φ ∈ L2(Rn). The following conditions are equivalent:

(A) the function φ is a scaling function of an A-MRA;

(B) (α) the function φ̂ is A∗-locally nonzero at the origin;
(β) ∑

k∈Zn

|φ̂(t+ k)|2 = 1 a.e. on R
n;

(γ) there exists a function H ∈ L∞(Tn) such that

φ̂(t) = H(A∗−1t)φ̂(A∗−1t) a.e. on R
n.

Proof of Theorem 2.1. If a function φ ∈ L2(Rn) such that |φ̂| = χS

is a scaling function of an A-MRA then the condition (B) in Theorem B holds.
Thus, the conditions 1), 2) and 3) in Theorem 2.1 follow from the condition
(α), (β) and (γ) respectively.

For a proof of the another implication, we assume that S ⊂ R
n is a

measurable set such that the conditions 1)–3) hold. If we set any function

φ ∈ L2(Rn) such that |φ̂| = χS then the conditions (α) and (β) in Theorem B
follow from 1) and 2) respectively. Let us check that the condition (γ) holds.
Since

∑
k∈Zn χS(t + k) = 1 a.e. on R

n, then ∃F ⊂ R
n, |F |n = 0, such that∑

k∈Zn χS(t+ k) = 1 if t ∈ R
n \ F . Thus the function

H0(t) = φ̂(A∗t)(φ̂(t))−1 on S \ F
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and the function H defined on the entire space Rn as a Zn-periodic extension
of H0 and 0 otherwise are well defined.

It is clear that

φ̂(A∗t) = H(t)φ̂(t) a.e. on S.

According to condition 3), it remains to prove that

0 = H(t)φ̂(t) a.e. on R
n \ S.

This is a consequence of the condition 2) which means that ∪k∈Z
n(S+k) = Rn

and |S
⋂
(S + k)|n = 0 for k ∈ Z

n \ {0}. Therefore the proof is finished.

5. Proof of Theorem 2.2

We here prove Theorem 2.2 in a constructive way. We first need the
following.

Lemma 5.1. Let A : Rn → Rn be a linear invertible map such that AZn ⊂
Zn and let G, J ⊂ Rn be two sets such that GTn = JTn. Then (AG)Tn =
(AJ)Tn .

Proof. By the symmetry in the notation we only prove (AG)Tn ⊂
(AJ)Tn .

Let y ∈ (AG)Tn , then there exists ky ∈ Zn such that y+ky ∈ AG. Thus,
A−1y +A−1ky ∈ G. Since GTn = JTn , ∃k′

y ∈ Zn such that

A−1y +A−1ky + k′
y ∈ J

and so y + ky +Ak′
y ∈ A(J).

Finally, by the hypothesis AZn ⊂ Zn we know that ky +Ak′
y ∈ Zn and

hence we conclude that y ∈ (AJ)Tn .

Proof of Theorem 2.2. We construct a bounded measurable set S ⊂
R

n which satisfies the conditions 1)–3) in Theorem 2.1 and also for any open
neighborhood of the origin, U , there exists an open set included in Sc ∩ U .
We make a construction in several steps.

Step 1. Since A∗ is expansive, ∃R > 0 such that
⋃∞

j=0(A
∗)−jBR ⊂

[− 1
2 ,

1
2 )

n. Let G :=
⋃∞

j=0(A
∗)−jBR and observe that the set G can be written

by G =
⋃j0

j=0(A
∗)−jBR where j0 ∈ N is such that if j ≥ j0 then (A∗)−jBR ⊂

BR. Further, the set G \ (A∗)−1(G) is an open measurable set because the
set G is an open measurable set and A∗ is a continuous map. Moreover,
|G \ (A∗)−1(G)|n > 0. We know that dA is a natural number greater than 1,
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then we have

|(A∗)−1(G)|n = |

j0+1⋃

j=1

(A∗)−jBR|n <
∞∑

j=1

d−j
A |BR|n

=
1

dA − 1
|BR|n ≤ |BR|n ≤ |G|n.

Now, let Gl = (A∗)−lG \ (A∗)−l−1G, l ∈ {0, 1, 2, ...}. Observe that the
measurable sets Gl are disjoint. Moreover, G \ {0} =

⋃∞
l=0 Gl. If x ∈ G \ {0},

then x ∈ (A∗)−jBR for some j ∈ {0, 1, 2, ...}. Let j1 the biggest number
in {0, 1, 2, ...} such that x ∈ (A∗)−j1BR. This j1 exists because A∗ is an
expansive linear map. Thus x ∈ Gj1 = (A∗)−j1G \ (A∗)−j1−1G.

Furthermore, ∃y0 ∈ Rn and ∃r > 0 such that Br + y0 ⊂ G0 because
G \ (A∗)−1G ⊂ G0 and G \ (A∗)−1G is an open measurable set of positive
measure.

Step 2. Let

(5.1) S0 =

∞⋃

j=0

(Gj \ (A
∗)−j(B2−jr + y0)).

The bounded measurable set S0 satisfies the following properties:

i) |S0|n > 0;
ii) |S0|n = |(S0)Tn |n;
iii) (A∗)−1S0 ⊂ S0;
iv) the origin is a point of weak A∗-density for the set S0;
v) the set S0 has a nonempty interior.

The properties i) and v) hold because (A∗)−j(Br + y0) ⊂ Gj . The
property ii) follows from S0 ⊂ [− 1

2 ,
1
2 )

n. The property iii) is satisfied because

(A∗)−1S0 ⊂
∞⋃

j=1

(Gj \ (A
∗)−j(B2−jr + y0)) ⊂ S0.

Let us see that the property iv) holds. Given l ∈ N,

|(A∗)−lG
⋂
(S0)

c|n
|(A∗)−lG|n

=
|(
⋃∞

j=l Gj)
⋂
(
⋃∞

j=0(Gj \ (A∗)−j(B2−jr + y0)))
c|n

|(A∗)−lG|n

=
|
⋃∞

j=l(A
∗)−j(B2−jr + y0)|n

|(A∗)−lG|n

=
|Br|n
|G|n

2−ln

∞∑

j=0

(2ndA)
−j ,

where the second and third equalities are true because the sets Gj are disjoint
and (A∗)−j(B2−jr+y0) ⊂ Gj . Observe that

∑∞
j=0(2

ndA)
−j converges because
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dA > 1. Thus, we have

lim
l→∞

|(A∗)−lG
⋂
(S0)

c|n
|A−lG|n

= 0.

So, the origin is a point of weak A∗-density for the set S0 follows.
Step 3. We construct a bounded measurable set S1 ⊂ R

n from the set

S0. We take the bounded measurable set F̃ = A∗S0 \ ∪k∈Zn(S0 + k). Given
k ∈ Zn we denote by Qk = [0, 1)n + k and also let us fix Ω : N → Zn an one
by one and onto application such that if j1 < j2 then ‖ Ω(j1) ‖≤‖ Ω(j2) ‖.

For every j ∈ N we take the following measurable sets

F̃j = (F̃ ∩QΩ(j))− Ω(j) and Fj = (F̃j \ ∪ l∈N

l<j
F̃l) + Ω(j).

Then F = ∪j∈NFj is a bounded measurable set. It satisfies

(5.2) FTn = (A∗S0)Tn \ (S0)Tn

and

(5.3) |(F + k1) ∩ (F + k2)|n = 0 if k1,k2 ∈ Z
n, k1 6= k2.

Now, we take the bounded measurable set S1 = F ∪ S0. Observe that if
|A∗S0 \ (S0 + Z

n)|n = 0, then S1 = S0.
The set S1 satisfies the following properties:

i1) (S1)Tn = (A∗S0)Tn ;
ii1) |S1|n = |(S1)Tn |n;
iii1) (A∗)−1S1 ⊂ S1;
iv1) the origin is a point of weak A∗-density for the set S1.

By (5.2) and the condition iii) in Step 2, we have

(5.4) (S1)Tn = (F ∪ S0)Tn = (F )Tn ∪ (S0)Tn

= ((A∗S0)Tn \ (S0)Tn) ∪ (S0)Tn = (A∗S0)Tn .

Thus, the property i1) holds.
We see that the set S1 satisfies the property ii1). By the definition of the

set S1,

|S1|n = |F ∪ S0|n = |F |n + |S0|n,

where the last equality holds because F and S0 are disjoint measurable sets.
By the condition (5.3) we have |F |n = |(F )Tn |n, and also, we know that
|S0|n = |(S0)Tn |n. Thus

|S1|n = |(F )Tn |n + |(S0)Tn |n = |(F )Tn ∪ (S0)Tn |n

= |(F ∪ S0)Tn |n = |(S1)Tn |n,

where the second equality is true because |(F )Tn

⋂
(S0)Tn |n = 0.

According to the condition iii) in Step 2, we have

(A∗)−1S1 ⊂ (A∗)−1[(A∗S0 \ S0) ∪ S0] ⊂ S0 ⊂ S1,
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that it is the property iii1).
The set S1 satisfies the condition iv1) because the origin is a point of weak

A∗-density for the set S0 and S0 ⊂ S1.
Step 4. Iterating the procedure in Step 3, for every N ∈ {1, 2, ...} we build

a bounded measurable set SN ⊂ R
n which satisfies the following properties:

iN ) (SN )Tn = ((A∗)NS0)Tn ;
iiN) |SN |n = |(SN )Tn |n;
iiiN) (A∗)−1SN ⊂ SN ;
ivN ) the origin is a point of weak A∗-density for the set SN .

In order to see that the set SN satisfies conditions iN), iiN), iiiN) and
ivN ), we proceed by induction with respect to N .

We have just proved that the sets S1 satisfies the conditions i1), ii1),
iii1) and iv1) in Step 3. Let N ≥ 1 and we assume that SN satisfies all the
conditions iN ), iiN), iiiN) and ivN ).

Using the hypothesis of induction iiN), iiiN) and ivN ), the conditions
iiN+1), iiiN+1) and ivN+1) can be proved in a similar way as the proof done
in Step 3 where we have proved that the set S1 satisfies the conditions ii1),
iii1) and iv1).

We show that SN+1 satisfies iN+1). From the hypothesis of induction
iiiN) and in a similar way as (5.4) we get

(SN+1)Tn = (A∗SN )Tn .

According to the hypothesis of induction iN ) and Lemma 5.1, we conclude
that

(SN+1)Tn = ((A∗)N+1S0)Tn .

Step 5. Let B ⊂ S0 be an open ball. This open ball exists according
to the condition v) in Step 2. Then there exists N0 ∈ {1, 2, ...} such that
((A∗)N0B)Tn = [0, 1)n because A∗ is an expansive linear map.

We denote by S the corresponding bounded measurable set SN0
. First of

all, we assert that the set S satisfies the conditions 1)–3) in Theorem 2.1. The
set S satisfies those conditions 1) and 3) according to the conditions ivN0

) and
iiiN0

) in Step 4 respectively. Furthermore, by the condition iN0
) in Step 4 we

have

STn = ((A∗)N0S0)Tn ⊃ ((A∗)N0B)Tn = [0, 1)n,

and also, by the condition iiN0
) in Step 4,

|S|n = |(SN0
)Tn |n = 1.

Therefore, the set S satisfies the condition 2).
Finally, that given U ⊂ Rn an open neighborhood of the origin there exists

an open set included in Sc ∩U is a consequence of the facts that S ⊂ A∗N0S0

and the set S0 can be written by S0 = (
⋃∞

j=0(Gj))\(
⋃∞

j=0(A
∗)−j(B2−jr+y0))
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because the sets Gj , j = 0, 1, 2, ..., are disjoint and (A∗)−j(B2−jr +y0) ⊂ Gj .
This finishes the proof.

6. Proof of Theorem 3.1

In the proof of Theorem 3.1 we need the following properties and auxiliary
results on low pass filters and locally nonzero measurable functions.

Different versions of the following proposition appear in several publica-
tions (cf. [2, 9, 16, 21, 22]).

Proposition A. Let H be a low pass filter associated to a scaling function
of an A-MRA. Then

(6.1)

dA−1∑

i=0

|H(t+ (A∗)−1pi)|
2 = 1 a.e. on R

n.

Proposition B. Let H ∈ L∞(Tn) be a function such that (6.1) holds.
If the infinite product

∏∞
j=1 |H((A∗)−jt)| converges almost everywhere on R

n

then

a) the function θ̂(t) :=
∏∞

j=1 |H((A∗)−jt)| belongs to L2(Rn) and ‖

θ̂ ‖L2(Rn)≤ 1,
b) Φθ(t) ≤ 1 a.e. on Rn,

c) Φθ is a fixed point for the operator P̃ ,

where the function θ is defined by θ̂(t) =
∏∞

j=1 |H((A∗)−jt)|.

In the above proposition, the condition a) was proved by M. Bownik ([2],
see also [9,16]), the condition b) was proved in the proof of main result in [25]
and the condition c) was also proved in [2].

The following lemma was proved in [5]. Note that the equality (ii) does
not appear in the original result but it is a direct consequence of the proof of
the condition (i).

Lemma A. Let g ∈ L2(Tn), let A : Rn → R
n be a linear invertible map

such that AZ
n ⊂ Z

n and let Â : Tn → T
n be the induced endomorphism.

Then

(i)
∫
Tn g(Ât)dt =

∫
Tn g(t)dt.

(ii)
∫
[0,1]n g(t)dt = d−1

A

∫
[0,1]n

∑dA−1
i=0 g(A−1t+A−1qi)dt,

where {qi}
dA−1
i=1 ⊂ Zn is a full collection of representatives of Zn/AZ

n.

In [25] the following remark was proved.

Remark A. A Z
n-periodic measurable function H is a low pass filter of

an A-MRA if and only if |H | is a low pass filter of some A-MRA.

The following proposition on locally nonzero functions was proved in [25].



390 A. SAN ANTOLÍN

Proposition C. Let A : Rn → R
n be an expansive linear invertible map.

Let f : Rn −→ C be a measurable function that is A-locally nonzero at the
origin. Then, there exists {jk}∞k=1 ⊂ N, jk+1 > jk, such that for a.e. x in R

n

there is k0 ∈ N such that if k ≥ k0, then f(A−jkx) 6= 0.

We present a condition in order to the infinity product
∏∞

j=1 χE((A
∗)−jt)

converges a.e.

Lemma 6.1. Let A : Rn → R
n be an expansive linear map. Let E ⊂ Rn,

E = E+Zn, be a measurable set such that χE satisfies (6.1). Moreover, there
exists a measurable set G ⊂ E such that (A∗)−1G ⊂ G and the origin is a point
of weak A∗-density for the set G. Then the infinite product

∏∞
j=1 χE((A

∗)−jt)

converges a.e. to the function χS where S = ∩∞
j=1(A

∗)jE. In addition, |S|n ≤
1 and the origin is a point of weak A∗-density for the set S.

Proof. First of all, we prove that the infinite product
∏∞

j=1 χE((A
∗)−jt)

converges a.e. on R
n. According to Proposition C there exists a strictly

increasing sequence {jk}∞k=1 ⊂ N such that for almost every point t ∈ R
n

there exists k0 ∈ N such that (A∗)−jk0 t ∈ G. Since (A∗)−1G ⊂ G ⊂ E,

if L ≥ jk0
then

∏L
j=jk0

χE((A
∗)−jt) = 1 a.e. Letting L → ∞, we obtain∏∞

j=jk0
χE((A

∗)−jt) = 1 a.e. Therefore,
∏∞

j=1 χE((A
∗)−jt) converges a.e.

on R
n. Furthermore, we show that

∏∞
j=1 χE((A

∗)−jt) converges a.e. to

χS . For almost every point t ∈ S, we have
∏∞

j=1 χE((A
∗)−jt) = 1.

If t ∈ R
n \ S, then there exists j0 ∈ N such that t /∈ (A∗)j0E, thus

χE((A
∗)−j0t)

∏∞
j=1

j 6=j0

χE((A
∗)−jt) = 0.

That |S|n ≤ 1 follows from the condition a) in Proposition B.
Finally, since the set G ⊂ E satisfies that (A∗)−1G ⊂ G, then G ⊂ S.

Moreover, since the origin is a point of weak A∗-density for the set G, we
conclude that the origin is a point of weak A∗-density for the set S. Therefore,
the proof is finished.

Proof of Theorem 3.1. Let us begin with the proof of the implication
(I) =⇒ (III). That f ≡ 1 is invariant under P is an immediate consequence
of Proposition A.

Suppose that f ∈ ΠA is a fixed point of the operator P . We will show
that

∫

[0,1]n
f(t)dt ≥ 1.

This condition together with f ∈ ΠA will show that f(t) = 1 a.e. on Rn.
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Using the equality Pf = f , we obtain
∫

[0,1]n
f(t)dt =

∫

[0,1]n
P (f)(t)dt

=

∫

[0,1]n

dA−1∑

i=0

χE((A
∗)−1(t+ pi))f((A

∗)−1(t+ pi))dt

= dA

∫

[0,1]n
χE(t)f(t)dt = dA

∫

[− 1

2
, 1
2
]n
χE(t)f(t)dt,

where the third equality follows from the condition (ii) of Lemma A.
Putting A∗t = v, we obtain
∫

[0,1]n
f(t)dt =

∫

Rn

χE((A
∗)−1v)f((A∗)−1v)χ[− 1

2
, 1
2
]n((A

∗)−1v)dv

=

∫

Rn

χE((A
∗)−1t)P (f)((A∗)−1t)χ[− 1

2
, 1
2
]n((A

∗)−1t)dt,

since Pf = f .
Iterating the above computations and using the condition A∗Z

n ⊂ Z
n,

we obtain
∫

[0,1]n
f(t)dt =

∫

Rn

N∏

j=1

χE((A
∗)−jt)f((A∗)−Nt)χ[− 1

2
, 1
2
]n((A

∗)−Nt)dt.

Let

ΓNf(t) =

N∏

j=1

χE((A
∗)−jt)f((A∗)−Nt)χ[− 1

2
, 1
2
]n((A

∗)−Nt), for N ∈ N.

Since f ∈ ΠA, according to Proposition C there exists a strictly increasing
sequence of natural numbers {lN}∞N=1 ⊂ N, such that for a.e. t in R

n there
exists N0 ∈ N such that if N ≥ N0, then χ[− 1

2
, 1
2
]n((A

∗)−lN t)f((A∗)−lN t) = 1.

In addition, according to Lemma 6.1 the infinite product
∏∞

j=1 χE((A
∗)−jt)

converges a.e. on R
n. Hence

(6.2) lim
N−→∞

ΓlN f(t) =

∞∏

j=1

χE((A
∗)−jt), a.e. on R

n.

By Fatou’s lemma and (6.2)
∫

[0,1]n
f(t)dt = lim

N→∞

∫

Rn

ΓlN f(t)dt ≥

∫

Rn

lim
N→∞

ΓlN f(t)dt

=

∫

Rn

∞∏

j=1

χE((A
∗)−jt)dt = 1,
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where the last equality holds according to the condition (I) and the equality
(3.1).

Let us prove (III) =⇒ (II). The condition (a) in (II) follows immediately
from the condition (III). To prove the condition (b) in (II), let K =
∩∞
j=1(A

∗)jE. Thus it remains to verify that |K|n = 1.

According to Lemma 6.1, |K|n ≤ 1. Thus there exists θ ∈ L2(Rn) a

measurable function defined by θ̂ = χK . The condition c) in Proposition B
tells us that the Zn-periodic measurable function Φθ(t) =

∑
k∈Z

n χK(t + k)
is a fixed point for the operator P .

If we prove that Φθ ∈ ΠA, by the condition (III) we will have that
Φθ(t) = 1 a.e. on Tn.

By the condition b) in Proposition B

Φθ(t) =
∑

k∈Z
n

χK(t+ k) ≤ 1 a.e. on R
n.

Hence Φθ ∈ L1(Tn) and also Φθ = χF a.e. on Rn where F ⊂ Rn is a
measurable set. In addition, according to Lemma 6.1 the function Φθ is A∗-
locally nonzero at the origin and therefore Φθ ∈ ΠA.

Further,
(6.3)

|K|n =

∫

R
n

χK(t)dt =
∑

k∈Z
n

∫

[0,1)n−k

χK(t)dt =

∫

[0,1)n

∑

k∈Z
n

χK(t+ k)dt,

and thus we conclude that |K|n = 1 due to Φθ(t) = 1 a.e. on Rn.
We prove (II) =⇒ (I). Let θ be a function such that

θ̂(t) = Π∞
j=1χE((A

∗)−jt) = χS

where S = ∩∞
j=1(A

∗)jE. Observe that the function θ is a well defined

measurable function in L2(Rn) due to Lemma 6.1. If we prove that the set S
satisfies the conditions 1)–3) in Theorem 2.1, then the function θ is a scaling

function in an A-MRA. So by the definition of θ̂, the function χE is the low
pass filter associated to the scaling function θ.

By Lemma 6.1, the set S satisfies the condition 1). Now, we check that
the set S satisfies the condition 2) in Theorem 2.1. By Lemma 6.1, then
|S|n ≤ 1. Further, as the set K in the condition (b) in (II) is included in S
and |K|n = 1, we have that |S|n = 1. Moreover, with analogous computations
of (6.3) with S instead of the set K and having in mind that |S|n = 1 and the
property b) in Proposition B, we obtain that

∑
k∈Z

n χS(t+k) = 1 a.e. Hence,
STn = [0, 1)n. Obviously the set S satisfies the condition 3) in Theorem 2.1.

We have just prove that the function χE is the low pass filter associated
to the scaling function θ in an A-MRA. Finally, according to Remark A we
finish the proof.
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