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ABSTRACT. Given a metric continuum X, we consider the hyperspace
Cn(X) of all nonempty closed subsets of X with at most n components. In
this paper we prove that if n # 2, X is an indecomposable continuum such
that all its proper nondegenerate subcontinua are arcs and Y is a continuum
such that Cp(X) is homeomorphic to Cr (Y'), then X is homeomorphic to
Y (that is, X has unique hyperspace Cy (X)).

1. INTRODUCTION

A continuum is a nondegenerate compact connected metric space. Given
a continuum X, we consider the following hyperspaces of X.

2% = {A C X : A is nonempty and closed in X},
Cpn(X) ={A € 2% : A has at most n components},
Fo.(X) = {A € 2% : A has at most n points},

C(X) = Ci(X).

All hyperspaces are considered with the Hausdorff metric H.

The hyperspace F,,(X) is known as the n-th symmetric product of X.
The hyperspace F; (X) is an isometric copy of X embedded in each one of the
hyperspaces.

A hyperspace K(X) € {2%,C,(X), F,.(X)} is said to be rigid provided
that for each homeomorphism h : K(X) — K(X), we have, h(Fi (X)) =
Fi(X). The continuum X is said to have unique hyperspace K(X) provided
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that the following implication holds: if Y is a continuum such that K(X) is
homeomorphic to K(Y), then X is homeomorphic to Y.

Uniqueness of hyperspaces has been widely studied (see, for example, [3,
5,7-9,12] for recent references). A detailed survey of what is known about this
subject can be found in [13]. In the study of hyperspaces, a useful technique
is to find a topological property that characterizes the elements of Fj(X) in
the hyperspace K(X). When it is possible to find such a characterization,
the hyperspace K(X) is rigid. This technique has been used in studying
uniqueness of hyperspaces, so both topics are closely related.

Rigidity of hyperspaces was introduced in [9]. Rigidity of symmetric
products was studied in [8].

A continuum X is indecomposable if it cannot be put as the union of two
of its proper subcontinua. The continuum X is said to be arc continuum if
each one of its nondegenerate proper subcontinuum is an arc. Examples
of indecomposable arc continua are the Buckethandle continuum and the
solenoids ([18, 2.8 and 2.9]).

As a consequence of [8, Theorem 5] and [3, Theorem 9], it follows that
if X is an indecomposable arc continuum and n # 3, then X has unique
hyperspace F,,(X), the case n = 3, remains unsolved.

In this paper we prove that if X is an indecomposable arc continuum,
then X has unique hyperspaces C,,(X) and C,,(X) is rigid for every n # 2.
The case n = 2 remains unsolved.

2. DEFINITIONS AND CONVENTIONS

A map is a continuous function. Suppose that d is a metric for X. Given
e>0,pe X and A € 2%, let B(e,p) be the e-open ball around p in X,
N(e, A) = {p € X : there exists a € A such that d(p,a) < e} and B (g, A) =
{B €2X:H(A, B) < €} (we write Bx(g,p) and Nx(e, A) when the space X
needs to be mentioned). A simple n-od is a finite graph G that is the union of n
arcs emanating from a single point, v, and otherwise disjoint from one another.
The point v is called the vertex of G. Simple 3-ods are called simple triods.
Given subsets Ay,..., Ay, of X, let (Ay,...,A,) ={B€2X:BnNA; #0 for
eachie€ {l,...,m}and BC Ay U...UA,}.

We denote by S! the unit circle in the Euclidean plane. A free arc in the
continuum X is an arc a with end points a and b such that « — {a, b} is open
in X.

Proceeding as in [6, Lemma 2.1] and using [17, Lemma 1.48], the following
lemma can be proved.

LEMMA 2.1. Let X be a continuum, n € N and let A be a connected subset
of 2% such that AN Cp(X) # 0. Let Ag = U{A: Ac A}. Then

(a) Ag has at most n components,
(b) if A is closed in 2%, then Ay € Cy(X),
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(c) for each A € A, each component of Ay intersects A.

PRrROOF. (a) follows immediately from [6, Lemma 2.1], (b) In [17, Lemma
1.48], it is proven that the map U : 22% 4 92X s onto, then Ay € 2%, by (a)
it has at most n components, therefore Ay € C,(X).

(c) To prove (c) we proceed as in [6, Lemma 2.1], we write here the proof
for better understanding of the reader.

Let Aq,..., A, with m < n be the components of Ay, suppose to the
contrary that there exist B € A and A;, component of Ag, such that BNA; =
(. Assume that Ay,..., Ay are such that A; N B # (0 for each 7 € {1,...,k}
and A,NB=0foreachie{k+1,...,m}.

Let K={CeA: CCcAU...UAand L={C e A: CN(Ap41 U

..UA,) # 0}. Proceeding exactly as in the rest of the proof of [6, Lemma
2.1], we prove that K and L is a separation of A which contradicts the fact
that A is connected. Therefore (c) follows and the lemma is proved. O

A wire in a continuum X is a subset « of X such that a is homeomorphic
to one of the spaces (0,1), [0,1), [0,1] or S! and « is a component of an open
subset of X. By [17, Theorem 20.3], if a wire « in X is compact, then o = X.
So, if a wire is homeomorphic to [0,1] or S, then X is an arc or a simple
closed curve. Given a continuum X, let

W(X)=/{aC X :aisa wire in X}.

The continuum X is said to be wired provided that W (X) is dense in X .

Notice that if « is a free arc of a continuum X and p, g are the end points
of a, then o — {p, ¢} is a wire in X. Thus, a continuum for which the union
of its free arcs is dense is a wired continuum. Therefore, the class of wired
continua includes finite graphs, dendrites with closed set of end points, almost
meshed continua ([7]), compactifications of the ray [0, c0), compactifications
of the real line and indecomposable arc continua.

An m-od in a continuum X is a subcontinuum B of X for which there
exists A € C(B) such that B— A has at least m components. By [14, Theorem
70.1], a continuum X contains an m-od if and only if C(X) contains an m-cell.
Given A, B € 2% such that A C B, an order arc from A to B is a continuous
function « : [0,1] — C(X) such that a(0) = A, a(1) = B and «a(s) € «a(t) if
0 <s<t<1. Itis known ([17, Theorem 1.25]), that there exists an order
arc from A to B if and only if A C B and each component of B intersects A.

Given a continuum X and n € N, let

Wh(X)={A € Cp(X): each component of A is contained in a wire of X };

and
Z,(X) ={A € W,(X) : there is a neighborhood M of A in C,,(X) such

that the component C of M that contains A is a 2n cell}.

We will use the following two results of [9].
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LEMMA 2.2 ([9, Lemma 2]). Let X be an indecomposable arc continuum.
Then X is a wired continuum.

THEOREM 2.3 ([9, Theorem 8]). Let X be a continuum and let n > 3.
Then

Wi (X) ={A e W,(X) - Z,(X) : A has a basis B of neighborhoods
in Cp(X) such that for each U € B, if C is the component of U
that contains A, then CN Z,(X) is connected}.

3. INDECOMPOSABLE ARC CONTINUA

THEOREM 3.1. If X is an indecomposable arc continuum, then X has
unique hyperspace Cp,(X) and Cp,(X) is rigid for every n # 2.

PRrROOF. For n = 1, the uniqueness of C'(X) was shown in [1, Theorem
2.3]. In [15, Theorem 3], it was shown that if b : C(X) — C(X) is a
homeomorphism, then h(F; (X)) = F;(X). That is, C(X) is rigid.

Suppose then that n > 3. Let Y be a continuum such that there exists
a homeomorphism h : Cp(X) — Cnp(Y). Let Yy € C,(Y) be such that
hX) = Y.

CrLAamM 1. The only element that arcwise disconnects Cy,(X) is X and
Cpn(X) — {X} has uncountably many arc components.

We prove Claim 1. By [11, Corollary 2.2], and also by [16, 3.9] C,(X) —
{X} has uncountably many arc components. Let A € C,,(X) — {X}. Let
C be the arc component of C,(X) — {A} such that X € C. We claim that
C=Cp(X)—{A}. Take D € C,,(X) — {A}. If D is not contained in A, take
an order arc a from D to X. Notice that for each t € [0,1], a(t) # A. Then
Ima € C and D € C. Now consider the case that D C A. Then, we have that
A is not a one-point set. Reasoning as in [17, Theorem 11.3], it follows that if
A is not connected, then there is an arc joining D and X in C(X)—{A}. Thus,
we assume that A is connected. Let B € C'(X) — {X} be such that A C B.
Then A and B are arcs. Let F' be a finite set containing exactly one point in
each one of the components of D. Then F € F,,(X) C C,(X). Let 8 be an
order arc joining F' and D. Notice that Im 5 C Cp(X) — {A}. By [4, 2(a)]
F,(B) is arcwise connected, then there exists an arc v in F,(B) joining F and
an element £ C B — A. By the first case, E € C. Since Imvy C C,,(X) — {A},
we conclude that D € C. We have shown that C = C,,(X) — {A}. Hence,
Cn(X) — {A} is arcwise connected. This ends the proof of Claim 1.

CLaM 2. Yy € C(Y) and Y is indecomposable.

To prove Claim 2 observe that if Yy is disconnected, then by [17, Theorem
11.3] it can be proved that C,,(Y) — {Yo} is arcwise connected. Since h is a
homeomorphism, this contradicts Claim 1. Hence, Yy is connected. Now,
suppose that Yy is decomposable. By [11, Lemma 2.4], C,(Y) — {Y,} has
at most two arc components. Since h is a homeomorphism, Claim 1 implies
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that Cy,(Y)—{Yp} has uncountably many arc components. This contradiction
ends the proof of Claim 2.

CLAM 3. Let k =2n+ 1. Then C,(Y) does not contain k-cells.

Suppose, contrary to Claim 3, that C,(Y) contains a k-cell. Then there
exists a k-cell M in Cp(X). Let m = max{i € {1,...,n} : MN(C;(X) —
Ci—1(X)) # 0}. Since MN(Cyy (X)—Crp—1(X)) is a nonempty open subset of
M, there exists A € MN(Cp,(X) — Crr—1(X)) — {X}. Let N be a k-cell such
that Ae N C MN(Cpp(X) = Cr1(X)) — {X} and let B=U{C : C € N'}.
Let Aq,..., A, the components of A, taking

d(A;, A;) .. .
E<min{%:z,j€{1,...,m} andz;éj}

and N' C BH(c.A), then B has at least m components and B # X. By
Lemma 2.1, if C € NV, then C intersects each component of B. Since A € N,
A intersects each component of B. Since A C B, we have that B has exactly
m components. Let By,..., B, be the components of B. Then each B; is an
arc or a one-point set. Given C € N, C € (By,...,B;;) N C,(X) and, by the
choice of m, C has exactly m components. Thus, the components of C are
the sets C' N By,...,C N By,. Let ¢ : N — C(B1) x ... x C(By,) be given
by ¢(C) = (CN By,...,C N By). It is easy to check that ¢ is continuous
and one-to-one. Hence, N can be embedded in C'(B1) X ... x C(B,,). Since
C([0,1]) is a 2-cell, we conclude that A can be embedded in a j-cell for some
7 < 2m < 2n. This implies that £ < 2n. This contradiction proves Claim 3.

CramM 4. f Z e C(Y) — Fi(Y) and Yy € Z, then Z is decomposable.

Suppose, contrary to Claim 4, that Z is indecomposable. Since Yy C Y,
Z #7Y. Let B be the arc component of C,(Y)—{Z} such that Y € B. By [14,
Theorem 70.1] and Claim 3, Y does not contain (2n+ 1)-ods. By [11, Lemma
2.3], the set K = {K C Z : K is composant of Z and (K)NC,,(Y)NB # 0} has
at most 2n elements. Since Z has infinitely many composants [18, Theorem
11.15], we can take a composant Ky of Z such that K, ¢ K. Fix a point zg €
Ky. Then {20} ¢ B. This proves that C,(Y) — {Z} is arcwise disconnected.
Since h is a homeomorphism, C,,(X) — {h~1(Z)} is arcwise disconnected. By
Claim 1, X = h=}(Z) and Z = h(X) = Yy, a contradiction. Therefore, Z is
decomposable.

CramM 5. f Z e C(Y) — Fi(Y) and Yy € Z, then Z is an arc.

In order to prove Claim 5, let W = h™1(C,(Z)). Since Yy ¢ C,(2),
we have that X = h='(Yp) ¢ W. Let B = U{D : D € W}. By Lemma
2.1, B € C,(X). Let By,..., By be the components of B, where m < n.
By [11, Corollary 2.2], the arc component of C,(X) — {X} that contains
Zy = h™1(Z) is a set of the form (K7,...,K,) N Cy(X), where r < n and
Ki,..., K, are composants of X. Since C,(Z) is arcwise connected, W is an
arcwise connected set and X ¢ W. Since Zyp € W, W C (K1, ..., K;)NCp(X).
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This implies that B C K7 U...U K, and then B # X. Hence, each B; is an
arc or a one-point set.

We claim that Z is locally connected.

Suppose to the contrary that Z is not connected im kleinen at some
element zy € Z. Then there exist an open subset U of Z and a sequence of
points {z;}32, in U such that z € U, lim z; = 20 and if E; is the component of
U containing z; (j € NU{0}), then Ey, Ey, Es, ... are all different. Note that
U # Z. Let V be an open subset of Z such that zp € V and clz(V) C U. For
each j € N, we assume that z; € V' and we take the component D; of clz (V)
such that z; € D;. We may assume that lim D; = Dy for some Dy € C(Z).
Then zg € Dy C Ey, D; C E; and D;Nbdz(V) # (0 [17, Theorem 2.3] for each
j € N. Thus, DoN bdz (V) # 0 and Dy is nondegenerate. Fix a nondegenerate
continuum D such that zg € D C DyNV.

Since clz(V) # Z, we can choose pairwise disjoint nondegenerate
subcontinua Gy, ...,G,—1 of Z contained in Z— clz(V). By Claim 4, each
G; is decomposable. By [14, Exercise 14.19] G; contains a 2-od. So, we may
assume that each G; is a 2-od. For each i € {1,...,n — 1}, let R; € C(G;)
be such that G; — R; is disconnected. By the proof of [17, Theorem 1.100],
there exists a 2-cell G; in C(G;) such that R;,G; € G; and for each L € G,
R, CLCG; Let G={{y}UL1U...UL,_1 € Cr(Z) :y € D and L, € G; for
eachi € {1,...,n—1}}. Notice that G is homeomorphic to Dx Gy X...xGp_1,
so dim(G) > 2n—1 ([10, Remark at the end of Section 4 of Chapter III]). Let

M =h"G).

Then M is a subcontinuum of C,(X) such that M C W and dim(M) >
2n — 1. Notice that X ¢ M.
Let

mo =max{i € {1,...,n}: MN(Cy(X) — Ci—1(X)) # 0}.

Now we show that mg = n. If mg = 1, then M C C(X)NW. This implies
that each element of M is contained in By U...U By,. Thus, M C C(B;) U
...UC(By,), in fact M C C(By,) for some k € {1,...,m} and so dim(M) < 2.
Since each C(B;) is a one-point set or a 2-cell, we conclude that 2n — 1 <
dim(M) < 2. Hence, n = 1, contrary to our assumption. Therefore, mg > 2.

Let My € M N (Cpy(X) — Crp—1(X)).  Let My,..., My, be the
components of My. Suppose that My = h= ({yo} U Lgo) U...uJ Lglozl), where

Yo € D and Lgo) € G, for each i € {1,...,n — 1}. Let € > 0 be such that the
sets N(g, My),...,N(e, My,,) are pairwise disjoint. Since X ¢ M, My # X,
so we can ask that X £ N(e, M7)U...UN(e, Mp,)-

Since Cyyy—1(X) is closed in Cp,(X) and h~! is continuous, there exists
a nondegenerate continuum D’ of D and for each ¢ € {1,...,n — 1} there

exists a 2-cell G/ such that L") € G/ € G;, H(My, h=(L)) < & and h™'(L) ¢
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Crmg—1(X) foreach Le ¢’ = {{y} UL 1 U...UL,_1 € C\,(Z) : y € D' and
L;e G foreachie{l,...,n—1}}.

Given L € G', h=Y(L) € M, then h=Y(L) € (N(g,M1),...,N(g, Mp,)),
so h™1(L) has at least mo components and, by definition of mg, h~1(L) has
at most mg components. Thus, h~1(L) has exactly mo components. Since
h=Y(L) € (N(g, My),...,N(g, Mp,)) N Cy(X), we have that the components
of h=Y(L) are the sets h~1(L)N N (g, M1),...,h Y (L)N N (e, M,,). Let Ly =
U{h~Y(L) : L € ¢'}. By Lemma 2.1, Ly has at most mo components, but
Lo € (N(e,M1),...,N(e, Mp,)) N Cr(X), so Ly has exactly mo components
and they are Lo N N (e, M1),...,Lo N N(e, My, ). This implies that each set
Lo N N(e, M;) is an arc or a one-point set. Notice that G’ is homeomorphic
to D' x Gy x ... x Gl 1, s0odim(G") >2n —1 and dim(h=*(G")) > 2n — 1.

Notice that the map ¢ : G — C(Lo N N(e,M1)) X ... x C(Lo N
N (e, M,)) given by (L) = (A (L) O N(e, My), ...,k (L) 0 N(&, Myn,)
is an embedding. This shows that dim(C(Lo N N(e, M1)) X ... x C(Lo N
N(e, Mp,))) > 2n — 1. Since for each ¢ € {1,...,mo}, C(Lo N N(e, M;))
is either a one-point set or a 2-cell [14, Theorem 5.1], we obtain that
2mo > dim(C(Lo N N(e, M1)) x ... x C(Lo N N(g, Mp,))). Thus, mg > n.
Hence, mg = n.

Since My € M C W, we have My C B and by Lemma 2.1, each B;
intersects My. Since B is a finite union of arcs or one-point sets, there exist
pairwise disjoint subarcs (or one-point sets), Q1,...,Q, of B such that for
each ¢ € {1,...,n}, M; C intp(Q;). Notice that if @} is contained in a
degenerate component of B, then @; is a one-point set open in B. Then
My € Cp,(X)NWN (intp(Q1),...,intp(Qy)), which is an open subset of W.
We are going to see that each @; is an arc.

Since Cp(X) — Cp—1(X) is open in C,(X) and My € M N (Cp(X) —
Cp-1(X)), there exists g > 0 and for each ¢ € {1,...,n — 1} there exists
a 2-cell £; such that Bz(eg,y0) C V, LZ(-O) € L; C G, and h™}(L) €
(intp(Q1),...,intp(Qn)) NCr(X)NW for each L € L, where

£:{AUL1U...ULn_1ECn(Z):H(A,{yo})<50 and L; € L;
for eachi e {1,...,n —1}}.

Fix a sequence {ym,}5°_; in Z such that limy,, = yo and y,,, € D, for each
m € N. Let Ny € N be such that y,, € By (%, yo) for each m > Ny. For each
m > Ny, choose a subcontinuum P, of Z such that diameter(P,,) = %0 and
Ym € Pp. Then P,, C V, so P,, C D,,. Taking a subsequence if necessary,
we may assume that lim P, = Py for some Py € C(Z) and lim C(P,,) = P
and some P € C(C(Z)). Then yo € Py, diameter(Py) = % and P C C(Fp).
Then Py C Dg. Fix points pg, g0 € Py such that pg # qo and choose sequences
{Pm =Ny 1@m}r=n, is Z such that lim p,, = po, lim ¢, = go and for each
m > No, pm € Pp,. Given m > Ny, choose order arcs a,,, B, from {p,,} to

P, and {¢,,} to P, respectively. Let T, = Im v, and Sy, = Im 3,,,. We may
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assume also that lim 7, = 7 and lim S,,, = Sy, for some Ty, Sy € C(C(F)).
By [17, Remark 1.34], each of the sets Ty and Sy are images of respective order
arcs from {po} to Py and {qo} to Py. Notice that Fy(FPy) U ToUSy C P.

Given m € {0, No, Ng + 1, ...} and a subcontinuum A of P,,, since A C
P, C By (e0,%0), H(A,{yo}) < €. Thus, for each choice of elements L; € L;
(te{l,...,n—1}), AUL1U...UL,_1 € L.

Given L € L, h" (L) € (intp(Q1),...,intp(Qn)) N Cp(X) N W.
Since Q1,...,Q, are pairwise disjoint, we have that h=1(L) has exactly n
components and they are h™1(L) N Q1,...,h (L) N Q,. Let A= C(Q1) x
... X C(Qy). Define o : L+ Aby o(L) = (Y (L)NQ1,...,h Y (L) NQ,).
Clearly, o is an embedding. By [17, Theorem 2.1], dim[C(Fp)] > 2. Since £
contains a topological copy of C(Py) x L1 X ... X L,_1 and the dimension of
this set is dim[C'(Pp)] + 2(n — 1) > 2n [10, Remark at the end of Section 4 of
Chapter III], we have that dim[A] > 2n. Since each C(Q;) is a one-point set
or a 2-cell, dim[A] < 2n, so dim[A] = 2n. This implies that each Q; is an arc
and A is a 2n-cell.

Since Fy(Fy) C P, we have dim(P) > 1. To finish the proof that Z is
locally connected, we analyze two cases.

Casg 1. dim(P) > 2.

In this case, let Lo = {AULU...UL, 1 €C,(Z): A€ P and L; € L;
for each i € {1,...,n — 1}}. Since Ly is homeomorphic to P x [0, 1]2("~1)
dim[£y] > 2n. Since o|z, : Lo — A is an embedding, dim[£y] = 2n. By
[10, Theorem IV 3], int 4[0(Lo)] is nonempty. Let L=AUL; U...UL,_; €
Cn(Z) be such that o(L) € intalo(Loy)], where A € P and L; € L; for
each i € {1,...,n — 1}. Since A € P = lim C(P,,), there exists a sequence
{An}°_1 in C(Z) such that lim A4, = A and A,, € C(P,,) for each m €
N. Then limo(A,, UL U...UL,1) =c(AULU...UL,1)=0(L) €
int 4[o(Lo)]. Thus, there exists m € N such that o(A,, UL, U...UL,_1) €
o(Ly). Since o is one-to-one, A,, UL; U...UL,_1 € Ly. This implies that
A, ULyU.. UL,y = AUL U...UL!,_,, where A’ € P and L, € L; for each
i € {1,...,n — 1}. Intersecting these sets with B¢, (z)(c0,{%0}), we obtain
that A,, = A’. This is a contradiction since A,, € C(Py,), A’ € P C C(P)
and Py N P, = 0. Therefore, this case is impossible.

CASE 2. dim(P) = 1.

Let ST (respectively, S™) be the upper (lower) half of S. Since Fy(Py)N
(ToUSo) = {{po},{qo}}, by Urysohn’s lemma for metric spaces, there exists a
map f : F1(Py)UToUSy — St such that f(Fy(Py)) = S, f({po}) = {(—1,0)},
F{q}) ={(1,0)} and f(ToUSy) = ST. Since dim(P) = 1, by [10, Theorem
VI 4] the map f can be extended to a map (we also call f to the extension)
f:P — St Since S is an ANR, f can be extended to a map (we also call
f to the extension) f :U — S, where U is an open subset of C'(Z) such that
P C U. Since lim T, US,, = ToUSy and lim Fy (P,,) = F1(F), there exists
m > Ny such that C(Pp) C U, f(Tm USn) C Nsi(55,87), f(F1(Pn)) C
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Nsl(%a S7), f({pm}) € Nsl(%v {(=1,0)}) and f({gm}) € Nsl(%a {(1,0)}).
[19, Lemma 5.12] and the fact that Fy(Py,) N (Tm U Sm) = {Pm, gm} imply
that f|F1(Pmn) U T U Sy, cannot be lifted (that is, there is not a map f :
Fy(P,)UT,,US,, — Rsuch that f|Fy(Pp,)UT,nUS,, = (cosofy,sinofr)). But,
by [2, Lemma 13], f|C(P,,) can be lifted. Since Fy(Py,) U T, US,, C C(Py,),
we conclude that f|F1 (P, )U Ty US,, can be lifted. This contradiction proves
that this case is also impossible. Therefore, we have shown that Z is locally
connected.

Now, suppose that Z contains a simple triod T, we may assume that
T # Z, so we can construct arcs Ji, ..., JJ,_1is Z such that T, Jy,..., J,_1 are
pairwise disjoint. Since C(T)x C(J1)X...x C(J,—1) is naturally embedded in
C(Z). By [14, Examples 5.1 and 5.4], C(T) x C(J1) X ... x C(J,—1) contains
a (2n + 1)-cell. This contradicts Claim 3 and ends the proof that Z does not
contain simple triods. Hence, Z is an arc or a simple closed curve. Using an
order arc from Z to Y, it is possible to construct a subcontinuum Z; of Y
such that Z C Z; and Yj Q Z1. Thus, we can apply what we have proved to
Z1 and conclude that Z; is an arc or a simple closed curve. Therefore, Z is
an arc. This completes the proof of Claim 5.

Cramm 6. If D € Co(Y) and Yy € D, then D € W, (Y). Moreover,
Wh(X) =C(X) - {X}.

We prove the first part of Claim 6, the second one can be made with
similar arguments. Let V' be an open subset of Y such that D C V and Y} Q
cly (V). Let Z be a component of D. Let W be the component of V' contain-
ing Z. By Claim 5, Z is an arc or a one-point set. Let B be the component
of cly (V') such that Z C B. Then B is nondegenerate. By Claim 5, B is an
arc. By [18, Theorem 12.10], cly (W)N (Y — V) # (. Thus, W is not compact.
Then W is a non compact connected subset of B. Hence, W is homeomorphic
either to [0,1) or (0,1). That is, W is a wire. This ends the proof of Claim 6.

CLam 7. If Z € C(Y) — Fy(Y) and Yy € Z, then h™*(Z) is connected.

We prove Claim 7. Let A = h=1(Z). By Claim 6, Z € W;(Y), and by
Theorem 2.3, Z ¢ Z,(Y). Since A # X, by Claim 6, A € W, (X). Since
h is a homeomorphism, Z ¢ Z,(Y) and the definition of Z,(X) is given in
terms of topological properties that are preserved under homeomorphisms, we
obtain that A ¢ Z,(X). By Theorem 2.3, Z has a basis B of neighborhoods
in C,(Y) such that for each V € B, if C is the component of V that contains
Z, then C N Z,(Y) is connected. Since Yy ¢ Z, we can ask that for each
V € B and each B € V, Yy € B, then by Claim 6, B € W, (Y) and h(X) ¢ V.
Using the fact that h is a homeomorphism and the second part of Claim 6,
it is easy to show that if V € B and C is the component of V that contains
Z, then h=1(C) N Z,(X) = h~1(CN Z,(Y)). Define h~(B) = {h~1(V) C
Cn(X) : V € B}. Then h=1(B) is a basis of neighborhoods of A in C,(X).
Given V € B and C the component of V that contains Z, the equality h=1(C)N
Z,(X) =h"YCnN Z,(Y)) implies that h=1(C) N Z,,(X) is connected. Hence,
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we can apply Theorem 2.3 to conclude that A € Wi (X). In particular, A is
connected. Hence, h=!(Z) is connected.

CramM 8. Let Ki,...,K, be composants of X, where r < n. Then
C(X) C CICW,(X)(<K1a s aKr> n Cn(X))

We prove Claim 8. Since C(X) — ({X} U F1(X)) is dense in C(X), it is
enough to show that C(X)—({X}UF(X)) Cclg, (x) (K1, ..., K )NCp(X)).
Let E € C(X)—({X}UFi(X)). Then F is an arc. Let ay, ag be the end points
of E. Let K be a composant of X. Given i € {1,2}, let A;(K) ={p € E:
there exists a sequence {B,,}>°_; in (K)NC(X) converging to a subcontinuum
B of E and p,a; € B}. Since K is dense in X, {a;} € A;(K). It is easy to
show that A;(K) is closed in E and that if p € A;(K), then the subarc of F
joining a; and p is contained in A;(K). Thus A;(K) is a subcontinuum of E.

We claim that E = A1 (K)UAy(K). Take p € E—{a1,az2}. Let {pm}_,
be a sequence in K such hat lim p,,, = p. Let p: C(X) — [0, 1] be a Whitney
map, where p(X) = 1 ([14, Theorem 13.4]). Using order arcs, it is possible
to find a subcontinuum B, of X such that p,, € B, and p(B,,) = u(E),
for each m € N. We may assume that lim B,,, = B for some B € C(X).
For each m € N, since £ # X, we have that B,, # X. This implies that
B, € (K)NC(X). Notice that p € B. Since E and B are proper subcontinua
of X, EUB is a subcontinuum of X, so EU B is an arc. Since u(E) = u(B),
it is not possible that B C E. This implies that a; € B or as € B.

For each m € N, let a, : [0,1] = C(B,,) be an order arc from {p,,}
to By,. We may assume that limIma,, = v for some v € C(C(X)). By
[17, Remark 1.34], 7 is the image of an order arc « : [0,1] — C'(X) that joins
{p} to B. Let sop = min{s € [0,1] : v(s) N {a1,a2} # 0}. Given s < s,
v(s) N {a1,a2} = 0, v(s) intersects the arc F and (s) is contained in the
arc £ U B. This implies that v(s) C E. Hence, y(so) C E. Since y(sg)
belongs to lim Im «,,, v(so) satisfies the conditions in the definition of A;(K),
this allows us to conclude that p € A;(K) U A2(K). We have shown that
E=A;(K)UAy(K).

In the case that r = 1, by the connectedness of E, we conclude that
there exists a point p € Ay (K1) N A2(K1). Let {Bp}5_; and {Cn,}55_4 be
sequences in (K;) N C(X) converging to respective subcontinua B and C' of
E satisfying p,a; € B and p,as € C. Then B U C is a subcontinuum of
E containing a; and as. Thus, ¥ = BUC. Hence, E = lim B,,, U C),.
Since B, U Cp, € (K1) N Cr(X) for each m € N, we conclude that E €
cle, o) ((K1) N Cr(X)).

In the case r > 2, take the natural order in F such that a; < as. By the
connectedness of E, we can choose points p; € A;(K1) N A2(K7) and py €
Ay (K3)NAy(K3). We can assume that p1 < pa. Let {Bp, }2°_; and {Cp, }20_,4
be sequences in (K3) N C(X) and (K3) N C(X), respectively, converging to
subcontinua B and C, respectively, of E satisfying p1,a2 € B and ps,aq € C.
Thus, E = BUC and E = lim B,,, U C,,. For each i € {3,...,r}, choose
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a sequence {x%)};,’j’zl in K; such that limz') = a;. For each m € N, let

Ep = By UCn U{2Y, ... 2}, Then E,, € (Ki1,...,K,) N Cy(X) and
lim F,,, = E. This ends the proof of Claim 8.

CrLamMm 9. Yy =Y.

Since C(X) — {X} has uncountably many arc components (Claim 1),
Cpn(Y) — {Yo} has uncountably many arc components. Let G be an arc
component of C(Y) — {Yp} such that Y ¢ G. Given G € G, if G € Y,
then an order arc from G to Y is a path connecting G to Y without passing
through Yp, a contradiction. Thus, G C Yy and G C C,(Yp). By [11,
Corollary 2.2], h=1(G) is of the form h=*(G) = (Ki,...,K,) N Cy(X) for
some 7 < n and composants K1,..., K, of X. Suppose that Yy # Y. Take
a point y € Y —Yy. Then there exists a nondegenerate subcontinuum 2
of Y such that y € Z C Y —Yy. Let E = h™}(Z). By Claim 7, E is a
subcontinuum of X. By Claim 8, E € cl¢, (x)({(K1,..., K;) N Cy(X)). Then
Z € Clcn(y)(h«Kl, ce ,KT> N Cn(X))) = Clcn(y)(g) C Cn(Yo) and Z C Y.
This contradicts the choice of Z and completes the proof of Claim 9.

We have shown that Y is an indecomposable continuum (Claim 2) such
that each one of its nondegenerate proper subcontinua are arcs (Claim 5).
Moreover, h™1(Z) € C(X) for each Z € C(Y) (this follows from Claim 7).
Thus, Y satisfies the initial conditions we had for X. By symmetry, we can
conclude that h(W) € C(Y) for each W € C(X). Hence, h|cx) : C(X) —
C(Y) is a homeomorphism. By [15, Theorem 3|, h(Fy (X)) = Fi(Y). This
proves that X has unique hyperspace Cy,(X) and Cy,(X) is rigid. O

QUESTION 3.1. Suppose that X is a wired continuum. Is it true that
Ca(X) is not rigid? It would be interesting to determine if Co(X) is rigid for
the Buckethandle continuum (see [18, 2.9] for a description), the solenoids
(see [18, 2.8] for a description) or the cone over the Cantor set.

QUESTION 3.2 ([13, Problem 23]). Suppose that X is an indecomposable
arc continuum. Does X have unique hyperspace C2(X)? It would be interes-
ting to solve this question for the case that X is the buckethandle or a solenoid.
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