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Abstract. Given a metric continuum X, we consider the hyperspace
Cn(X) of all nonempty closed subsets of X with at most n components. In
this paper we prove that if n 6= 2, X is an indecomposable continuum such
that all its proper nondegenerate subcontinua are arcs and Y is a continuum
such that Cn(X) is homeomorphic to Cn(Y ), then X is homeomorphic to
Y (that is, X has unique hyperspace Cn(X)).

1. Introduction

A continuum is a nondegenerate compact connected metric space. Given
a continuum X , we consider the following hyperspaces of X .

2X = {A ⊂ X : A is nonempty and closed in X},

Cn(X) = {A ∈ 2X : A has at most n components},

Fn(X) = {A ∈ 2X : A has at most n points},

C(X) = C1(X).

All hyperspaces are considered with the Hausdorff metric H .
The hyperspace Fn(X) is known as the n-th symmetric product of X .

The hyperspace F1(X) is an isometric copy of X embedded in each one of the
hyperspaces.

A hyperspace K(X) ∈ {2X , Cn(X), Fn(X)} is said to be rigid provided
that for each homeomorphism h : K(X) → K(X), we have, h(F1(X)) =
F1(X). The continuum X is said to have unique hyperspace K(X) provided
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that the following implication holds: if Y is a continuum such that K(X) is
homeomorphic to K(Y ), then X is homeomorphic to Y .

Uniqueness of hyperspaces has been widely studied (see, for example, [3,
5,7–9,12] for recent references). A detailed survey of what is known about this
subject can be found in [13]. In the study of hyperspaces, a useful technique
is to find a topological property that characterizes the elements of F1(X) in
the hyperspace K(X). When it is possible to find such a characterization,
the hyperspace K(X) is rigid. This technique has been used in studying
uniqueness of hyperspaces, so both topics are closely related.

Rigidity of hyperspaces was introduced in [9]. Rigidity of symmetric
products was studied in [8].

A continuum X is indecomposable if it cannot be put as the union of two
of its proper subcontinua. The continuum X is said to be arc continuum if
each one of its nondegenerate proper subcontinuum is an arc. Examples
of indecomposable arc continua are the Buckethandle continuum and the
solenoids ([18, 2.8 and 2.9]).

As a consequence of [8, Theorem 5] and [3, Theorem 9], it follows that
if X is an indecomposable arc continuum and n 6= 3, then X has unique
hyperspace Fn(X), the case n = 3, remains unsolved.

In this paper we prove that if X is an indecomposable arc continuum,
then X has unique hyperspaces Cn(X) and Cn(X) is rigid for every n 6= 2.
The case n = 2 remains unsolved.

2. Definitions and conventions

A map is a continuous function. Suppose that d is a metric for X . Given
ε > 0, p ∈ X and A ∈ 2X , let B(ε, p) be the ε-open ball around p in X ,
N(ε, A) = {p ∈ X : there exists a ∈ A such that d(p, a) < ε} and BH(ε, A) =
{B ∈ 2X : H(A,B) < ε} (we write BX(ε, p) and NX(ε, A) when the space X
needs to be mentioned). A simple n-od is a finite graphG that is the union of n
arcs emanating from a single point, v, and otherwise disjoint from one another.
The point v is called the vertex of G. Simple 3-ods are called simple triods.
Given subsets A1, . . . , Am of X , let 〈A1, . . . , Am〉 = {B ∈ 2X : B ∩Ai 6= ∅ for
each i ∈ {1, . . . ,m} and B ⊂ A1 ∪ . . . ∪ Am}.

We denote by S1 the unit circle in the Euclidean plane. A free arc in the
continuum X is an arc α with end points a and b such that α−{a, b} is open
in X .

Proceeding as in [6, Lemma 2.1] and using [17, Lemma 1.48], the following
lemma can be proved.

Lemma 2.1. Let X be a continuum, n ∈ N and let A be a connected subset
of 2X such that A ∩ Cn(X) 6= ∅. Let A0 = ∪{A : A ∈ A}. Then

(a) A0 has at most n components,
(b) if A is closed in 2X , then A0 ∈ Cn(X),
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(c) for each A ∈ A, each component of A0 intersects A.

Proof. (a) follows immediately from [6, Lemma 2.1], (b) In [17, Lemma

1.48], it is proven that the map ∪ : 22
X

→ 2X is onto, then A0 ∈ 2X , by (a)
it has at most n components, therefore A0 ∈ Cn(X).

(c) To prove (c) we proceed as in [6, Lemma 2.1], we write here the proof
for better understanding of the reader.

Let A1, . . . , Am with m ≤ n be the components of A0, suppose to the
contrary that there exist B ∈ A and Ai, component of A0, such that B∩Ai =
∅. Assume that A1, . . . , Ak are such that Ai ∩ B 6= ∅ for each i ∈ {1, . . . , k}
and Ai ∩B = ∅ for each i ∈ {k + 1, . . . ,m}.

Let K = {C ∈ A : C ⊂ A1 ∪ . . . ∪ Ak} and L = {C ∈ A : C ∩ (Ak+1 ∪
. . . ∪ Am) 6= ∅}. Proceeding exactly as in the rest of the proof of [6, Lemma
2.1], we prove that K and L is a separation of A which contradicts the fact
that A is connected. Therefore (c) follows and the lemma is proved.

A wire in a continuum X is a subset α of X such that α is homeomorphic
to one of the spaces (0, 1), [0, 1), [0, 1] or S1 and α is a component of an open
subset of X . By [17, Theorem 20.3], if a wire α in X is compact, then α = X .
So, if a wire is homeomorphic to [0, 1] or S1, then X is an arc or a simple
closed curve. Given a continuum X , let

W (X) =
⋃

{α ⊂ X : α is a wire in X}.

The continuum X is said to be wired provided that W (X) is dense in X .
Notice that if α is a free arc of a continuum X and p, q are the end points

of α, then α − {p, q} is a wire in X . Thus, a continuum for which the union
of its free arcs is dense is a wired continuum. Therefore, the class of wired
continua includes finite graphs, dendrites with closed set of end points, almost
meshed continua ([7]), compactifications of the ray [0,∞), compactifications
of the real line and indecomposable arc continua.

An m-od in a continuum X is a subcontinuum B of X for which there
exists A ∈ C(B) such that B−A has at leastm components. By [14, Theorem
70.1], a continuum X contains anm-od if and only if C(X) contains anm-cell.
Given A,B ∈ 2X such that A ( B, an order arc from A to B is a continuous
function α : [0, 1] → C(X) such that α(0) = A, α(1) = B and α(s) ( α(t) if
0 ≤ s < t ≤ 1. It is known ([17, Theorem 1.25]), that there exists an order
arc from A to B if and only if A ( B and each component of B intersects A.

Given a continuum X and n ∈ N, let

Wn(X) = {A ∈ Cn(X) : each component of A is contained in a wire of X};

and

Zn(X) ={A ∈ Wn(X) : there is a neighborhood M of A in Cn(X) such

that the component C of M that contains A is a 2n cell}.

We will use the following two results of [9].
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Lemma 2.2 ([9, Lemma 2]). Let X be an indecomposable arc continuum.
Then X is a wired continuum.

Theorem 2.3 ([9, Theorem 8]). Let X be a continuum and let n ≥ 3.
Then

W1(X) ={A ∈ Wn(X)−Zn(X) : A has a basis B of neighborhoods

in Cn(X) such that for each U ∈ B, if C is the component of U

that contains A, then C ∩ Zn(X) is connected}.

3. Indecomposable arc continua

Theorem 3.1. If X is an indecomposable arc continuum, then X has
unique hyperspace Cn(X) and Cn(X) is rigid for every n 6= 2.

Proof. For n = 1, the uniqueness of C(X) was shown in [1, Theorem
2.3]. In [15, Theorem 3], it was shown that if h : C(X) → C(X) is a
homeomorphism, then h(F1(X)) = F1(X). That is, C(X) is rigid.

Suppose then that n ≥ 3. Let Y be a continuum such that there exists
a homeomorphism h : Cn(X) → Cn(Y ). Let Y0 ∈ Cn(Y ) be such that
h(X) = Y0.

Claim 1. The only element that arcwise disconnects Cn(X) is X and
Cn(X)− {X} has uncountably many arc components.

We prove Claim 1. By [11, Corollary 2.2], and also by [16, 3.9] Cn(X)−
{X} has uncountably many arc components. Let A ∈ Cn(X) − {X}. Let
C be the arc component of Cn(X) − {A} such that X ∈ C. We claim that
C = Cn(X)− {A}. Take D ∈ Cn(X)− {A}. If D is not contained in A, take
an order arc α from D to X . Notice that for each t ∈ [0, 1], α(t) 6= A. Then
Imα ⊂ C and D ∈ C. Now consider the case that D ⊂ A. Then, we have that
A is not a one-point set. Reasoning as in [17, Theorem 11.3], it follows that if
A is not connected, then there is an arc joiningD andX in C(X)−{A}. Thus,
we assume that A is connected. Let B ∈ C(X) − {X} be such that A ( B.
Then A and B are arcs. Let F be a finite set containing exactly one point in
each one of the components of D. Then F ∈ Fn(X) ⊂ Cn(X). Let β be an
order arc joining F and D. Notice that Imβ ⊂ Cn(X) − {A}. By [4, 2(a)]
Fn(B) is arcwise connected, then there exists an arc γ in Fn(B) joining F and
an element E ⊂ B−A. By the first case, E ∈ C. Since Im γ ⊂ Cn(X)−{A},
we conclude that D ∈ C. We have shown that C = Cn(X) − {A}. Hence,
Cn(X)− {A} is arcwise connected. This ends the proof of Claim 1.

Claim 2. Y0 ∈ C(Y ) and Y0 is indecomposable.
To prove Claim 2 observe that if Y0 is disconnected, then by [17, Theorem

11.3] it can be proved that Cn(Y ) − {Y0} is arcwise connected. Since h is a
homeomorphism, this contradicts Claim 1. Hence, Y0 is connected. Now,
suppose that Y0 is decomposable. By [11, Lemma 2.4], Cn(Y ) − {Y0} has
at most two arc components. Since h is a homeomorphism, Claim 1 implies
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that Cn(Y )−{Y0} has uncountably many arc components. This contradiction
ends the proof of Claim 2.

Claim 3. Let k = 2n+ 1. Then Cn(Y ) does not contain k-cells.
Suppose, contrary to Claim 3, that Cn(Y ) contains a k-cell. Then there

exists a k-cell M in Cn(X). Let m = max{i ∈ {1, . . . , n} : M ∩ (Ci(X) −
Ci−1(X)) 6= ∅}. Since M∩(Cm(X)−Cm−1(X)) is a nonempty open subset of
M, there exists A ∈ M∩ (Cm(X)−Cm−1(X))−{X}. Let N be a k-cell such
that A ∈ N ⊂ M∩ (Cm(X)−Cm−1(X))− {X} and let B = ∪{C : C ∈ N}.
Let A1, . . . , Am the components of A, taking

ε < min

{

d(Ai, Aj)

2
: i, j ∈ {1, . . . ,m} and i 6= j

}

and N ⊂ BH(ε.A), then B has at least m components and B 6= X . By
Lemma 2.1, if C ∈ N , then C intersects each component of B. Since A ∈ N ,
A intersects each component of B. Since A ⊂ B, we have that B has exactly
m components. Let B1, . . . , Bm be the components of B. Then each Bi is an
arc or a one-point set. Given C ∈ N , C ∈ 〈B1, . . . , Bm〉 ∩Cn(X) and, by the
choice of m, C has exactly m components. Thus, the components of C are
the sets C ∩ B1, . . . , C ∩ Bm. Let ϕ : N → C(B1) × . . . × C(Bm) be given
by ϕ(C) = (C ∩ B1, . . . , C ∩ Bm). It is easy to check that ϕ is continuous
and one-to-one. Hence, N can be embedded in C(B1)× . . . × C(Bm). Since
C([0, 1]) is a 2-cell, we conclude that N can be embedded in a j-cell for some
j ≤ 2m ≤ 2n. This implies that k ≤ 2n. This contradiction proves Claim 3.

Claim 4. If Z ∈ C(Y )− F1(Y ) and Y0 * Z, then Z is decomposable.
Suppose, contrary to Claim 4, that Z is indecomposable. Since Y0 ⊂ Y,

Z 6= Y . Let B be the arc component of Cn(Y )−{Z} such that Y ∈ B. By [14,
Theorem 70.1] and Claim 3, Y does not contain (2n+1)-ods. By [11, Lemma
2.3], the set K = {K ⊂ Z : K is composant of Z and 〈K〉∩Cn(Y )∩B 6= ∅} has
at most 2n elements. Since Z has infinitely many composants [18, Theorem
11.15], we can take a composant K0 of Z such that K0 /∈ K. Fix a point z0 ∈
K0. Then {z0} /∈ B. This proves that Cn(Y )− {Z} is arcwise disconnected.
Since h is a homeomorphism, Cn(X)−{h−1(Z)} is arcwise disconnected. By
Claim 1, X = h−1(Z) and Z = h(X) = Y0, a contradiction. Therefore, Z is
decomposable.

Claim 5. If Z ∈ C(Y )− F1(Y ) and Y0 * Z, then Z is an arc.
In order to prove Claim 5, let W = h−1(Cn(Z)). Since Y0 /∈ Cn(Z),

we have that X = h−1(Y0) /∈ W . Let B = ∪{D : D ∈ W}. By Lemma
2.1, B ∈ Cn(X). Let B1, . . . , Bm be the components of B, where m ≤ n.
By [11, Corollary 2.2], the arc component of Cn(X) − {X} that contains
Z0 = h−1(Z) is a set of the form 〈K1, . . . ,Kr〉 ∩ Cn(X), where r ≤ n and
K1, . . . ,Kr are composants of X . Since Cn(Z) is arcwise connected, W is an
arcwise connected set andX /∈ W . Since Z0 ∈ W , W ⊂ 〈K1, . . . ,Kr〉∩Cn(X).
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This implies that B ⊂ K1 ∪ . . . ∪Kr and then B 6= X . Hence, each Bi is an
arc or a one-point set.

We claim that Z is locally connected.
Suppose to the contrary that Z is not connected im kleinen at some

element z0 ∈ Z. Then there exist an open subset U of Z and a sequence of
points {zj}∞j=1 in U such that z0 ∈ U , lim zj = z0 and if Ej is the component of

U containing zj (j ∈ N∪{0}), then E0, E1, E2, . . . are all different. Note that
U 6= Z. Let V be an open subset of Z such that z0 ∈ V and clZ(V ) ⊂ U . For
each j ∈ N, we assume that zj ∈ V and we take the component Dj of clZ(V )
such that zj ∈ Dj . We may assume that limDj = D0 for some D0 ∈ C(Z).
Then z0 ∈ D0 ⊂ E0, Dj ⊂ Ej andDj∩ bdZ(V ) 6= ∅ [17, Theorem 2.3] for each
j ∈ N. Thus, D0∩ bdZ(V ) 6= ∅ and D0 is nondegenerate. Fix a nondegenerate
continuum D such that z0 ∈ D ⊂ D0 ∩ V .

Since clZ(V ) 6= Z, we can choose pairwise disjoint nondegenerate
subcontinua G1, . . . , Gn−1 of Z contained in Z− clZ(V ). By Claim 4, each
Gi is decomposable. By [14, Exercise 14.19] Gi contains a 2-od. So, we may
assume that each Gi is a 2-od. For each i ∈ {1, . . . , n − 1}, let Ri ∈ C(Gi)
be such that Gi − Ri is disconnected. By the proof of [17, Theorem 1.100],
there exists a 2-cell Gi in C(Gi) such that Ri, Gi ∈ Gi and for each L ∈ Gi,
Ri ⊂ L ⊂ Gi. Let G = {{y}∪L1∪ . . .∪Ln−1 ∈ Cn(Z) : y ∈ D and Li ∈ Gi for
each i ∈ {1, . . . , n−1}}. Notice that G is homeomorphic toD×G1×. . .×Gn−1,
so dim(G) ≥ 2n− 1 ([10, Remark at the end of Section 4 of Chapter III]). Let

M = h−1(G).

Then M is a subcontinuum of Cn(X) such that M ⊂ W and dim(M) ≥
2n− 1. Notice that X /∈ M.

Let

m0 = max{i ∈ {1, . . . , n} : M∩ (Ci(X)− Ci−1(X)) 6= ∅}.

Now we show that m0 = n. If m0 = 1, then M ⊂ C(X) ∩W . This implies
that each element of M is contained in B1 ∪ . . . ∪ Bm. Thus, M ⊂ C(B1) ∪
. . .∪C(Bm), in fact M ⊂ C(Bk) for some k ∈ {1, . . . ,m} and so dim(M) ≤ 2.
Since each C(Bi) is a one-point set or a 2-cell, we conclude that 2n − 1 ≤
dim(M) ≤ 2. Hence, n = 1, contrary to our assumption. Therefore, m0 ≥ 2.

Let M0 ∈ M ∩ (Cm0
(X) − Cm0−1(X)). Let M1, . . . ,Mm0

be the

components of M0. Suppose that M0 = h−1({y0} ∪ L
(0)
1 ∪ . . . ∪ L

(0)
n−1), where

y0 ∈ D and L
(0)
i ∈ Gi for each i ∈ {1, . . . , n− 1}. Let ε > 0 be such that the

sets N(ε,M1), . . . , N(ε,Mm0
) are pairwise disjoint. Since X /∈ M, M0 6= X ,

so we can ask that X 6= N(ε,M1) ∪ . . . ∪N(ε,Mm0
).

Since Cm0−1(X) is closed in Cn(X) and h−1 is continuous, there exists
a nondegenerate continuum D′ of D and for each i ∈ {1, . . . , n − 1} there

exists a 2-cell G′
i such that L

(0)
i ∈ G′

i ⊂ Gi, H(M0, h
−1(L)) < ε and h−1(L) /∈
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Cm0−1(X) for each L ∈ G′ = {{y} ∪ L1 ∪ . . . ∪ Ln−1 ∈ Cn(Z) : y ∈ D′ and
Li ∈ G′

i for each i ∈ {1, . . . , n− 1}}.
Given L ∈ G′, h−1(L) ∈ M, then h−1(L) ∈ 〈N(ε,M1), . . . , N(ε,Mm0

)〉,
so h−1(L) has at least m0 components and, by definition of m0, h

−1(L) has
at most m0 components. Thus, h−1(L) has exactly m0 components. Since
h−1(L) ∈ 〈N(ε,M1), . . . , N(ε,Mm0

)〉 ∩Cn(X), we have that the components
of h−1(L) are the sets h−1(L)∩N(ε,M1), . . . , h

−1(L)∩N(ε,Mm0
). Let L0 =

∪{h−1(L) : L ∈ G′}. By Lemma 2.1, L0 has at most m0 components, but
L0 ∈ 〈N(ε,M1), . . . , N(ε,Mm0

)〉 ∩ Cn(X), so L0 has exactly m0 components
and they are L0 ∩N(ε,M1), . . . , L0 ∩N(ε,Mm0

). This implies that each set
L0 ∩ N(ε,Mi) is an arc or a one-point set. Notice that G′ is homeomorphic
to D′ × G′

1 × . . .× G′
n−1, so dim(G′) ≥ 2n− 1 and dim(h−1(G′)) ≥ 2n− 1.

Notice that the map ψ : G′ → C(L0 ∩ N(ε,M1)) × . . . × C(L0 ∩
N(ε,Mm0

)) given by ψ(L) = (h−1(L) ∩ N(ε,M1), . . . , h
−1(L) ∩ N(ε,Mm0

))
is an embedding. This shows that dim(C(L0 ∩ N(ε,M1)) × . . . × C(L0 ∩
N(ε,Mm0

))) ≥ 2n − 1. Since for each i ∈ {1, . . . ,m0}, C(L0 ∩ N(ε,Mi))
is either a one-point set or a 2-cell [14, Theorem 5.1], we obtain that
2m0 ≥ dim(C(L0 ∩ N(ε,M1)) × . . . × C(L0 ∩ N(ε,Mm0

))). Thus, m0 ≥ n.
Hence, m0 = n.

Since M0 ∈ M ⊂ W , we have M0 ⊂ B and by Lemma 2.1, each Bi

intersects M0. Since B is a finite union of arcs or one-point sets, there exist
pairwise disjoint subarcs (or one-point sets), Q1, . . . , Qn of B such that for
each i ∈ {1, . . . , n}, Mi ⊂ intB(Qi). Notice that if Q is contained in a
degenerate component of B, then Qi is a one-point set open in B. Then
M0 ∈ Cn(X) ∩W ∩ 〈intB(Q1), . . . , intB(Qn)〉, which is an open subset of W .
We are going to see that each Qi is an arc.

Since Cn(X) − Cn−1(X) is open in Cn(X) and M0 ∈ M ∩ (Cn(X) −
Cn−1(X)), there exists ε0 > 0 and for each i ∈ {1, . . . , n − 1} there exists

a 2-cell Li such that BZ(ε0, y0) ⊂ V , L
(0)
i ∈ Li ⊂ Gi and h−1(L) ∈

〈intB(Q1), . . . , intB(Qn)〉 ∩ Cn(X) ∩W for each L ∈ L, where

L = {A ∪ L1 ∪ . . . ∪ Ln−1 ∈ Cn(Z) : H(A, {y0}) < ε0 and Li ∈ Li

for each i ∈ {1, . . . , n− 1}}.

Fix a sequence {ym}∞m=1 in Z such that lim ym = y0 and ym ∈ Dm for each
m ∈ N. Let N0 ∈ N be such that ym ∈ BY (

ε0
2 , y0) for each m ≥ N0. For each

m ≥ N0, choose a subcontinuum Pm of Z such that diameter(Pm) = ε0
2 and

ym ∈ Pm. Then Pm ⊂ V , so Pm ⊂ Dm. Taking a subsequence if necessary,
we may assume that limPm = P0 for some P0 ∈ C(Z) and limC(Pm) = P
and some P ∈ C(C(Z)). Then y0 ∈ P0, diameter(P0) =

ε0
2 and P ⊂ C(P0).

Then P0 ⊂ D0. Fix points p0, q0 ∈ P0 such that p0 6= q0 and choose sequences
{pm}∞m=N0

, {qm}∞m=N0
is Z such that lim pm = p0, lim qm = q0 and for each

m ≥ N0, pm ∈ Pm. Given m ≥ N0, choose order arcs αm, βm from {pm} to
Pm and {qm} to Pm, respectively. Let Tm = Imαm and Sm = Imβm. We may
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assume also that lim Tm = T0 and limSm = S0, for some T0,S0 ∈ C(C(P0)).
By [17, Remark 1.34], each of the sets T0 and S0 are images of respective order
arcs from {p0} to P0 and {q0} to P0. Notice that F1(P0) ∪ T0 ∪ S0 ⊂ P .

Given m ∈ {0, N0, N0 + 1, . . .} and a subcontinuum A of Pm, since A ⊂
Pm ⊂ BY (ε0, y0), H(A, {y0}) < ε0. Thus, for each choice of elements Li ∈ Li

(i ∈ {1, . . . , n− 1}), A ∪ L1 ∪ . . . ∪ Ln−1 ∈ L.
Given L ∈ L, h−1(L) ∈ 〈intB(Q1), . . . , intB(Qn)〉 ∩ Cn(X) ∩ W .

Since Q1, . . . , Qn are pairwise disjoint, we have that h−1(L) has exactly n
components and they are h−1(L) ∩ Q1, . . . , h

−1(L) ∩ Qn. Let A = C(Q1) ×
. . . × C(Qn). Define σ : L → A by σ(L) = (h−1(L) ∩ Q1, . . . , h

−1(L) ∩ Qn).
Clearly, σ is an embedding. By [17, Theorem 2.1], dim[C(P0)] ≥ 2. Since L
contains a topological copy of C(P0)×L1 × . . .×Ln−1 and the dimension of
this set is dim[C(P0)] + 2(n− 1) ≥ 2n [10, Remark at the end of Section 4 of
Chapter III], we have that dim[A] ≥ 2n. Since each C(Qi) is a one-point set
or a 2-cell, dim[A] ≤ 2n, so dim[A] = 2n. This implies that each Qi is an arc
and A is a 2n-cell.

Since F1(P0) ⊂ P , we have dim(P) ≥ 1. To finish the proof that Z is
locally connected, we analyze two cases.

Case 1. dim(P) ≥ 2.
In this case, let L0 = {A ∪ L1 ∪ . . . ∪ Ln−1 ∈ Cn(Z) : A ∈ P and Li ∈ Li

for each i ∈ {1, . . . , n − 1}}. Since L0 is homeomorphic to P × [0, 1]2(n−1),
dim[L0] ≥ 2n. Since σ|L0

: L0 → A is an embedding, dim[L0] = 2n. By
[10, Theorem IV 3], intA[σ(L0)] is nonempty. Let L = A ∪ L1 ∪ . . . ∪ Ln−1 ∈
Cn(Z) be such that σ(L) ∈ intA[σ(L0)], where A ∈ P and Li ∈ Li for
each i ∈ {1, . . . , n − 1}. Since A ∈ P = limC(Pm), there exists a sequence
{Am}∞m=1 in C(Z) such that limAm = A and Am ∈ C(Pm) for each m ∈
N. Then limσ(Am ∪ L1 ∪ . . . ∪ Ln−1) = σ(A ∪ L1 ∪ . . . ∪ Ln−1) = σ(L) ∈
intA[σ(L0)]. Thus, there exists m ∈ N such that σ(Am ∪ L1 ∪ . . . ∪ Ln−1) ∈
σ(L0). Since σ is one-to-one, Am ∪ L1 ∪ . . . ∪ Ln−1 ∈ L0. This implies that
Am∪L1∪ . . .∪Ln−1 = A′∪L′

1∪ . . .∪L
′
n−1, where A

′ ∈ P and L′
i ∈ Li for each

i ∈ {1, . . . , n − 1}. Intersecting these sets with BCn(Z)(ε0, {y0}), we obtain
that Am = A′. This is a contradiction since Am ∈ C(Pm), A′ ∈ P ⊂ C(P0)
and P0 ∩ Pm = ∅. Therefore, this case is impossible.

Case 2. dim(P) = 1.
Let S+ (respectively, S−) be the upper (lower) half of S1. Since F1(P0)∩

(T0∪S0) = {{p0}, {q0}}, by Urysohn’s lemma for metric spaces, there exists a
map f : F1(P0)∪T0∪S0 → S1 such that f(F1(P0)) = S−, f({p0}) = {(−1, 0)},
f({q0}) = {(1, 0)} and f(T0 ∪ S0) = S+. Since dim(P) = 1, by [10, Theorem
VI 4] the map f can be extended to a map (we also call f to the extension)
f : P → S1. Since S1 is an ANR, f can be extended to a map (we also call
f to the extension) f : U → S1, where U is an open subset of C(Z) such that
P ⊂ U . Since lim Tm ∪ Sm = T0 ∪ S0 and limF1(Pm) = F1(P0), there exists
m ≥ N0 such that C(Pm) ⊂ U , f(Tm ∪ Sm) ⊂ NS1( 1

10 , S
+), f(F1(Pm)) ⊂
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NS1( 1
10 , S

−), f({pm}) ∈ NS1( 1
10 , {(−1, 0)}) and f({qm}) ∈ NS1( 1

10 , {(1, 0)}).
[19, Lemma 5.12] and the fact that F1(Pm) ∩ (Tm ∪ Sm) = {pm, qm} imply
that f |F1(Pm) ∪ Tm ∪ Sm cannot be lifted (that is, there is not a map f1 :
F1(Pm)∪Tm∪Sm → R such that f |F1(Pm)∪Tm∪Sm = (cos ◦f1, sin ◦f1)). But,
by [2, Lemma 13], f |C(Pm) can be lifted. Since F1(Pm)∪Tm ∪Sm ⊂ C(Pm),
we conclude that f |F1(Pm)∪Tm∪Sm can be lifted. This contradiction proves
that this case is also impossible. Therefore, we have shown that Z is locally
connected.

Now, suppose that Z contains a simple triod T , we may assume that
T 6= Z, so we can construct arcs J1, . . . , Jn−1 is Z such that T, J1, . . . , Jn−1 are
pairwise disjoint. Since C(T )×C(J1)×. . .×C(Jn−1) is naturally embedded in
Cn(Z). By [14, Examples 5.1 and 5.4], C(T )×C(J1)× . . .×C(Jn−1) contains
a (2n+ 1)-cell. This contradicts Claim 3 and ends the proof that Z does not
contain simple triods. Hence, Z is an arc or a simple closed curve. Using an
order arc from Z to Y , it is possible to construct a subcontinuum Z1 of Y
such that Z ( Z1 and Y0 * Z1. Thus, we can apply what we have proved to
Z1 and conclude that Z1 is an arc or a simple closed curve. Therefore, Z is
an arc. This completes the proof of Claim 5.

Claim 6. If D ∈ Cn(Y ) and Y0 * D, then D ∈ Wn(Y ). Moreover,
Wn(X) = Cn(X)− {X}.

We prove the first part of Claim 6, the second one can be made with
similar arguments. Let V be an open subset of Y such that D ⊂ V and Y0 *
clY (V ). Let Z be a component of D. Let W be the component of V contain-
ing Z. By Claim 5, Z is an arc or a one-point set. Let B be the component
of clY (V ) such that Z ⊂ B. Then B is nondegenerate. By Claim 5, B is an
arc. By [18, Theorem 12.10], clY (W )∩ (Y −V ) 6= ∅. Thus, W is not compact.
ThenW is a non compact connected subset of B. Hence, W is homeomorphic
either to [0, 1) or (0, 1). That is, W is a wire. This ends the proof of Claim 6.

Claim 7. If Z ∈ C(Y )− F1(Y ) and Y0 * Z, then h−1(Z) is connected.
We prove Claim 7. Let A = h−1(Z). By Claim 6, Z ∈ W1(Y ), and by

Theorem 2.3, Z /∈ Zn(Y ). Since A 6= X , by Claim 6, A ∈ Wn(X). Since
h is a homeomorphism, Z /∈ Zn(Y ) and the definition of Zn(X) is given in
terms of topological properties that are preserved under homeomorphisms, we
obtain that A /∈ Zn(X). By Theorem 2.3, Z has a basis B of neighborhoods
in Cn(Y ) such that for each V ∈ B, if C is the component of V that contains
Z, then C ∩ Zn(Y ) is connected. Since Y0 * Z, we can ask that for each
V ∈ B and each B ∈ V , Y0 * B, then by Claim 6, B ∈ Wn(Y ) and h(X) /∈ V .
Using the fact that h is a homeomorphism and the second part of Claim 6,
it is easy to show that if V ∈ B and C is the component of V that contains
Z, then h−1(C) ∩ Zn(X) = h−1(C ∩ Zn(Y )). Define h−1(B) = {h−1(V) ⊂
Cn(X) : V ∈ B}. Then h−1(B) is a basis of neighborhoods of A in Cn(X).
Given V ∈ B and C the component of V that contains Z, the equality h−1(C)∩
Zn(X) = h−1(C ∩ Zn(Y )) implies that h−1(C) ∩ Zn(X) is connected. Hence,
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we can apply Theorem 2.3 to conclude that A ∈ W1(X). In particular, A is
connected. Hence, h−1(Z) is connected.

Claim 8. Let K1, . . . ,Kr be composants of X , where r ≤ n. Then
C(X) ⊂ clCn(X)(〈K1, . . . ,Kr〉 ∩Cn(X)).

We prove Claim 8. Since C(X) − ({X} ∪ F1(X)) is dense in C(X), it is
enough to show that C(X)−({X}∪F1(X)) ⊂ clCn(X)(〈K1, . . . ,Kr〉∩Cn(X)).
Let E ∈ C(X)−({X}∪F1(X)). Then E is an arc. Let a1, a2 be the end points
of E. Let K be a composant of X . Given i ∈ {1, 2}, let Ai(K) = {p ∈ E :
there exists a sequence {Bm}∞m=1 in 〈K〉∩C(X) converging to a subcontinuum
B of E and p, ai ∈ B}. Since K is dense in X , {ai} ∈ Ai(K). It is easy to
show that Ai(K) is closed in E and that if p ∈ Ai(K), then the subarc of E
joining ai and p is contained in Ai(K). Thus Ai(K) is a subcontinuum of E.

We claim that E = A1(K)∪A2(K). Take p ∈ E−{a1, a2}. Let {pm}∞m=1

be a sequence in K such hat lim pm = p. Let µ : C(X) → [0, 1] be a Whitney
map, where µ(X) = 1 ([14, Theorem 13.4]). Using order arcs, it is possible
to find a subcontinuum Bm of X such that pm ∈ Bm and µ(Bm) = µ(E),
for each m ∈ N. We may assume that limBm = B for some B ∈ C(X).
For each m ∈ N, since E 6= X , we have that Bm 6= X . This implies that
Bm ∈ 〈K〉∩C(X). Notice that p ∈ B. Since E and B are proper subcontinua
of X , E ∪B is a subcontinuum of X , so E ∪B is an arc. Since µ(E) = µ(B),
it is not possible that B ( E. This implies that a1 ∈ B or a2 ∈ B.

For each m ∈ N, let αm : [0, 1] → C(Bm) be an order arc from {pm}
to Bm. We may assume that lim Imαm = γ for some γ ∈ C(C(X)). By
[17, Remark 1.34], γ is the image of an order arc α : [0, 1] → C(X) that joins
{p} to B. Let s0 = min{s ∈ [0, 1] : γ(s) ∩ {a1, a2} 6= ∅}. Given s < s0,
γ(s) ∩ {a1, a2} = ∅, γ(s) intersects the arc E and γ(s) is contained in the
arc E ∪ B. This implies that γ(s) ⊂ E. Hence, γ(s0) ⊂ E. Since γ(s0)
belongs to lim Imαm, γ(s0) satisfies the conditions in the definition of Ai(K),
this allows us to conclude that p ∈ A1(K) ∪ A2(K). We have shown that
E = A1(K) ∪ A2(K).

In the case that r = 1, by the connectedness of E, we conclude that
there exists a point p ∈ A1(K1) ∩ A2(K1). Let {Bm}∞m=1 and {Cm}∞m=1 be
sequences in 〈K1〉 ∩ C(X) converging to respective subcontinua B and C of
E satisfying p, a1 ∈ B and p, a2 ∈ C. Then B ∪ C is a subcontinuum of
E containing a1 and a2. Thus, E = B ∪ C. Hence, E = limBm ∪ Cm.
Since Bm ∪ Cm ∈ 〈K1〉 ∩ Cn(X) for each m ∈ N, we conclude that E ∈
clCn(X)(〈K1〉 ∩ Cn(X)).

In the case r ≥ 2, take the natural order in E such that a1 < a2. By the
connectedness of E, we can choose points p1 ∈ A1(K1) ∩ A2(K1) and p2 ∈
A1(K2)∩A2(K2). We can assume that p1 ≤ p2. Let {Bm}∞m=1 and {Cm}∞m=1

be sequences in 〈K1〉 ∩ C(X) and 〈K2〉 ∩ C(X), respectively, converging to
subcontinua B and C, respectively, of E satisfying p1, a2 ∈ B and p2, a1 ∈ C.
Thus, E = B ∪ C and E = limBm ∪ Cm. For each i ∈ {3, . . . , r}, choose
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a sequence {x
(i)
m }∞m=1 in Ki such that limx

(i)
m = a1. For each m ∈ N, let

Em = Bm ∪ Cm ∪ {x
(3)
m , . . . , x

(r)
m }. Then Em ∈ 〈K1, . . . ,Kr〉 ∩ Cn(X) and

limEm = E. This ends the proof of Claim 8.
Claim 9. Y0 = Y .
Since Cn(X) − {X} has uncountably many arc components (Claim 1),

Cn(Y ) − {Y0} has uncountably many arc components. Let G be an arc
component of C(Y ) − {Y0} such that Y /∈ G. Given G ∈ G, if G * Y0,
then an order arc from G to Y is a path connecting G to Y without passing
through Y0, a contradiction. Thus, G ⊂ Y0 and G ⊂ Cn(Y0). By [11,
Corollary 2.2], h−1(G) is of the form h−1(G) = 〈K1, . . . ,Kr〉 ∩ Cn(X) for
some r ≤ n and composants K1, . . . ,Kr of X . Suppose that Y0 6= Y . Take
a point y ∈ Y − Y0. Then there exists a nondegenerate subcontinuum Z
of Y such that y ∈ Z ⊂ Y − Y0. Let E = h−1(Z). By Claim 7, E is a
subcontinuum of X . By Claim 8, E ∈ clCn(X)(〈K1, . . . ,Kr〉 ∩ Cn(X)). Then
Z ∈ clCn(Y )(h(〈K1, . . . ,Kr〉 ∩ Cn(X))) = clCn(Y )(G) ⊂ Cn(Y0) and Z ⊂ Y0.
This contradicts the choice of Z and completes the proof of Claim 9.

We have shown that Y is an indecomposable continuum (Claim 2) such
that each one of its nondegenerate proper subcontinua are arcs (Claim 5).
Moreover, h−1(Z) ∈ C(X) for each Z ∈ C(Y ) (this follows from Claim 7).
Thus, Y satisfies the initial conditions we had for X . By symmetry, we can
conclude that h(W ) ∈ C(Y ) for each W ∈ C(X). Hence, h|C(X) : C(X) →
C(Y ) is a homeomorphism. By [15, Theorem 3], h(F1(X)) = F1(Y ). This
proves that X has unique hyperspace Cn(X) and Cn(X) is rigid.

Question 3.1. Suppose that X is a wired continuum. Is it true that
C2(X) is not rigid? It would be interesting to determine if C2(X) is rigid for
the Buckethandle continuum (see [18, 2.9] for a description), the solenoids
(see [18, 2.8] for a description) or the cone over the Cantor set.

Question 3.2 ([13, Problem 23]). Suppose that X is an indecomposable
arc continuum. Does X have unique hyperspace C2(X)? It would be interes-
ting to solve this question for the case that X is the buckethandle or a solenoid.
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