UNIQUENESS OF HYPERSPACES OF INDECOMPOSABLE ARC CONTINUA

Rodrigo Hernández-Gutiérrez, Alejandro Illanes and Verónica
Martínez-DE-LA-VEGA
Universidad Nacional Autónoma de México, Mexico

Abstract

Given a metric continuum X, we consider the hyperspace $C_{n}(X)$ of all nonempty closed subsets of X with at most n components. In this paper we prove that if $n \neq 2, X$ is an indecomposable continuum such that all its proper nondegenerate subcontinua are arcs and Y is a continuum such that $C_{n}(X)$ is homeomorphic to $C_{n}(Y)$, then X is homeomorphic to Y (that is, X has unique hyperspace $C_{n}(X)$).

1. Introduction

A continuum is a nondegenerate compact connected metric space. Given a continuum X, we consider the following hyperspaces of X.

$$
\begin{aligned}
2^{X} & =\{A \subset X: A \text { is nonempty and closed in } X\}, \\
C_{n}(X) & =\left\{A \in 2^{X}: A \text { has at most } n \text { components }\right\}, \\
F_{n}(X) & =\left\{A \in 2^{X}: A \text { has at most } n \text { points }\right\}, \\
C(X) & =C_{1}(X) .
\end{aligned}
$$

All hyperspaces are considered with the Hausdorff metric H.
The hyperspace $F_{n}(X)$ is known as the n-th symmetric product of X. The hyperspace $F_{1}(X)$ is an isometric copy of X embedded in each one of the hyperspaces.

A hyperspace $K(X) \in\left\{2^{X}, C_{n}(X), F_{n}(X)\right\}$ is said to be rigid provided that for each homeomorphism $h: K(X) \rightarrow K(X)$, we have, $h\left(F_{1}(X)\right)=$ $F_{1}(X)$. The continuum X is said to have unique hyperspace $K(X)$ provided

[^0]Key words and phrases. Continuum, hyperspace, indecomposability, rigidity, unique hyperspace, wire.
that the following implication holds: if Y is a continuum such that $K(X)$ is homeomorphic to $K(Y)$, then X is homeomorphic to Y.

Uniqueness of hyperspaces has been widely studied (see, for example, [3, $5,7-9,12]$ for recent references). A detailed survey of what is known about this subject can be found in [13]. In the study of hyperspaces, a useful technique is to find a topological property that characterizes the elements of $F_{1}(X)$ in the hyperspace $K(X)$. When it is possible to find such a characterization, the hyperspace $K(X)$ is rigid. This technique has been used in studying uniqueness of hyperspaces, so both topics are closely related.

Rigidity of hyperspaces was introduced in [9]. Rigidity of symmetric products was studied in [8].

A continuum X is indecomposable if it cannot be put as the union of two of its proper subcontinua. The continuum X is said to be arc continuum if each one of its nondegenerate proper subcontinuum is an arc. Examples of indecomposable arc continua are the Buckethandle continuum and the solenoids ([18, 2.8 and 2.9]).

As a consequence of $[8$, Theorem 5] and [3, Theorem 9], it follows that if X is an indecomposable arc continuum and $n \neq 3$, then X has unique hyperspace $F_{n}(X)$, the case $n=3$, remains unsolved.

In this paper we prove that if X is an indecomposable arc continuum, then X has unique hyperspaces $C_{n}(X)$ and $C_{n}(X)$ is rigid for every $n \neq 2$. The case $n=2$ remains unsolved.

2. Definitions and conventions

A map is a continuous function. Suppose that d is a metric for X. Given $\varepsilon>0, p \in X$ and $A \in 2^{X}$, let $B(\varepsilon, p)$ be the ε-open ball around p in X, $N(\varepsilon, A)=\{p \in X$: there exists $a \in A$ such that $d(p, a)<\varepsilon\}$ and $B^{H}(\varepsilon, A)=$ $\left\{B \in 2^{X}: H(A, B)<\varepsilon\right\}$ (we write $B_{X}(\varepsilon, p)$ and $N_{X}(\varepsilon, A)$ when the space X needs to be mentioned). A simple n-od is a finite graph G that is the union of n arcs emanating from a single point, v, and otherwise disjoint from one another. The point v is called the vertex of G. Simple 3-ods are called simple triods. Given subsets A_{1}, \ldots, A_{m} of X, let $\left\langle A_{1}, \ldots, A_{m}\right\rangle=\left\{B \in 2^{X}: B \cap A_{i} \neq \emptyset\right.$ for each $i \in\{1, \ldots, m\}$ and $\left.B \subset A_{1} \cup \ldots \cup A_{m}\right\}$.

We denote by S^{1} the unit circle in the Euclidean plane. A free arc in the continuum X is an $\operatorname{arc} \alpha$ with end points a and b such that $\alpha-\{a, b\}$ is open in X.

Proceeding as in [6, Lemma 2.1] and using [17, Lemma 1.48], the following lemma can be proved.

Lemma 2.1. Let X be a continuum, $n \in \mathbb{N}$ and let \mathcal{A} be a connected subset of 2^{X} such that $\mathcal{A} \cap C_{n}(X) \neq \emptyset$. Let $A_{0}=\cup\{A: A \in \mathcal{A}\}$. Then
(a) A_{0} has at most n components,
(b) if \mathcal{A} is closed in 2^{X}, then $A_{0} \in C_{n}(X)$,
(c) for each $A \in \mathcal{A}$, each component of A_{0} intersects A.

Proof. (a) follows immediately from [6, Lemma 2.1], (b) In [17, Lemma 1.48], it is proven that the map $\cup: 2^{2^{X}} \rightarrow 2^{X}$ is onto, then $A_{0} \in 2^{X}$, by (a) it has at most n components, therefore $A_{0} \in C_{n}(X)$.
(c) To prove (c) we proceed as in [6, Lemma 2.1], we write here the proof for better understanding of the reader.

Let A_{1}, \ldots, A_{m} with $m \leq n$ be the components of A_{0}, suppose to the contrary that there exist $B \in \mathcal{A}$ and A_{i}, component of A_{0}, such that $B \cap A_{i}=$ \emptyset. Assume that A_{1}, \ldots, A_{k} are such that $A_{i} \cap B \neq \emptyset$ for each $i \in\{1, \ldots, k\}$ and $A_{i} \cap B=\emptyset$ for each $i \in\{k+1, \ldots, m\}$.

Let $\mathcal{K}=\left\{C \in \mathcal{A}: C \subset A_{1} \cup \ldots \cup A_{k}\right\}$ and $\mathcal{L}=\left\{C \in \mathcal{A}: C \cap\left(A_{k+1} \cup\right.\right.$ $\left.\left.\ldots \cup A_{m}\right) \neq \emptyset\right\}$. Proceeding exactly as in the rest of the proof of [6, Lemma 2.1], we prove that \mathcal{K} and \mathcal{L} is a separation of \mathcal{A} which contradicts the fact that \mathcal{A} is connected. Therefore (c) follows and the lemma is proved.

A wire in a continuum X is a subset α of X such that α is homeomorphic to one of the spaces $(0,1),[0,1),[0,1]$ or S^{1} and α is a component of an open subset of X. By [17, Theorem 20.3], if a wire α in X is compact, then $\alpha=X$. So, if a wire is homeomorphic to $[0,1]$ or S^{1}, then X is an arc or a simple closed curve. Given a continuum X, let

$$
W(X)=\bigcup\{\alpha \subset X: \alpha \text { is a wire in } X\} .
$$

The continuum X is said to be wired provided that $W(X)$ is dense in X.
Notice that if α is a free arc of a continuum X and p, q are the end points of α, then $\alpha-\{p, q\}$ is a wire in X. Thus, a continuum for which the union of its free arcs is dense is a wired continuum. Therefore, the class of wired continua includes finite graphs, dendrites with closed set of end points, almost meshed continua ([7]), compactifications of the ray $[0, \infty)$, compactifications of the real line and indecomposable arc continua.

An m-od in a continuum X is a subcontinuum B of X for which there exists $A \in C(B)$ such that $B-A$ has at least m components. By [14, Theorem 70.1], a continuum X contains an m-od if and only if $C(X)$ contains an m-cell. Given $A, B \in 2^{X}$ such that $A \subsetneq B$, an order arc from A to B is a continuous function $\alpha:[0,1] \rightarrow C(X)$ such that $\alpha(0)=A, \alpha(1)=B$ and $\alpha(s) \subsetneq \alpha(t)$ if $0 \leq s<t \leq 1$. It is known ([17, Theorem 1.25]), that there exists an order arc from A to B if and only if $A \subsetneq B$ and each component of B intersects A.

Given a continuum X and $n \in \mathbb{N}$, let
$\mathcal{W}_{n}(X)=\left\{A \in C_{n}(X)\right.$: each component of A is contained in a wire of $\left.X\right\} ;$ and
$\mathcal{Z}_{n}(X)=\left\{A \in \mathcal{W}_{n}(X):\right.$ there is a neighborhood \mathcal{M} of A in $C_{n}(X)$ such that the component \mathcal{C} of \mathcal{M} that contains A is a $2 n$ cell $\}$.

We will use the following two results of [9].

Lemma 2.2 ([9, Lemma 2]). Let X be an indecomposable arc continuum. Then X is a wired continuum.

Theorem 2.3 ([9, Theorem 8]). Let X be a continuum and let $n \geq 3$. Then
$\mathcal{W}_{1}(X)=\left\{A \in \mathcal{W}_{n}(X)-\mathcal{Z}_{n}(X): A\right.$ has a basis \mathcal{B} of neighborhoods
in $C_{n}(X)$ such that for each $\mathcal{U} \in \mathcal{B}$, if \mathcal{C} is the component of \mathcal{U} that contains A, then $\mathcal{C} \cap \mathcal{Z}_{n}(X)$ is connected $\}$.

3. Indecomposable arc continua

Theorem 3.1. If X is an indecomposable arc continuum, then X has unique hyperspace $C_{n}(X)$ and $C_{n}(X)$ is rigid for every $n \neq 2$.

Proof. For $n=1$, the uniqueness of $C(X)$ was shown in $[1$, Theorem 2.3]. In [15, Theorem 3], it was shown that if $h: C(X) \rightarrow C(X)$ is a homeomorphism, then $h\left(F_{1}(X)\right)=F_{1}(X)$. That is, $C(X)$ is rigid.

Suppose then that $n \geq 3$. Let Y be a continuum such that there exists a homeomorphism $h: C_{n}(X) \rightarrow C_{n}(Y)$. Let $Y_{0} \in C_{n}(Y)$ be such that $h(X)=Y_{0}$.

Claim 1. The only element that arcwise disconnects $C_{n}(X)$ is X and $C_{n}(X)-\{X\}$ has uncountably many arc components.

We prove Claim 1. By [11, Corollary 2.2], and also by [16, 3.9] $C_{n}(X)-$ $\{X\}$ has uncountably many arc components. Let $A \in C_{n}(X)-\{X\}$. Let \mathcal{C} be the arc component of $C_{n}(X)-\{A\}$ such that $X \in \mathcal{C}$. We claim that $\mathcal{C}=C_{n}(X)-\{A\}$. Take $D \in C_{n}(X)-\{A\}$. If D is not contained in A, take an order arc α from D to X. Notice that for each $t \in[0,1], \alpha(t) \neq A$. Then $\operatorname{Im} \alpha \subset \mathcal{C}$ and $D \in \mathcal{C}$. Now consider the case that $D \subset A$. Then, we have that A is not a one-point set. Reasoning as in [17, Theorem 11.3], it follows that if A is not connected, then there is an arc joining D and X in $C(X)-\{A\}$. Thus, we assume that A is connected. Let $B \in C(X)-\{X\}$ be such that $A \subsetneq B$. Then A and B are arcs. Let F be a finite set containing exactly one point in each one of the components of D. Then $F \in F_{n}(X) \subset C_{n}(X)$. Let β be an order arc joining F and D. Notice that $\operatorname{Im} \beta \subset C_{n}(X)-\{A\}$. By [4, 2(a)] $F_{n}(B)$ is arcwise connected, then there exists an arc γ in $F_{n}(B)$ joining F and an element $E \subset B-A$. By the first case, $E \in \mathcal{C}$. Since $\operatorname{Im} \gamma \subset C_{n}(X)-\{A\}$, we conclude that $D \in \mathcal{C}$. We have shown that $\mathcal{C}=C_{n}(X)-\{A\}$. Hence, $C_{n}(X)-\{A\}$ is arcwise connected. This ends the proof of Claim 1.

Claim 2. $Y_{0} \in C(Y)$ and Y_{0} is indecomposable.
To prove Claim 2 observe that if Y_{0} is disconnected, then by [17, Theorem 11.3] it can be proved that $C_{n}(Y)-\left\{Y_{0}\right\}$ is arcwise connected. Since h is a homeomorphism, this contradicts Claim 1. Hence, Y_{0} is connected. Now, suppose that Y_{0} is decomposable. By [11, Lemma 2.4], $C_{n}(Y)-\left\{Y_{0}\right\}$ has at most two arc components. Since h is a homeomorphism, Claim 1 implies
that $C_{n}(Y)-\left\{Y_{0}\right\}$ has uncountably many arc components. This contradiction ends the proof of Claim 2.

Claim 3. Let $k=2 n+1$. Then $C_{n}(Y)$ does not contain k-cells.
Suppose, contrary to Claim 3, that $C_{n}(Y)$ contains a k-cell. Then there exists a k-cell \mathcal{M} in $C_{n}(X)$. Let $m=\max \left\{i \in\{1, \ldots, n\}: \mathcal{M} \cap\left(C_{i}(X)-\right.\right.$ $\left.\left.C_{i-1}(X)\right) \neq \emptyset\right\}$. Since $\mathcal{M} \cap\left(C_{m}(X)-C_{m-1}(X)\right)$ is a nonempty open subset of \mathcal{M}, there exists $A \in \mathcal{M} \cap\left(C_{m}(X)-C_{m-1}(X)\right)-\{X\}$. Let \mathcal{N} be a k-cell such that $A \in \mathcal{N} \subset \mathcal{M} \cap\left(C_{m}(X)-C_{m-1}(X)\right)-\{X\}$ and let $B=\cup\{C: C \in \mathcal{N}\}$. Let A_{1}, \ldots, A_{m} the components of A, taking

$$
\varepsilon<\min \left\{\frac{d\left(A_{i}, A_{j}\right)}{2}: i, j \in\{1, \ldots, m\} \text { and } i \neq j\right\}
$$

and $\mathcal{N} \subset B^{H}(\varepsilon . A)$, then B has at least m components and $B \neq X$. By Lemma 2.1, if $C \in \mathcal{N}$, then C intersects each component of B. Since $A \in \mathcal{N}$, A intersects each component of B. Since $A \subset B$, we have that B has exactly m components. Let B_{1}, \ldots, B_{m} be the components of B. Then each B_{i} is an arc or a one-point set. Given $C \in \mathcal{N}, C \in\left\langle B_{1}, \ldots, B_{m}\right\rangle \cap C_{n}(X)$ and, by the choice of m, C has exactly m components. Thus, the components of C are the sets $C \cap B_{1}, \ldots, C \cap B_{m}$. Let $\varphi: \mathcal{N} \rightarrow C\left(B_{1}\right) \times \ldots \times C\left(B_{m}\right)$ be given by $\varphi(C)=\left(C \cap B_{1}, \ldots, C \cap B_{m}\right)$. It is easy to check that φ is continuous and one-to-one. Hence, \mathcal{N} can be embedded in $C\left(B_{1}\right) \times \ldots \times C\left(B_{m}\right)$. Since $C([0,1])$ is a 2 -cell, we conclude that \mathcal{N} can be embedded in a j-cell for some $j \leq 2 m \leq 2 n$. This implies that $k \leq 2 n$. This contradiction proves Claim 3 .

Claim 4. If $Z \in C(Y)-F_{1}(Y)$ and $Y_{0} \nsubseteq Z$, then Z is decomposable.
Suppose, contrary to Claim 4, that Z is indecomposable. Since $Y_{0} \subset Y$, $Z \neq Y$. Let \mathcal{B} be the arc component of $C_{n}(Y)-\{Z\}$ such that $Y \in \mathcal{B}$. By [14, Theorem 70.1] and Claim 3, Y does not contain ($2 n+1$)-ods. By [11, Lemma 2.3], the set $\mathcal{K}=\left\{K \subset Z: K\right.$ is composant of Z and $\left.\langle K\rangle \cap C_{n}(Y) \cap \mathcal{B} \neq \emptyset\right\}$ has at most $2 n$ elements. Since Z has infinitely many composants [18, Theorem 11.15], we can take a composant K_{0} of Z such that $K_{0} \notin \mathcal{K}$. Fix a point $z_{0} \in$ K_{0}. Then $\left\{z_{0}\right\} \notin \mathcal{B}$. This proves that $C_{n}(Y)-\{Z\}$ is arcwise disconnected. Since h is a homeomorphism, $C_{n}(X)-\left\{h^{-1}(Z)\right\}$ is arcwise disconnected. By Claim 1, $X=h^{-1}(Z)$ and $Z=h(X)=Y_{0}$, a contradiction. Therefore, Z is decomposable.

Claim 5. If $Z \in C(Y)-F_{1}(Y)$ and $Y_{0} \nsubseteq Z$, then Z is an arc.
In order to prove Claim 5, let $\mathcal{W}=h^{-1}\left(C_{n}(Z)\right)$. Since $Y_{0} \notin C_{n}(Z)$, we have that $X=h^{-1}\left(Y_{0}\right) \notin \mathcal{W}$. Let $B=\cup\{D: D \in \mathcal{W}\}$. By Lemma 2.1, $B \in C_{n}(X)$. Let B_{1}, \ldots, B_{m} be the components of B, where $m \leq n$. By [11, Corollary 2.2], the arc component of $C_{n}(X)-\{X\}$ that contains $Z_{0}=h^{-1}(Z)$ is a set of the form $\left\langle K_{1}, \ldots, K_{r}\right\rangle \cap C_{n}(X)$, where $r \leq n$ and K_{1}, \ldots, K_{r} are composants of X. Since $C_{n}(Z)$ is arcwise connected, \mathcal{W} is an arcwise connected set and $X \notin \mathcal{W}$. Since $Z_{0} \in \mathcal{W}, \mathcal{W} \subset\left\langle K_{1}, \ldots, K_{r}\right\rangle \cap C_{n}(X)$.

This implies that $B \subset K_{1} \cup \ldots \cup K_{r}$ and then $B \neq X$. Hence, each B_{i} is an arc or a one-point set.

We claim that Z is locally connected.
Suppose to the contrary that Z is not connected im kleinen at some element $z_{0} \in Z$. Then there exist an open subset U of Z and a sequence of points $\left\{z_{j}\right\}_{j=1}^{\infty}$ in U such that $z_{0} \in U, \lim z_{j}=z_{0}$ and if E_{j} is the component of U containing $z_{j}(j \in \mathbb{N} \cup\{0\})$, then $E_{0}, E_{1}, E_{2}, \ldots$ are all different. Note that $U \neq Z$. Let V be an open subset of Z such that $z_{0} \in V$ and $\mathrm{cl}_{Z}(V) \subset U$. For each $j \in \mathbb{N}$, we assume that $z_{j} \in V$ and we take the component D_{j} of $\mathrm{cl}_{Z}(V)$ such that $z_{j} \in D_{j}$. We may assume that $\lim D_{j}=D_{0}$ for some $D_{0} \in C(Z)$. Then $z_{0} \in D_{0} \subset E_{0}, D_{j} \subset E_{j}$ and $D_{j} \cap \mathrm{bd}_{Z}(V) \neq \emptyset[17$, Theorem 2.3] for each $j \in \mathbb{N}$. Thus, $D_{0} \cap \operatorname{bd}_{Z}(V) \neq \emptyset$ and D_{0} is nondegenerate. Fix a nondegenerate continuum D such that $z_{0} \in D \subset D_{0} \cap V$.

Since $\operatorname{cl}_{Z}(V) \neq Z$, we can choose pairwise disjoint nondegenerate subcontinua G_{1}, \ldots, G_{n-1} of Z contained in $Z-\operatorname{cl}_{Z}(V)$. By Claim 4, each G_{i} is decomposable. By [14, Exercise 14.19] G_{i} contains a 2-od. So, we may assume that each G_{i} is a 2-od. For each $i \in\{1, \ldots, n-1\}$, let $R_{i} \in C\left(G_{i}\right)$ be such that $G_{i}-R_{i}$ is disconnected. By the proof of [17, Theorem 1.100], there exists a 2 -cell \mathcal{G}_{i} in $C\left(G_{i}\right)$ such that $R_{i}, G_{i} \in \mathcal{G}_{i}$ and for each $L \in \mathcal{G}_{i}$, $R_{i} \subset L \subset G_{i}$. Let $\mathcal{G}=\left\{\{y\} \cup L_{1} \cup \ldots \cup L_{n-1} \in C_{n}(Z): y \in D\right.$ and $L_{i} \in \mathcal{G}_{i}$ for each $i \in\{1, \ldots, n-1\}\}$. Notice that \mathcal{G} is homeomorphic to $D \times \mathcal{G}_{1} \times \ldots \times \mathcal{G}_{n-1}$, so $\operatorname{dim}(\mathcal{G}) \geq 2 n-1$ ([10, Remark at the end of Section 4 of Chapter III $])$. Let

$$
\mathcal{M}=h^{-1}(\mathcal{G})
$$

Then \mathcal{M} is a subcontinuum of $C_{n}(X)$ such that $\mathcal{M} \subset \mathcal{W}$ and $\operatorname{dim}(\mathcal{M}) \geq$ $2 n-1$. Notice that $X \notin \mathcal{M}$.

Let

$$
m_{0}=\max \left\{i \in\{1, \ldots, n\}: \mathcal{M} \cap\left(C_{i}(X)-C_{i-1}(X)\right) \neq \emptyset\right\}
$$

Now we show that $m_{0}=n$. If $m_{0}=1$, then $\mathcal{M} \subset C(X) \cap \mathcal{W}$. This implies that each element of \mathcal{M} is contained in $B_{1} \cup \ldots \cup B_{m}$. Thus, $\mathcal{M} \subset C\left(B_{1}\right) \cup$ $\ldots \cup C\left(B_{m}\right)$, in fact $\mathcal{M} \subset C\left(B_{k}\right)$ for some $k \in\{1, \ldots, m\}$ and so $\operatorname{dim}(\mathcal{M}) \leq 2$. Since each $C\left(B_{i}\right)$ is a one-point set or a 2 -cell, we conclude that $2 n-1 \leq$ $\operatorname{dim}(\mathcal{M}) \leq 2$. Hence, $n=1$, contrary to our assumption. Therefore, $m_{0} \geq 2$.

Let $M_{0} \in \mathcal{M} \cap\left(C_{m_{0}}(X)-C_{m_{0}-1}(X)\right)$. Let $M_{1}, \ldots, M_{m_{0}}$ be the components of M_{0}. Suppose that $M_{0}=h^{-1}\left(\left\{y_{0}\right\} \cup L_{1}^{(0)} \cup \ldots \cup L_{n-1}^{(0)}\right)$, where $y_{0} \in D$ and $L_{i}^{(0)} \in \mathcal{G}_{i}$ for each $i \in\{1, \ldots, n-1\}$. Let $\varepsilon>0$ be such that the sets $N\left(\varepsilon, M_{1}\right), \ldots, N\left(\varepsilon, M_{m_{0}}\right)$ are pairwise disjoint. Since $X \notin \mathcal{M}, M_{0} \neq X$, so we can ask that $X \neq N\left(\varepsilon, M_{1}\right) \cup \ldots \cup N\left(\varepsilon, M_{m_{0}}\right)$.

Since $C_{m_{0}-1}(X)$ is closed in $C_{n}(X)$ and h^{-1} is continuous, there exists a nondegenerate continuum D^{\prime} of D and for each $i \in\{1, \ldots, n-1\}$ there exists a 2 -cell \mathcal{G}_{i}^{\prime} such that $L_{i}^{(0)} \in \mathcal{G}_{i}^{\prime} \subset \mathcal{G}_{i}, H\left(M_{0}, h^{-1}(L)\right)<\varepsilon$ and $h^{-1}(L) \notin$
$C_{m_{0}-1}(X)$ for each $L \in \mathcal{G}^{\prime}=\left\{\{y\} \cup L_{1} \cup \ldots \cup L_{n-1} \in C_{n}(Z): y \in D^{\prime}\right.$ and $L_{i} \in \mathcal{G}_{i}^{\prime}$ for each $\left.i \in\{1, \ldots, n-1\}\right\}$.

Given $L \in \mathcal{G}^{\prime}, h^{-1}(L) \in \mathcal{M}$, then $h^{-1}(L) \in\left\langle N\left(\varepsilon, M_{1}\right), \ldots, N\left(\varepsilon, M_{m_{0}}\right)\right\rangle$, so $h^{-1}(L)$ has at least m_{0} components and, by definition of $m_{0}, h^{-1}(L)$ has at most m_{0} components. Thus, $h^{-1}(L)$ has exactly m_{0} components. Since $h^{-1}(L) \in\left\langle N\left(\varepsilon, M_{1}\right), \ldots, N\left(\varepsilon, M_{m_{0}}\right)\right\rangle \cap C_{n}(X)$, we have that the components of $h^{-1}(L)$ are the sets $h^{-1}(L) \cap N\left(\varepsilon, M_{1}\right), \ldots, h^{-1}(L) \cap N\left(\varepsilon, M_{m_{0}}\right)$. Let $L_{0}=$ $\cup\left\{h^{-1}(L): L \in \mathcal{G}^{\prime}\right\}$. By Lemma 2.1, L_{0} has at most m_{0} components, but $L_{0} \in\left\langle N\left(\varepsilon, M_{1}\right), \ldots, N\left(\varepsilon, M_{m_{0}}\right)\right\rangle \cap C_{n}(X)$, so L_{0} has exactly m_{0} components and they are $L_{0} \cap N\left(\varepsilon, M_{1}\right), \ldots, L_{0} \cap N\left(\varepsilon, M_{m_{0}}\right)$. This implies that each set $L_{0} \cap N\left(\varepsilon, M_{i}\right)$ is an arc or a one-point set. Notice that \mathcal{G}^{\prime} is homeomorphic to $D^{\prime} \times \mathcal{G}_{1}^{\prime} \times \ldots \times \mathcal{G}_{n-1}^{\prime}$, so $\operatorname{dim}\left(\mathcal{G}^{\prime}\right) \geq 2 n-1$ and $\operatorname{dim}\left(h^{-1}\left(\mathcal{G}^{\prime}\right)\right) \geq 2 n-1$.

Notice that the map $\psi: \mathcal{G}^{\prime} \rightarrow C\left(L_{0} \cap N\left(\varepsilon, M_{1}\right)\right) \times \ldots \times C\left(L_{0} \cap\right.$ $\left.N\left(\varepsilon, M_{m_{0}}\right)\right)$ given by $\psi(L)=\left(h^{-1}(L) \cap N\left(\varepsilon, M_{1}\right), \ldots, h^{-1}(L) \cap N\left(\varepsilon, M_{m_{0}}\right)\right)$ is an embedding. This shows that $\operatorname{dim}\left(C\left(L_{0} \cap N\left(\varepsilon, M_{1}\right)\right) \times \ldots \times C\left(L_{0} \cap\right.\right.$ $\left.\left.N\left(\varepsilon, M_{m_{0}}\right)\right)\right) \geq 2 n-1$. Since for each $i \in\left\{1, \ldots, m_{0}\right\}, C\left(L_{0} \cap N\left(\varepsilon, M_{i}\right)\right)$ is either a one-point set or a 2 -cell [14, Theorem 5.1], we obtain that $2 m_{0} \geq \operatorname{dim}\left(C\left(L_{0} \cap N\left(\varepsilon, M_{1}\right)\right) \times \ldots \times C\left(L_{0} \cap N\left(\varepsilon, M_{m_{0}}\right)\right)\right)$. Thus, $m_{0} \geq n$. Hence, $m_{0}=n$.

Since $M_{0} \in \mathcal{M} \subset \mathcal{W}$, we have $M_{0} \subset B$ and by Lemma 2.1, each B_{i} intersects M_{0}. Since B is a finite union of arcs or one-point sets, there exist pairwise disjoint subarcs (or one-point sets), Q_{1}, \ldots, Q_{n} of B such that for each $i \in\{1, \ldots, n\}, M_{i} \subset \operatorname{int}_{B}\left(Q_{i}\right)$. Notice that if Q is contained in a degenerate component of B, then Q_{i} is a one-point set open in B. Then $M_{0} \in C_{n}(X) \cap \mathcal{W} \cap\left\langle\operatorname{int}_{B}\left(Q_{1}\right), \ldots, \operatorname{int}_{B}\left(Q_{n}\right)\right\rangle$, which is an open subset of \mathcal{W}. We are going to see that each Q_{i} is an arc.

Since $C_{n}(X)-C_{n-1}(X)$ is open in $C_{n}(X)$ and $M_{0} \in \mathcal{M} \cap\left(C_{n}(X)-\right.$ $\left.C_{n-1}(X)\right)$, there exists $\varepsilon_{0}>0$ and for each $i \in\{1, \ldots, n-1\}$ there exists a 2-cell \mathcal{L}_{i} such that $B_{Z}\left(\varepsilon_{0}, y_{0}\right) \subset V, L_{i}^{(0)} \in \mathcal{L}_{i} \subset \mathcal{G}_{i}$ and $h^{-1}(L) \in$ $\left\langle\operatorname{int}_{B}\left(Q_{1}\right), \ldots, \operatorname{int}_{B}\left(Q_{n}\right)\right\rangle \cap C_{n}(X) \cap \mathcal{W}$ for each $L \in \mathcal{L}$, where

$$
\mathcal{L}=\left\{A \cup L_{1} \cup \ldots \cup L_{n-1} \in C_{n}(Z): H\left(A,\left\{y_{0}\right\}\right)<\varepsilon_{0} \text { and } L_{i} \in \mathcal{L}_{i}\right.
$$

for each $i \in\{1, \ldots, n-1\}\}$.
Fix a sequence $\left\{y_{m}\right\}_{m=1}^{\infty}$ in Z such that $\lim y_{m}=y_{0}$ and $y_{m} \in D_{m}$ for each $m \in \mathbb{N}$. Let $N_{0} \in \mathbb{N}$ be such that $y_{m} \in B_{Y}\left(\frac{\varepsilon_{0}}{2}, y_{0}\right)$ for each $m \geq N_{0}$. For each $m \geq N_{0}$, choose a subcontinuum P_{m} of Z such that diameter $\left(P_{m}\right)=\frac{\varepsilon_{0}}{2}$ and $y_{m} \in P_{m}$. Then $P_{m} \subset V$, so $P_{m} \subset D_{m}$. Taking a subsequence if necessary, we may assume that $\lim P_{m}=P_{0}$ for some $P_{0} \in C(Z)$ and $\lim C\left(P_{m}\right)=\mathcal{P}$ and some $\mathcal{P} \in C(C(Z))$. Then $y_{0} \in P_{0}$, diameter $\left(P_{0}\right)=\frac{\varepsilon_{0}}{2}$ and $\mathcal{P} \subset C\left(P_{0}\right)$. Then $P_{0} \subset D_{0}$. Fix points $p_{0}, q_{0} \in P_{0}$ such that $p_{0} \neq q_{0}$ and choose sequences $\left\{p_{m}\right\}_{m=N_{0}}^{\infty},\left\{q_{m}\right\}_{m=N_{0}}^{\infty}$ is Z such that $\lim p_{m}=p_{0}, \lim q_{m}=q_{0}$ and for each $m \geq N_{0}, p_{m} \in P_{m}$. Given $m \geq N_{0}$, choose order $\operatorname{arcs} \alpha_{m}, \beta_{m}$ from $\left\{p_{m}\right\}$ to P_{m} and $\left\{q_{m}\right\}$ to P_{m}, respectively. Let $\mathcal{T}_{m}=\operatorname{Im} \alpha_{m}$ and $\mathcal{S}_{m}=\operatorname{Im} \beta_{m}$. We may
assume also that $\lim \mathcal{T}_{m}=\mathcal{T}_{0}$ and $\lim \mathcal{S}_{m}=\mathcal{S}_{0}$, for some $\mathcal{T}_{0}, \mathcal{S}_{0} \in C\left(C\left(P_{0}\right)\right)$. By [17, Remark 1.34], each of the sets \mathcal{T}_{0} and \mathcal{S}_{0} are images of respective order arcs from $\left\{p_{0}\right\}$ to P_{0} and $\left\{q_{0}\right\}$ to P_{0}. Notice that $F_{1}\left(P_{0}\right) \cup \mathcal{T}_{0} \cup \mathcal{S}_{0} \subset \mathcal{P}$.

Given $m \in\left\{0, N_{0}, N_{0}+1, \ldots\right\}$ and a subcontinuum A of P_{m}, since $A \subset$ $P_{m} \subset B_{Y}\left(\varepsilon_{0}, y_{0}\right), H\left(A,\left\{y_{0}\right\}\right)<\varepsilon_{0}$. Thus, for each choice of elements $L_{i} \in \mathcal{L}_{i}$ $(i \in\{1, \ldots, n-1\}), A \cup L_{1} \cup \ldots \cup L_{n-1} \in \mathcal{L}$.

Given $L \in \mathcal{L}, h^{-1}(L) \in\left\langle\operatorname{int}_{B}\left(Q_{1}\right), \ldots, \operatorname{int}_{B}\left(Q_{n}\right)\right\rangle \cap C_{n}(X) \cap \mathcal{W}$. Since Q_{1}, \ldots, Q_{n} are pairwise disjoint, we have that $h^{-1}(L)$ has exactly n components and they are $h^{-1}(L) \cap Q_{1}, \ldots, h^{-1}(L) \cap Q_{n}$. Let $\mathcal{A}=C\left(Q_{1}\right) \times$ $\ldots \times C\left(Q_{n}\right)$. Define $\sigma: \mathcal{L} \rightarrow \mathcal{A}$ by $\sigma(L)=\left(h^{-1}(L) \cap Q_{1}, \ldots, h^{-1}(L) \cap Q_{n}\right)$. Clearly, σ is an embedding. By [17, Theorem 2.1], $\operatorname{dim}\left[C\left(P_{0}\right)\right] \geq 2$. Since \mathcal{L} contains a topological copy of $C\left(P_{0}\right) \times \mathcal{L}_{1} \times \ldots \times \mathcal{L}_{n-1}$ and the dimension of this set is $\operatorname{dim}\left[C\left(P_{0}\right)\right]+2(n-1) \geq 2 n[10$, Remark at the end of Section 4 of Chapter III], we have that $\operatorname{dim}[\mathcal{A}] \geq 2 n$. Since each $C\left(Q_{i}\right)$ is a one-point set or a 2 -cell, $\operatorname{dim}[\mathcal{A}] \leq 2 n$, so $\operatorname{dim}[\mathcal{A}]=2 n$. This implies that each Q_{i} is an arc and \mathcal{A} is a $2 n$-cell.

Since $F_{1}\left(P_{0}\right) \subset \mathcal{P}$, we have $\operatorname{dim}(\mathcal{P}) \geq 1$. To finish the proof that Z is locally connected, we analyze two cases.

Case 1. $\operatorname{dim}(\mathcal{P}) \geq 2$.
In this case, let $\mathcal{L}_{0}=\left\{A \cup L_{1} \cup \ldots \cup L_{n-1} \in C_{n}(Z): A \in \mathcal{P}\right.$ and $L_{i} \in \mathcal{L}_{i}$ for each $i \in\{1, \ldots, n-1\}\}$. Since \mathcal{L}_{0} is homeomorphic to $\mathcal{P} \times[0,1]^{2(n-1)}$, $\operatorname{dim}\left[\mathcal{L}_{0}\right] \geq 2 n$. Since $\left.\sigma\right|_{\mathcal{L}_{0}}: \mathcal{L}_{0} \rightarrow \mathcal{A}$ is an embedding, $\operatorname{dim}\left[\mathcal{L}_{0}\right]=2 n . \quad \mathrm{By}$ [10, Theorem IV 3], $\operatorname{int}_{\mathcal{A}}\left[\sigma\left(\mathcal{L}_{0}\right)\right]$ is nonempty. Let $L=A \cup L_{1} \cup \ldots \cup L_{n-1} \in$ $C_{n}(Z)$ be such that $\sigma(L) \in \operatorname{int}_{\mathcal{A}}\left[\sigma\left(\mathcal{L}_{0}\right)\right]$, where $A \in \mathcal{P}$ and $L_{i} \in \mathcal{L}_{i}$ for each $i \in\{1, \ldots, n-1\}$. Since $A \in \mathcal{P}=\lim C\left(P_{m}\right)$, there exists a sequence $\left\{A_{m}\right\}_{m=1}^{\infty}$ in $C(Z)$ such that $\lim A_{m}=A$ and $A_{m} \in C\left(P_{m}\right)$ for each $m \in$ \mathbb{N}. Then $\lim \sigma\left(A_{m} \cup L_{1} \cup \ldots \cup L_{n-1}\right)=\sigma\left(A \cup L_{1} \cup \ldots \cup L_{n-1}\right)=\sigma(L) \in$ $\operatorname{int}_{\mathcal{A}}\left[\sigma\left(\mathcal{L}_{0}\right)\right]$. Thus, there exists $m \in \mathbb{N}$ such that $\sigma\left(A_{m} \cup L_{1} \cup \ldots \cup L_{n-1}\right) \in$ $\sigma\left(\mathcal{L}_{0}\right)$. Since σ is one-to-one, $A_{m} \cup L_{1} \cup \ldots \cup L_{n-1} \in \mathcal{L}_{0}$. This implies that $A_{m} \cup L_{1} \cup \ldots \cup L_{n-1}=A^{\prime} \cup L_{1}^{\prime} \cup \ldots \cup L_{n-1}^{\prime}$, where $A^{\prime} \in \mathcal{P}$ and $L_{i}^{\prime} \in \mathcal{L}_{i}$ for each $i \in\{1, \ldots, n-1\}$. Intersecting these sets with $B_{C_{n}(Z)}\left(\varepsilon_{0},\left\{y_{0}\right\}\right)$, we obtain that $A_{m}=A^{\prime}$. This is a contradiction since $A_{m} \in C\left(P_{m}\right), A^{\prime} \in \mathcal{P} \subset C\left(P_{0}\right)$ and $P_{0} \cap P_{m}=\emptyset$. Therefore, this case is impossible.

Case 2. $\operatorname{dim}(\mathcal{P})=1$.
Let S^{+}(respectively, S^{-}) be the upper (lower) half of S^{1}. Since $F_{1}\left(P_{0}\right) \cap$ $\left(\mathcal{T}_{0} \cup \mathcal{S}_{0}\right)=\left\{\left\{p_{0}\right\},\left\{q_{0}\right\}\right\}$, by Urysohn's lemma for metric spaces, there exists a $\operatorname{map} f: F_{1}\left(P_{0}\right) \cup \mathcal{T}_{0} \cup \mathcal{S}_{0} \rightarrow S^{1}$ such that $f\left(F_{1}\left(P_{0}\right)\right)=S^{-}, f\left(\left\{p_{0}\right\}\right)=\{(-1,0)\}$, $f\left(\left\{q_{0}\right\}\right)=\{(1,0)\}$ and $f\left(\mathcal{T}_{0} \cup \mathcal{S}_{0}\right)=S^{+}$. Since $\operatorname{dim}(\mathcal{P})=1$, by [10, Theorem VI 4] the map f can be extended to a map (we also call f to the extension) $f: \mathcal{P} \rightarrow S^{1}$. Since S^{1} is an $A N R, f$ can be extended to a map (we also call f to the extension) $f: \mathcal{U} \rightarrow S^{1}$, where \mathcal{U} is an open subset of $C(Z)$ such that $\mathcal{P} \subset \mathcal{U}$. Since $\lim \mathcal{T}_{m} \cup \mathcal{S}_{m}=\mathcal{T}_{0} \cup \mathcal{S}_{0}$ and $\lim F_{1}\left(P_{m}\right)=F_{1}\left(P_{0}\right)$, there exists $m \geq N_{0}$ such that $C\left(P_{m}\right) \subset \mathcal{U}, f\left(\mathcal{T}_{m} \cup \mathcal{S}_{m}\right) \subset N_{S^{1}}\left(\frac{1}{10}, S^{+}\right), f\left(F_{1}\left(P_{m}\right)\right) \subset$
$N_{S^{1}}\left(\frac{1}{10}, S^{-}\right), f\left(\left\{p_{m}\right\}\right) \in N_{S^{1}}\left(\frac{1}{10},\{(-1,0)\}\right)$ and $f\left(\left\{q_{m}\right\}\right) \in N_{S^{1}}\left(\frac{1}{10},\{(1,0)\}\right)$. [19, Lemma 5.12] and the fact that $F_{1}\left(P_{m}\right) \cap\left(\mathcal{T}_{m} \cup \mathcal{S}_{m}\right)=\left\{p_{m}, q_{m}\right\}$ imply that $f \mid F_{1}\left(P_{m}\right) \cup \mathcal{T}_{m} \cup \mathcal{S}_{m}$ cannot be lifted (that is, there is not a map f_{1} : $F_{1}\left(P_{m}\right) \cup \mathcal{T}_{m} \cup \mathcal{S}_{m} \rightarrow \mathbb{R}$ such that $\left.f \mid F_{1}\left(P_{m}\right) \cup \mathcal{T}_{m} \cup \mathcal{S}_{m}=\left(\cos \circ f_{1}, \sin \circ f_{1}\right)\right)$. But, by [2, Lemma 13], $f \mid C\left(P_{m}\right)$ can be lifted. Since $F_{1}\left(P_{m}\right) \cup \mathcal{T}_{m} \cup \mathcal{S}_{m} \subset C\left(P_{m}\right)$, we conclude that $f \mid F_{1}\left(P_{m}\right) \cup \mathcal{T}_{m} \cup \mathcal{S}_{m}$ can be lifted. This contradiction proves that this case is also impossible. Therefore, we have shown that Z is locally connected.

Now, suppose that Z contains a simple triod T, we may assume that $T \neq Z$, so we can construct $\operatorname{arcs} J_{1}, \ldots, J_{n-1}$ is Z such that $T, J_{1}, \ldots, J_{n-1}$ are pairwise disjoint. Since $C(T) \times C\left(J_{1}\right) \times \ldots \times C\left(J_{n-1}\right)$ is naturally embedded in $C_{n}(Z)$. By [14, Examples 5.1 and 5.4], $C(T) \times C\left(J_{1}\right) \times \ldots \times C\left(J_{n-1}\right)$ contains a $(2 n+1)$-cell. This contradicts Claim 3 and ends the proof that Z does not contain simple triods. Hence, Z is an arc or a simple closed curve. Using an order arc from Z to Y, it is possible to construct a subcontinuum Z_{1} of Y such that $Z \subsetneq Z_{1}$ and $Y_{0} \nsubseteq Z_{1}$. Thus, we can apply what we have proved to Z_{1} and conclude that Z_{1} is an arc or a simple closed curve. Therefore, Z is an arc. This completes the proof of Claim 5 .

Claim 6. If $D \in C_{n}(Y)$ and $Y_{0} \nsubseteq D$, then $D \in \mathcal{W}_{n}(Y)$. Moreover, $\mathcal{W}_{n}(X)=C_{n}(X)-\{X\}$.

We prove the first part of Claim 6, the second one can be made with similar arguments. Let V be an open subset of Y such that $D \subset V$ and $Y_{0} \nsubseteq$ $\mathrm{cl}_{Y}(V)$. Let Z be a component of D. Let W be the component of V containing Z. By Claim 5, Z is an arc or a one-point set. Let B be the component of $\operatorname{cl}_{Y}(V)$ such that $Z \subset B$. Then B is nondegenerate. By Claim $5, B$ is an arc. By [18, Theorem 12.10], $\operatorname{cl}_{Y}(W) \cap(Y-V) \neq \emptyset$. Thus, W is not compact. Then W is a non compact connected subset of B. Hence, W is homeomorphic either to $[0,1)$ or $(0,1)$. That is, W is a wire. This ends the proof of Claim 6 .

Claim 7. If $Z \in C(Y)-F_{1}(Y)$ and $Y_{0} \nsubseteq Z$, then $h^{-1}(Z)$ is connected.
We prove Claim 7. Let $A=h^{-1}(Z)$. By Claim $6, Z \in W_{1}(Y)$, and by Theorem 2.3, $Z \notin \mathcal{Z}_{n}(Y)$. Since $A \neq X$, by Claim $6, A \in \mathcal{W}_{n}(X)$. Since h is a homeomorphism, $Z \notin \mathcal{Z}_{n}(Y)$ and the definition of $\mathcal{Z}_{n}(X)$ is given in terms of topological properties that are preserved under homeomorphisms, we obtain that $A \notin \mathcal{Z}_{n}(X)$. By Theorem 2.3, Z has a basis \mathcal{B} of neighborhoods in $C_{n}(Y)$ such that for each $\mathcal{V} \in \mathcal{B}$, if \mathcal{C} is the component of \mathcal{V} that contains Z, then $\mathcal{C} \cap \mathcal{Z}_{n}(Y)$ is connected. Since $Y_{0} \nsubseteq Z$, we can ask that for each $\mathcal{V} \in \mathcal{B}$ and each $B \in \mathcal{V}, Y_{0} \nsubseteq B$, then by Claim $6, B \in \mathcal{W}_{n}(Y)$ and $h(X) \notin \mathcal{V}$. Using the fact that h is a homeomorphism and the second part of Claim 6, it is easy to show that if $\mathcal{V} \in \mathcal{B}$ and \mathcal{C} is the component of \mathcal{V} that contains Z, then $h^{-1}(\mathcal{C}) \cap \mathcal{Z}_{n}(X)=h^{-1}\left(\mathcal{C} \cap \mathcal{Z}_{n}(Y)\right)$. Define $h^{-1}(\mathcal{B})=\left\{h^{-1}(\mathcal{V}) \subset\right.$ $\left.C_{n}(X): \mathcal{V} \in \mathcal{B}\right\}$. Then $h^{-1}(\mathcal{B})$ is a basis of neighborhoods of A in $C_{n}(X)$. Given $\mathcal{V} \in \mathcal{B}$ and \mathcal{C} the component of \mathcal{V} that contains Z, the equality $h^{-1}(\mathcal{C}) \cap$ $\mathcal{Z}_{n}(X)=h^{-1}\left(\mathcal{C} \cap \mathcal{Z}_{n}(Y)\right)$ implies that $h^{-1}(\mathcal{C}) \cap \mathcal{Z}_{n}(X)$ is connected. Hence,
we can apply Theorem 2.3 to conclude that $A \in \mathcal{W}_{1}(X)$. In particular, A is connected. Hence, $h^{-1}(Z)$ is connected.

Claim 8. Let K_{1}, \ldots, K_{r} be composants of X, where $r \leq n$. Then $C(X) \subset \mathrm{cl}_{C_{n}(X)}\left(\left\langle K_{1}, \ldots, K_{r}\right\rangle \cap C_{n}(X)\right)$.

We prove Claim 8. Since $C(X)-\left(\{X\} \cup F_{1}(X)\right)$ is dense in $C(X)$, it is enough to show that $C(X)-\left(\{X\} \cup F_{1}(X)\right) \subset \operatorname{cl}_{C_{n}(X)}\left(\left\langle K_{1}, \ldots, K_{r}\right\rangle \cap C_{n}(X)\right)$. Let $E \in C(X)-\left(\{X\} \cup F_{1}(X)\right)$. Then E is an arc. Let a_{1}, a_{2} be the end points of E. Let K be a composant of X. Given $i \in\{1,2\}$, let $A_{i}(K)=\{p \in E$: there exists a sequence $\left\{B_{m}\right\}_{m=1}^{\infty}$ in $\langle K\rangle \cap C(X)$ converging to a subcontinuum B of E and $\left.p, a_{i} \in B\right\}$. Since K is dense in $X,\left\{a_{i}\right\} \in A_{i}(K)$. It is easy to show that $A_{i}(K)$ is closed in E and that if $p \in A_{i}(K)$, then the subarc of E joining a_{i} and p is contained in $A_{i}(K)$. Thus $A_{i}(K)$ is a subcontinuum of E.

We claim that $E=A_{1}(K) \cup A_{2}(K)$. Take $p \in E-\left\{a_{1}, a_{2}\right\}$. Let $\left\{p_{m}\right\}_{m=1}^{\infty}$ be a sequence in K such hat $\lim p_{m}=p$. Let $\mu: C(X) \rightarrow[0,1]$ be a Whitney map, where $\mu(X)=1$ ([14, Theorem 13.4]). Using order arcs, it is possible to find a subcontinuum B_{m} of X such that $p_{m} \in B_{m}$ and $\mu\left(B_{m}\right)=\mu(E)$, for each $m \in \mathbb{N}$. We may assume that $\lim B_{m}=B$ for some $B \in C(X)$. For each $m \in \mathbb{N}$, since $E \neq X$, we have that $B_{m} \neq X$. This implies that $B_{m} \in\langle K\rangle \cap C(X)$. Notice that $p \in B$. Since E and B are proper subcontinua of $X, E \cup B$ is a subcontinuum of X, so $E \cup B$ is an arc. Since $\mu(E)=\mu(B)$, it is not possible that $B \subsetneq E$. This implies that $a_{1} \in B$ or $a_{2} \in B$.

For each $m \in \mathbb{N}$, let $\alpha_{m}:[0,1] \rightarrow C\left(B_{m}\right)$ be an order arc from $\left\{p_{m}\right\}$ to B_{m}. We may assume that $\lim \operatorname{Im} \alpha_{m}=\gamma$ for some $\gamma \in C(C(X))$. By [17, Remark 1.34], γ is the image of an order arc $\alpha:[0,1] \rightarrow C(X)$ that joins $\{p\}$ to B. Let $s_{0}=\min \left\{s \in[0,1]: \gamma(s) \cap\left\{a_{1}, a_{2}\right\} \neq \emptyset\right\}$. Given $s<s_{0}$, $\gamma(s) \cap\left\{a_{1}, a_{2}\right\}=\emptyset, \gamma(s)$ intersects the arc E and $\gamma(s)$ is contained in the arc $E \cup B$. This implies that $\gamma(s) \subset E$. Hence, $\gamma\left(s_{0}\right) \subset E$. Since $\gamma\left(s_{0}\right)$ belongs to $\lim \operatorname{Im} \alpha_{m}, \gamma\left(s_{0}\right)$ satisfies the conditions in the definition of $A_{i}(K)$, this allows us to conclude that $p \in A_{1}(K) \cup A_{2}(K)$. We have shown that $E=A_{1}(K) \cup A_{2}(K)$.

In the case that $r=1$, by the connectedness of E, we conclude that there exists a point $p \in A_{1}\left(K_{1}\right) \cap A_{2}\left(K_{1}\right)$. Let $\left\{B_{m}\right\}_{m=1}^{\infty}$ and $\left\{C_{m}\right\}_{m=1}^{\infty}$ be sequences in $\left\langle K_{1}\right\rangle \cap C(X)$ converging to respective subcontinua B and C of E satisfying $p, a_{1} \in B$ and $p, a_{2} \in C$. Then $B \cup C$ is a subcontinuum of E containing a_{1} and a_{2}. Thus, $E=B \cup C$. Hence, $E=\lim B_{m} \cup C_{m}$. Since $B_{m} \cup C_{m} \in\left\langle K_{1}\right\rangle \cap C_{n}(X)$ for each $m \in \mathbb{N}$, we conclude that $E \in$ $\operatorname{cl}_{C_{n}(X)}\left(\left\langle K_{1}\right\rangle \cap C_{n}(X)\right)$.

In the case $r \geq 2$, take the natural order in E such that $a_{1}<a_{2}$. By the connectedness of E, we can choose points $p_{1} \in A_{1}\left(K_{1}\right) \cap A_{2}\left(K_{1}\right)$ and $p_{2} \in$ $A_{1}\left(K_{2}\right) \cap A_{2}\left(K_{2}\right)$. We can assume that $p_{1} \leq p_{2}$. Let $\left\{B_{m}\right\}_{m=1}^{\infty}$ and $\left\{C_{m}\right\}_{m=1}^{\infty}$ be sequences in $\left\langle K_{1}\right\rangle \cap C(X)$ and $\left\langle K_{2}\right\rangle \cap C(X)$, respectively, converging to subcontinua B and C, respectively, of E satisfying $p_{1}, a_{2} \in B$ and $p_{2}, a_{1} \in C$. Thus, $E=B \cup C$ and $E=\lim B_{m} \cup C_{m}$. For each $i \in\{3, \ldots, r\}$, choose
a sequence $\left\{x_{m}^{(i)}\right\}_{m=1}^{\infty}$ in K_{i} such that $\lim x_{m}^{(i)}=a_{1}$. For each $m \in \mathbb{N}$, let $E_{m}=B_{m} \cup C_{m} \cup\left\{x_{m}^{(3)}, \ldots, x_{m}^{(r)}\right\}$. Then $E_{m} \in\left\langle K_{1}, \ldots, K_{r}\right\rangle \cap C_{n}(X)$ and $\lim E_{m}=E$. This ends the proof of Claim 8.

Claim 9. $Y_{0}=Y$.
Since $C_{n}(X)-\{X\}$ has uncountably many arc components (Claim 1), $C_{n}(Y)-\left\{Y_{0}\right\}$ has uncountably many arc components. Let \mathcal{G} be an arc component of $C(Y)-\left\{Y_{0}\right\}$ such that $Y \notin \mathcal{G}$. Given $G \in \mathcal{G}$, if $G \nsubseteq Y_{0}$, then an order arc from G to Y is a path connecting G to Y without passing through Y_{0}, a contradiction. Thus, $G \subset Y_{0}$ and $\mathcal{G} \subset C_{n}\left(Y_{0}\right)$. By [11, Corollary 2.2], $h^{-1}(\mathcal{G})$ is of the form $h^{-1}(\mathcal{G})=\left\langle K_{1}, \ldots, K_{r}\right\rangle \cap C_{n}(X)$ for some $r \leq n$ and composants K_{1}, \ldots, K_{r} of X. Suppose that $Y_{0} \neq Y$. Take a point $y \in Y-Y_{0}$. Then there exists a nondegenerate subcontinuum Z of Y such that $y \in Z \subset Y-Y_{0}$. Let $E=h^{-1}(Z)$. By Claim 7, E is a subcontinuum of X. By Claim $8, E \in \operatorname{cl}_{C_{n}(X)}\left(\left\langle K_{1}, \ldots, K_{r}\right\rangle \cap C_{n}(X)\right)$. Then $Z \in \mathrm{cl}_{C_{n}(Y)}\left(h\left(\left\langle K_{1}, \ldots, K_{r}\right\rangle \cap C_{n}(X)\right)\right)=\operatorname{cl}_{C_{n}(Y)}(\mathcal{G}) \subset C_{n}\left(Y_{0}\right)$ and $Z \subset Y_{0}$. This contradicts the choice of Z and completes the proof of Claim 9.

We have shown that Y is an indecomposable continuum (Claim 2) such that each one of its nondegenerate proper subcontinua are arcs (Claim 5). Moreover, $h^{-1}(Z) \in C(X)$ for each $Z \in C(Y)$ (this follows from Claim 7). Thus, Y satisfies the initial conditions we had for X. By symmetry, we can conclude that $h(W) \in C(Y)$ for each $W \in C(X)$. Hence, $\left.h\right|_{C(X)}: C(X) \rightarrow$ $C(Y)$ is a homeomorphism. By [15, Theorem 3], $h\left(F_{1}(X)\right)=F_{1}(Y)$. This proves that X has unique hyperspace $C_{n}(X)$ and $C_{n}(X)$ is rigid.

Question 3.1. Suppose that X is a wired continuum. Is it true that $C_{2}(X)$ is not rigid? It would be interesting to determine if $C_{2}(X)$ is rigid for the Buckethandle continuum (see [18, 2.9] for a description), the solenoids (see [18, 2.8] for a description) or the cone over the Cantor set.

Question 3.2 ([13, Problem 23]). Suppose that X is an indecomposable arc continuum. Does X have unique hyperspace $C_{2}(X)$? It would be interesting to solve this question for the case that X is the buckethandle or a solenoid.

Acknowledgements.
This research was partially supported by the project "Hiperespacios topológicos (0128584)" of CONACYT, 2009; and the project "Teoría de Continuos, Hiperespacios y Sistemas Dinámicos" (IN104613) of PAPIIT, DGAPA, UNAM.

References

[1] G. Acosta, Continua with almost unique hyperspace, Topology Appl. 117 (2002), 175189.
[2] J. G. Anaya, Making holes in hyperspaces, Topology Appl. 154 (2007), 2000-2008.
[3] J. G. Anaya, E. Castañeda-Alvarado and A. Illanes, Continua with unique symmetric products, Comment. Math. Univ. Carolin. 54 (2013), 397-406.
[4] K. Borsuk and S. Ulam, On symmetric product of topological spaces, Bull. Amer. Math. Soc. 37 (1931), 875-882.
[5] D. Herrera-Carrasco, F. Macías-Romero, A. Illanes and F. Vázquez-Juárez, Finite graphs have unique hyperspace $H S_{n}(\mathrm{X})$, Topology Proc. 44 (2014), 75-95.
[6] J. J. Charatonik and A. Illanes, Local connectedness in hyperspaces, Rocky Mountain J. Math. 36 (2006), 811-856.
[7] R. Hernández-Gutiérrez, A. Illanes and V. Martínez-de-la-Vega, Uniqueness of hyperspaces for Peano continua, Rocky Mountain J. Math. 43 (2013), 1583-1624.
[8] R. Hernández-Gutiérrez and V. Martínez-de-la-Vega, Rigidity of symmetric products, Topology Appl. 160 (2013), 1577-1587.
[9] R. Hernández-Gutiérrez, A. Illanes and V. Martínez-de-la-Vega, Rigidity of hyperspaces, to appear in Rocky Mountain J. Math.
[10] W. Hurewicz and H. Wallman, Dimension theory, Princeton University Press, Princeton, $9^{\text {th }}$ printing, 1974.
[11] A. Illanes, Hyperspaces with exactly two or three orbits, Aportaciones Mat. Investig. 19 (2007), 45-58.
[12] A. Illanes, Hereditarily indecomposable Hausdorff continua have unique hyperspaces 2^{X} and $C_{n}(X)$, Publ. Inst. Math. (Beograd) (N.S.) 89(103) (2011), 49-56.
[13] A. Illanes, Uniqueness of hyperspaces, Questions Answers Gen. Topology 30 (2012), 21-44.
[14] A. Illanes and S. B. Nadler, Jr., Hyperspaces. Fundamentals and recent advances, Marcel Dekker, Inc., New York and Basel, 1999.
[15] S. Macías, On C-determined continua, Glas. Mat. Ser. III 32(52) (1997), 259-262.
[16] S. Macías, On the hyperspaces $C_{n}(X)$ of a continuum X, II, Topology Proc. 25 (2000), 255-276.
[17] S. B. Nadler, Jr., Hyperspaces of sets. A text with research questions, Marcel Dekker, Inc., New York and Basel, 1978.
[18] S. B. Nadler, Jr., Continuum theory. An introduction, Marcel Dekker, Inc., New York, Basel and Hong Kong, 1992.
[19] S. B. Nadler, Jr., The fixed point property for continua, Sociedad Matemática Mexicana, México, 2005.
R. Hernández-Gutiérrez

Centro de Ciencias Matemáticas
Universidad Nacional Autónoma de México
A.P. 61-3, Xangari, Morelia, Michoacán, 58089

México
E-mail: rod@matmor.unam.mx
A. Illanes

Instituto de Matemáticas
Universidad Nacional Autónoma de México
Circuito Exterior, Cd. Universitaria
México, 04510, D.F.
E-mail: illanes@matem.unam.mx
V. Martínez-de-la-Vega

Instituto de Matemáticas
Universidad Nacional Autónoma de México
Circuito Exterior, Cd. Universitaria
México, 04510, D.F.
E-mail: vmvm@matem.unam.mx
Received: 1.1.2013.
Revised: 8.10.2013.

[^0]: 2010 Mathematics Subject Classification. 54B20, 54F15.

