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Abstract. In this paper, we discuss the existence of integrable
solutions for a nonlinear integral equation related to some epidemic models.
The analysis uses the techniques of measures of noncompactness and relies
on an improved version of the Krasnosel’skii fixed point theorem.

1. Introduction

In 1981, Gripenberg ([15]) studied the qualitative behavior of solutions of
the equation

(1.1) x(t) = k

[

p(t) +

∫ t

0

A(t− s)x(s)ds

]

×
[

q(t) +

∫ t

0

B(t− s)x(s)ds

]

.

This equation arises in the study of the spread of an infectious disease that
does not induce permanent immunity (see, for example [5, 9, 14, 25]). In
[15], the author studied the existence of a unique bounded continuous and
nonnegative solution of (1.1) under appropriate assumptions on A and B.
He also obtained sufficient conditions for the convergence of the solution as
t → ∞. Pachpatte ([23]) provided a new integral inequality and studied
the boundedness, the asymptotic behavior and the growth of the solutions of
(1.1). Abdeldaim ([1]) and Li et al. ([19]) generalized Pachpatte’s inequality
and some integral inequalities to study the boundedness and the asymptotic
behavior of the continuous solutions of (1.1). Olaru ([22]) generalized (1.1)
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and studied the existence and the uniqueness of the continuous solution of
the following integral equation

x(t) =

m
∏

i=1

Aix(t), t ∈ [a, b].

Here Ai(x)(t) = gi(t) +
∫ t

a
Ki(t, s, x(s))ds, t ∈ [a, b]; where Ki is Lipschitz for

i = 1,m.
In this paper, we consider the following nonlinear integral equation

x(t) = u(t, x(t))+

[

p(t) +

∫ t

0

k1(t, s)f1(s, x(s))ds

]

×
[

q(t) +

∫ t

0

k2(t, s)f2(s, x(s))ds

]

,

(1.2)

for t ∈ I = [0, 1].
This equation includes many important integral and functional equations

that arise in nonlinear analysis and its applications, in particular the integral
equation (1.1).

In our considerations, we look for solutions to (1.2) in the Banach space of
real functions being integrable on I. The main tool used in our considerations
is the conjunction of the techniques of measures of noncompactness with an
improved version of the Krasnosel’skii fixed point theorem. An example is
presented to show the importance and the applicability of our results.

2. Auxiliary facts and results

In this section, we provide some notations, definitions and auxiliary facts
which will be needed for stating our results. Denote by L1(I) the set of all
Lebesgue integrable functions on I = [0, 1], endowed with the standard norm

‖x‖ =

∫

I

|x(t)|dt.

For later use, we recall the following definitions.

Definition 2.1 ([16]). Let M be a subset of a Banach space X. A
continuous map A : M −→ X is said to be (ws)–compact if for any weakly
convergent sequence (xn)n∈N in M the sequence (Axn)n∈N has a strongly
convergent subsequence in X.

Notice that the concept of ws-compact mappings arises naturally in the
study of integral and partial differential equations (see [2, 10, 12, 13, 17, 18]).

Definition 2.2 ([20]). Let (X, d) be a metric space. We say that B :
X −→ X is a separate contraction if there exist two functions ϕ, ψ : R+ −→
R+ satisfying

(1) ψ(0) = 0, ψ is strictly increasing,
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(2) d(Bx,By) ≤ ϕ(d(x, y)),
(3) ψ(r) + ϕ(r) ≤ r for r > 0.

Consider a function f : I × R −→ R (I is a bounded or unbounded
interval). We say that f satisfies the Carathéodory conditions if it is
measurable in t for any x ∈ R and continuous in x for almost all t ∈ I.
Then to every measurable function x(t) on I we may assign the function
(Fx)(t) = f(t, x(t)), t ∈ I. The operator F defined in such a way is called the
superposition operator generated by the function f .

We recall the following result due to Appell and Zabrejko ([4]).

Theorem 2.3. The superposition operator F generated by the function
f(t, x) maps continuously the space L1(I) into itself (I is an interval) if and
only if |f(t, x)| ≤ a(t) + b|x| for all t ∈ I and x ∈ R, where a(t) is a function
from L1(I) and b is a nonnegative constant.

In the sequel we will utilize the following theorem of Scorza Dragoni ([24]).

Theorem 2.4. Let I be a bounded interval and let f : I × R −→ R be a
function satisfying Carathéodory conditions. Then, for each ε > 0 there exists
a closed subset Dǫ of the interval I such that meas(I \Dǫ) < ǫ and f |Dǫ×R is
continuous.

Recall also the following well known result in L1 spaces.

Theorem 2.5 ([7, Theorem IV.9, page 58]). Let Ω be a measurable set of
R

n and (fn) a sequence in L1(Ω). Suppose that fn −→ f in L1(Ω). Then,
there exist a subsequence (fnk

) of (fn) and h ∈ L1(Ω) such that

(i) fnk
−→ f a.e. in Ω,

(ii) |fnk
(x)| ≤ |h(x)| for all k ≥ 1 and a.e in Ω.

3. Measure of weak noncompactness

In this section, we assume that X is a Banach space. Let B(X) denote
the family of all nonempty bounded subsets of X and W(X) the subset of
B(X) consisting of all relatively weakly compact subsets of X . Finally, let Br

denote the closed ball centered at 0 with radius r.
Recall the following definition of the concept of the axiomatic measure of weak
noncompactness.

Definition 3.1 ([6]). A function µ : B(X) −→ R+ is said to be a measure
of weak noncompactness if it satisfies the following conditions:

1. the family ker(µ) = {M ∈ B(X) : µ(M) = 0} is nonempty and
ker(µ) ⊂ W(X),

2. M1 ⊂M2 ⇒ µ(M1) ≤ µ(M2),
3. µ(co(M)) = µ(M), where co(M) is the convex hull of M ,
4. µ(λM1 + (1− λ)M2) ≤ λµ(M1) + (1− λ)µ(M2) for λ ∈ [0, 1],
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5. if (Mn)n≥1 is a sequence of nonempty, weakly closed subsets of X with
M1 bounded and M1 ⊇M2 ⊇ · · · ⊇Mn ⊇ · · · such that lim

n→∞
µ(Mn) =

0, then M∞ :=
⋂∞

n=1Mn is nonempty.

The first important example of measure of weak noncompactness has been
defined by De Blasi (see [8]). In the space L1(I), there is a convenient and
workable formula for the function µ which was given by Appel and De Pascale
[3] as follows: For a nonempty and bounded subset M of the space L1(I)

(3.1) µ(M) = lim
ǫ→0

{ sup
x∈M

{sup[
∫

D

|x(t)|dt : D ⊂ I,meas(D) ≤ ǫ]}}.

We will use the following criterion for relatively weakly compact sets in L1(I).

Theorem 3.2 ([11]). A bounded set S is relatively weakly compact in
L1(I) if and only if for any ε > 0 there exists δ > 0 such that if meas(D) ≤ δ

then
∫

D
|x(t)| ≤ ǫ for all x ∈ S.

4. Main result

Equation (1.2) will be studied under the following assumptions.

(i) The functions p, q : I −→ R are such that p ∈ L∞(I) and q ∈ L1(I).
Let ‖p‖ be the supremum norm of p on I and ‖q‖ be the norm of q in
L1(I).

(ii) The function u : I × R −→ R satisfies the Carathéodory conditions
and is Lipschitzian with respect to the second variable with a Lipschitz
constant α, that is, |u(t, x) − u(t, y)| ≤ α|x − y| for all t ∈ I and all
x, y ∈ R. Let β(t) = |u(t, 0)| ∈ L1(I).

(iii) The functions fi : I × R −→ R (i = 1, 2) satisfy Carathéodory
conditions and there exist constants bi and functions ai ∈ L1(I) such
that |fi(t, x)| ≤ ai(t) + bi|x| for all t ∈ I and all x ∈ R.

(iv) The function k1 : I × I −→ R is measurable and the linear Volterra
operator

K1x(t) =

∫ t

0

k1(t, s)x(s)ds, t ∈ I

maps continuously L1(I) into L∞(I). Let ‖K1‖ be the norm of this
bounded linear operator.

(v) The function k2 : I × I −→ R is measurable and the linear Volterra
operator

K2x(t) =

∫ t

0

k2(t, s)x(s)ds, t ∈ I

maps continuously L1(I) into itself. Let ‖K2‖ be the norm of this
bounded linear operator.
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(vi)

α+(‖p‖+ ‖K1‖‖a1‖)‖K2‖b2 + (‖q‖+ ‖K2‖‖a2‖)‖K1‖b1
+2

√

‖K1‖‖K2‖b1b2[‖β‖+ (‖p‖+ ‖K1‖‖a1‖)(‖q‖+ ‖K2‖‖a2‖)] < 1.

Remark 4.1. It is easy to check that, if the function k1 is bounded on
the set ∆ = {(t, s) ∈ I × I ; 0 ≤ s ≤ t ≤ 1}, then the linear operator K1

transforms the space L1(I) into L∞(I) and the norm ‖K1‖ of this operator
is majorized by ‖k1‖L∞(∆).

The following result gives a sufficient condition that the operator K2

transforms the space L1(I) into itself.

Proposition 4.2. Assume that

ess sup
0≤s≤1

∫ 1

s

|k2(t, s)|dt <∞.

Then the operator K2 maps the space L1(I) into itself and the norm ‖K2‖ of

this operator is majorized by the number ess sup
0≤s≤1

∫ 1

s
|k2(t, s)|dt.

Proof. Let k2 be a measurable function on I × I such that

ess sup
0≤s≤1

∫ 1

s

|k2(t, s)|dt <∞.

Then for all x ∈ L1(I) we have

‖K2x‖ =

∫ 1

0

∣

∣

∣

∣

∫ t

0

k2(t, s)x(s)ds

∣

∣

∣

∣

dt

≤
∫ 1

0

∫ 1

s

|k2(t, s)||x(s)|dtds

≤ ess sup
0≤s≤1

∫ 1

s

|k2(t, s)|dt ‖x‖.

This implies that K2 transforms L1(I) into itself and ‖K2‖ is majorized by

ess sup
0≤s≤1

∫ 1

s

|k2(t, s)|dt.

The following fixed point theorem is crucial for our purposes. For a proof we
refer the reader to [21].

Theorem 4.3. Let M be a nonempty bounded closed convex subset of a
Banach space X. Suppose that A : M −→ X and B : M −→ X verify:

(i) A is (ws)–compact,



400 A. BELLOUR, M. BOUSSELSAL AND M.-A. TAOUDI

(ii) there exists γ ∈ [0, 1) such that µ(AS + BS) ≤ γµ(S) for all S ⊂ M;
here µ is an arbitrary measure of weak noncompactness on X,

(iii) B is a separation contraction,
(iv) AM+BM ⊆ M.

Then there exists x ∈ M such that Ax +Bx = x.

Now we are in a position to state our main result.

Theorem 4.4. Under the assumptions above the nonlinear integral
equation (1.2) has at least one solution x ∈ L1(I).

Proof. Solving (1.2) is equivalent to finding a fixed point of the operator

A+B, where Ax(t) = [p(t) +
∫ t

0 k1(t, s)f1(s, x(s))ds]

× [q(t) +
∫ t

0 k2(t, s)f2(s, x(s))ds] and Bx(t) = u(t, x(t)). We will show that
A and B satisfy the conditions of Theorem 4.3. The proof is split into four
steps.

Step 1. We first show that there exists Br0 from L1(I) such that A(Br0)+
B(Br0) ⊂ Br0 . To see this, let x, y ∈ Br. Then

‖Ax+By‖ ≤
∫ 1

0

|u(t, y(t))|dt+
∫ 1

0

∣

∣

∣

∣

p(t) +

∫ t

0

k1(t, s)f1(s, x(s))ds

∣

∣

∣

∣

×
∣

∣

∣

∣

q(t) +

∫ t

0

k2(t, s)f2(s, x(s))ds

∣

∣

∣

∣

dt

≤ ‖β‖+ α‖y‖+ (‖p‖+ ‖K1‖(‖a1‖+ b1‖x‖))
× (‖q‖+ ‖K2‖(‖a2‖+ b2‖x‖))

≤ ‖β‖+ (‖p‖+ ‖K1‖‖a1‖)(‖q‖+ ‖K2‖‖a2‖)
+[α+ (‖p‖+ ‖K1‖‖a1‖)‖K2‖b2 + (‖q‖+ ‖K2‖‖a2‖)‖K1‖b1]r
+‖K1‖‖K2‖b1b2r2.

We define the function

f(r) = ‖β‖+(‖p‖+‖K1‖‖a1‖)(‖q‖+‖K2‖‖a2‖)−ξr+‖K1‖‖K2‖b1b2r2, r > 0

where ξ = 1−α− (‖p‖+ ‖K1‖‖a1‖)‖K2‖b2− (‖q‖+ ‖K2‖‖a2‖)‖K1‖b1. Note
that

∆ = ξ2 − 4‖K1‖‖K2‖b1b2(‖β‖+ (‖p‖+ ‖K1‖‖a1‖)(‖q‖+ ‖K2‖‖a2‖))

is nonnegative from assumption (vi) and for r0 = ξ−
√
∆

2‖K1‖‖K2‖b1b2 we have the

desired result.
Step 2. We illustrate that there exists γ ∈ [0, 1) such that µ(AS+BS) ≤

γµ(S) for all subset S of Br0 . To see this, take an arbitrary number ǫ > 0
and a nonempty subset D of I such that D is measurable and meas(D) ≤ ǫ.
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Then for any x, y ∈ S we have

∫

D

|(Ax+By)(t)|dt ≤ ‖β‖L1(D) + α‖y‖L1(D)

+ (‖p‖+ ‖K1‖(‖a1‖+ b1‖x‖L1(I)))

× (‖q‖L1(D) + ‖K2‖L1(D)(‖a2‖L1(D) + b2‖x‖L1(D)))

≤ ‖β‖L1(D) + α‖y‖L1(D) + (‖p‖+ ‖K1‖(‖a1‖+ b1r0))

× (‖q‖L1(D) + ‖K2‖(‖a2‖L1(D) + b2‖x‖L1(D))).

Now using (3.1) we get

µ(AS +BS) ≤ γµ(S),

where γ = α+ [‖p‖+ ‖K1‖(‖a1‖ + b1r0)]‖K2‖b2. Notice that by assumption
(vi) we have γ ∈ [0, 1).

Step 3. We prove that the operator H : Br0 −→ L1(I) defined by

Hx(t) = q(t) +

∫ t

0

k2(t, s)f2(s, x(s))ds

is (ws)–compact. The continuity of H follows from assumptions (iii) and (v)
on the basis of Theorem 2.3. Now, let (yn) be a weakly convergent sequence
in Br0 , then the set S = {yn, n ∈ N} is relatively weakly compact. Take an
arbitrary number ǫ > 0. In view of Theorem 3.2 there exists δ(ǫ) > 0 such
that whenever J ⊂ I and meas(J) < δ(ǫ), we have

∫

J

a2(s)ds <
ǫ

4‖K2‖(1 + b2)
and

∫

J

|yn(s)|ds <
ǫ

4‖K2‖(1 + b2)
for alln ∈ N.

Now, in view of Theorem 2.4, we can find a closed subset Dǫ ⊂ I such
that meas(I \ Dǫ) ≤ δ(ǫ) and the function q|Dǫ

is continuous and k2|Dǫ×I

is uniformly continuous. Accordingly, for all n ∈ N

∫

I\Dǫ

a2(s)ds <
ǫ

4‖K2‖(1 + b2)
and

∫

I\Dǫ

|yn(s)|ds <
ǫ

4‖K2‖(1 + b2)
.(4.1)
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Now, take t1, t2 ∈ Dǫ such that t1 ≤ t2. Then, for an arbitrary n ∈ N, we
have

|Hyn(t2)−Hyn(t1)| =
∣

∣

∣

∫ t2

0

k2(t2, s)f2(s, yn(s))ds

−
∫ t1

0

k2(t1, s)f2(s, yn(s))ds
∣

∣

∣

≤
∣

∣

∣

∫ t2

t1

k2(t2, s)f2(s, yn(s))ds
∣

∣

∣

+
∣

∣

∣

∫ t1

0

k2(t2, s)f2(s, yn(s))ds

−
∫ t1

0

k2(t1, s)f2(s, yn(s))ds
∣

∣

∣

≤
∫ t2

t1

|k2(t2, s)|[a2(s) + b2|yn(s)|]ds

+

∫ t1

0

|k2(t1, s)− k2(t2, s)|[a2(s) + b2|yn(s)|]ds

≤ ‖k2‖L∞(Dǫ×I)

∫ t2

t1

[a2(s) + b2|yn(s)|]ds

+ ω(k2, |t1 − t2|)
∫ t1

0

[a2(s) + b2|yn(s)|]ds

≤ ‖k2‖L∞(Dǫ×I)

∫ t2

t1

a2(s)ds

+ ‖k2‖L∞(Dǫ×I)b2

∫ t2

t1

|yn(s)|ds

+ ω(k2, |t1 − t2|)(‖a2‖+ b2r0),

where ω(k2, .) denotes the modulus of continuity of the function k2 on the set

Dǫ × I. Now, in virtue of Theorem 3.2 we have the terms
∫ t2

t1
|yn(s)|ds and

∫ t2

t1
|a1(s)|ds are arbitrarily small provided that the number t2 − t1 is small

enough. This means that (Hyn) is a sequence of equicontinuous functions on
Dǫ. Moreover, for an arbitrary t ∈ Dǫ and for n ∈ N, we have

|Hyn(t)| =
∣

∣

∣

∣

q(t) +

∫ t

0

k2(t, s)f2(s, yn(s))ds

∣

∣

∣

∣

≤ |q(t)|+
∫ t

0

|k2(t, s)|[a2(s) + b2|yn(s)|)]ds

≤ ‖q‖L∞(Dǫ) + ‖k2‖L∞(Dǫ×I)(‖a2‖+ b2r0).
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This means that the sequence (Hyn) is uniformly bounded in C(Dǫ). Hence
the Arzela-Ascoli theorem guarantees that {Hyn, n ∈ N} is a relatively
compact subset of C(Dǫ). This implies the existence of a convergent
subsequence (Hynk

) of (Hyn) in C(Dǫ). This subsequence is a Cauchy
sequence in C(Dǫ). Thus, for a given ǫ > 0, there exists k0 such that for
all m, k ≥ k0 we have

|Hynm
(t)−Hynk

(t)| ≤ ǫ

2meas(Dǫ)
(4.2)

for any t ∈ Dǫ.
Now, we prove that the subsequence (Hynk

) is convergent in L1(I). Since
L1(I) is a complete metric space, it suffices to prove that the subsequence
(Hynk

) is a Cauchy sequence. From (4.1) and (4.2), it follows that for all
m, k ≥ k0 we have
∫ 1

0

|Hynm
(t)−Hynk

(t)|dt =
∫

Dǫ

|Hynm
(t)−Hynk

(t)|dt

+

∫

I\Dǫ

|Hynm
(t)−Hynk

(t)|dt

≤ ǫ

2
+

∫

I\Dǫ

|(K2(f2(., ynm
(.))− f2(., ynk

(.)))(t)|

≤ ǫ

2
+ ‖K2‖L1(I\Dǫ)‖f2(t, ynm

(t))− f2(t, ynk
(t))‖L1(I\Dǫ)

≤ ǫ

2
+ ‖K2‖‖2a2(s) + b2|ynm

(s)|+ b2|ynk
(s)|‖L1(I\Dǫ)

≤ ǫ

2
+
ǫ

2
= ǫ,

which implies that (Hynk
) is a Cauchy sequence in L1(I). Finally, the

operator H is (ws)–compact.
Step 4. We show that A : Br0 −→ L1(I) is (ws)–compact. To see this,

notice that Ax = (Gx)(Hx), where G is defined by

Gx(t) = p(t) +

∫ t

0

k1(t, s)f1(s, x(s))ds.

The reasoning in Step 3 shows that H and (similarly) G are (ws)–compact.
Now, let (yn) be a weakly convergent sequence in Br0 . Then, up to a
subsequence, we may assume that there exists a subsequence (ynk

) such that
(Hynk

) and (Gynk
) converge strongly to h ∈ L1(I) and g ∈ L1(I) respectively.

Thanks to Theorem 2.5, we deduce that there exists a subsequence (wk) of
(ynk

) such that (Gwk) converges to g a.e in I. Keeping in mind that (Gwk)
is bounded by ‖p‖+ ‖K1‖(‖a1‖+ b1r0) we infer that

g ∈ L∞(I) and ‖g‖L∞(I) ≤ ‖p‖+ ‖K1‖(‖a1‖+ b1r0).
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Now, we prove that A(wk) converges in L
1(I) to gh. Notice for all k ∈ N we

have

∫ 1

0

|Awk(t)− gh(t)|dt ≤
∫ 1

0

|Gwk(t)||Hwk(t)− h(t)|dt

+

∫ 1

0

|h(t)||Gwk(t)− g(t)|dt

≤(‖p‖+ ‖K1‖(‖a1‖+ b1r0))

∫ 1

0

|Hwk(t)− h(t)|dt

+

∫ 1

0

|h(t)||Gwk(t)− g(t)|dt.

(4.3)

By Applying the Lebesgue dominated convergence theorem, we get

lim
k→∞

∫ 1

0

|h(t)||Gwk(t)− g(t)|dt = 0.

Hence by (4.3), we deduce that

lim
k→∞

∫ 1

0

|Awk(t)− gh(t)|dt = 0.

Consequently, A is (ws)–compact.
Now, Theorem 4.3 guarantees the existence of a fixed point in Br0 to

A+B, where Bx = u(., x) and hence an integrable solution to (1.2).

5. Example

Consider the following integral equation
(5.1)

x(t) = t2+
1

5
x(t)+

(

1

1 + t
+

∫ t

0

sin(ts)(s2 + x(s))ds

)
∫ t

0

1

ts+ λ
ln(1+x2(s))ds,

where t ∈ [0, 1] and λ is a positive number. Set

u(t, x) = t2 +
1

5
x, p(t) =

1

1 + t
, k1(t, s) = sin(ts), f1(t, x) = t2 + x

and

q(t) = 0, k2(t, s) =
1

ts+ λ
, f2(t, x) = ln(1 + x2).

Using the notations of Theorem 4.4, we can easily show that

β(t) = t2, α =
1

5
, ‖K1‖ ≤ 1, ‖K2‖ ≤ 1

λ
, a1(t) = t2, b1 = 1, a2(t) = 0, b2 = 1.
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Therefore, the inequality (vi) takes the form

1

5
+

4

3λ
+ 2

√

1

3λ
< 1 ⇐⇒ 4

3
+

2√
3

√
λ <

4

5
λ⇐⇒ λ >

65 + 5
√
105

24
.

Then, by Theorem 4.4 we conclude that the integral equation (5.1) has a

solution x ∈ L1(I) whenever λ > 65+5
√
105

24
∼= 4.81.
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