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Abstract. A property P is discretely reflexive if a space X has P

whenever D has P for any discrete set D ⊂ X. We prove that quite
a few topological properties are discretely reflexive in GO spaces. In
particular, if X is a GO space and D is first countable (paracompact,
Lindelöf, sequential or Fréchet–Urysohn) for any discrete D ⊂ X then X

is first countable (paracompact, Lindelöf, sequential or Fréchet–Urysohn
respectively). We show that a space with a nested local base at every point
is discretely locally compact if and only if it is locally compact. Therefore
local compactness is discretely reflexive in GO spaces. It is shown that a
GO space is scattered if and only if it is discretely scattered. Under CH
we show that Čech-completeness is not discretely reflexive even in second
countable linearly ordered spaces. However, discrete Čech-completeness
of X × X is equivalent to its Čech-completeness if X is a LOTS. We
also establish that any discretely Čech-complete Borel set must be Čech-
complete.

1. Introduction

Say that a topological property P is discretely reflexive in a class A if
a space X ∈ A has P if and only if the closure of every discrete subspace
of X has P . Tkachuk proved in [18] that compactness is discretely reflexive
in any space and a systematic study of discrete reflexivity was undertaken
in [1]. The paper [1] also contains results on discrete reflexivity in compact
spaces. Tkachuk and Burke showed in [7] that several properties are discretely
reflexive in countably compact spaces.
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If we consider completeness or convergence properties then one cannot
expect many positive results in general spaces. Indeed, van Douwen’s example
of countable maximal space [10, Example 3.3] shows that a space X need not
be sequential or have the Baire property even if every discrete subspace in X
is closed and hence X is discretely metrizable and discretely Čech-complete
at the same time.

In this paper we deal with discrete reflexivity in spaces with an order-type
structure showing that quite a few properties are discretely reflexive in such
spaces. For example tightness, character, pseudocharacter, sequentiality and
the property of being a k-space (which henceforth we will call the k-property)
are discretely reflexive in GO spaces.

It is an open problem of Arhangel’skii ([3, Problem 14]) whether
the Lindelöf property is discretely reflexive. Arhangel’skii and Buzyakova
established in [4] that any discretely Lindelöf space of countable tightness is
Lindelöf. We show that paracompactness and Lindelöfness are both discretely
reflexive in GO spaces.

It turns out that the situation with discrete reflexivity of completeness
properties is not trivial even in second countable spaces. We show that, under
CH, a dense subset X of the real line R need not be Čech-complete while D
is Čech-complete for any discrete D ⊂ X . However, if X is a Borel set then it
is Čech-complete if and only if so is D for any discrete D ⊂ X . We establish
that a space with a nested base at every point is locally compact if and only
if it is discretely locally compact. This result is new even for GO spaces. It
also turns out that being scattered is a reflexive property both in metrizable
spaces and in GO spaces.

Juhasz and Szentmiklossy established in [16] that, for any compact space
X , there exists a discrete subspace D ⊂ X ×X such that |D| = d(X). Burke
and Tkachuk generalized this result in [6] proving that for any Lindelöf p-space
X there is a discrete D ⊂ X ×X such that ∆X ⊂ D. This result has many
applications in the study of discrete reflexivity. In this paper we prove that if
X is a linearly ordered topological space then there is a discrete D ⊂ X ×X
such that ∆X ⊂ D. As a consequence, Xω is d-separable; besides, if X ×X
is discretely Čech-complete (discretely metrizable) then X is Čech-complete
(metrizable respectively).

2. Notation and terminology

All spaces are assumed to be Tychonoff. If X is a space then τ(X) is its
topology; given any point x ∈ X let τ(x,X) = {U ∈ τ(X) : x ∈ U}. The set
R is the real line with its usual topology and Q ⊂ R is the set of rationals. If
X is a space then ∆X = {(x, x) : x ∈ X} is its diagonal; we write ∆ instead
of ∆X if X is clear. A space X is called a Borel set if it is homeomorphic to a
Borel subset of Rω. Call X a Lindelöf p-space if there exists a perfect map of
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X onto a second countable space. A space X is d-separable if it has a dense
σ-discrete subset.

If we are given a linearly ordered set (X,<) and a, b ∈ X then, as usual,
(a, b) = {x ∈ X : a < x < b} and (←, b) = {x ∈ X : x < b}; analogously,
(a,→) = {x ∈ X : x > a}. The sets (a, b) and (←, b) as well as (a,→) are
called open intervals. If X has the topology generated by its open intervals
then it is called a linearly ordered topological space or LOTS. A subspace of
a LOTS is called a generalized ordered space or simply GO space. A subset
I of a linearly ordered set (X,<) is called convex if (a, b) ⊂ I for any a, b ∈ I.

A family A is nested if either A ⊂ A′ or A′ ⊂ A for any A,A′ ∈ A. A
space X is l-nested if it has a nested local base at every point. If A is a family
of subsets of X then

∧
A is the family of all finite intersections of the elements

of A. The family A is T1-separating in X if for any distinct x, y ∈ X there is
a set A ∈ A such that x ∈ A ⊂ X\{y}.

The rest if our notation is standard and follows the book [13].

3. Discrete reflexivity and order structures

Although local compactness, Čech-completeness and most local properties
do not behave well even in countable spaces, we will show that they are still
discretely reflexive in some nice classes.

Definition 3.1. Given a topological property P, a space X is called
discretely P if D has P for any discrete set D ⊂ X.

Definition 3.2. A space X is called discretely generated if for any set
A ⊂ X, if x ∈ A then x ∈ D for some discrete D ⊂ A. The space X is weakly
discretely generated if for any non-closed set A ⊂ X, there exists a discrete
D ⊂ A such that D\A 6= ∅.

Observation 3.3. If X is van Douwen’s maximal space (see [10, Example
3.3]) then every discrete subspace of X is closed so X is a discretely locally
compact (and hence discretely Čech-complete) space of first category. In
particular, discrete Čech-completeness in countable spaces does not imply
Čech-completeness or even the Baire property. Besides, X is discretely
metrizable without being a k-space. We will see that the situation both with
local and global properties improves radically in generalized ordered spaces.

Proposition 3.4. If X is weakly discretely generated then the k-property
in X is equivalent to discrete k-property.

Proof. Assume that D is a k-space for any discrete D ⊂ X . If A is
not closed in X then there is a discrete D ⊂ A such that D\A 6= ∅. The set
B = D∩A is not closed in D which is a k-space so we can find a compact set
K ⊂ D such that K ∩B is not closed in K; since K ∩B = K ∩A, the set K
witnesses the k-property of X .
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Corollary 3.5. If X is a monotonically normal discretely k-space then
X is a k-space. In particular, every GO space with discrete k-property is a
k-space.

Proof. It was proved in [12, Theorem 2.10] that every monotonically
normal space is discretely generated. Proposition 3.4 does the rest.

Proposition 3.6. If X is weakly discretely generated and t(D) ≤ κ for
any discrete D ⊂ X then t(X) ≤ κ.

Proof. If A is not closed in X then there is a discrete D ⊂ A such that
D\A 6= ∅; choose a point x ∈ D\A. It follows from t(D) ≤ κ that we can find
a set E ⊂ D such that |E| ≤ κ and x ∈ E. Therefore E ⊂ A and E\A 6= ∅,
i.e. the set E witnesses that t(X) ≤ κ (see [19, S.162, Lemma]).

Corollary 3.7. If X is monotonically normal space and t(D) ≤ κ for
any discrete D ⊂ X then t(X) ≤ κ.

Corollary 3.8. Tightness, character, pseudocharacter, sequentiality
and the Fréchet–Urysohn property are discretely reflexive in GO spaces.

Proof. Every GO space is monotonically normal by [14, 5.21]; besides,
in GO spaces character and pseudocharacter must coincide with tightness (see
[2, Theorem 1.3.1]). Furthermore, sequentiality and Fréchet–Urysohn are both
equivalent to countable tightness in GO spaces by the same [2, Theorem 1.3.1]
so Corollary 3.7 shows that all our properties are discretely reflexive.

We will see that paracompactness is discretely reflexive in monotonically
normal spaces. The following example shows that if we want it to be discretely
reflexive in a class P , then some restrictions must be imposed on P .

Example 3.9. There exists a space X with the following properties:

(a) X = M ∪E where M is dense in X and homeomorphic to Q;
(b) the set E is closed, discrete, disjoint from M and |E| = c;
(c) if D is discrete subset of M then D ∩ E = ∅.

Therefore, X is discretely paracompact non-normal space of countable π-
weight.

Proof. Recall that z ∈ βZ\Z is a remote point of Z if z /∈ clβZ(D) for
any nowhere dense set D ⊂ Z. Looking at the construction in the proof of
Lemma 4.1 of van Douwen’s paper [8], it is easy to see that

(vD) if {Un : n ∈ ω} is a discrete family of non-empty open subsets
of Q, then there exists a remote point z ∈ βQ\Q such that z ∈
clβQ(

⋃
n∈ω Un) but z /∈ clβQ(

⋃
n≤m Un) for any m ∈ ω.

Fix an almost disjoint family F on the set ω such that |F| = c. It is
easy to find a disjoint family {Un : n ∈ ω} of non-empty clopen subsets of
Q such that Q =

⋃
n∈ω Un. For any F ∈ F let GF =

⋃
{Un : n ∈ F}
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and apply the property (vD) to find a remote point pF ∈ βQ\Q such that
pF /∈ clβQ(

⋃
{Un : n ∈ A}) for any finite A ⊂ F .

Consider the set E = {pF : F ∈ F} and observe that HF = clβQ(GF ) is
clopen in βQ for any F ∈ F . It follows from our choice of E that HF ∩ E =
{pF} for each F ∈ F , i.e., E is a discrete subset of βQ. The set P =
clβQ(E)∩Q is nowhere dense in Q so the set M = Q\P is still homeomorphic
to Q.

It is clear that E is a closed discrete subset of X = M ∪E and M ∩E = ∅.
Since all points of E are remote, we also have the property (c). Observing that
M is a dense second countable subset ofX , we conclude that πw(X) = ω. The
statement after [13, Example 2.1.10] shows that the space X is not normal.

To see that X is discretely paracompact, take any discrete set D ⊂ X .
Then D = Q ∪ R where Q = D ∩M and R = D ∩ E. It follows from the
property (c) that Q∩R = ∅ and hence D is paracompact being the free union
of a second countable space Q and a discrete space R.

Proposition 3.10. If X is a monotonically normal space and D is
paracompact for any discrete D ⊂ X then X is paracompact. In other words,
paracompactness is discretely reflexive in monotonically normal spaces.

Proof. Apply the result of Balogh and Rudin [5, Theorem I] which states
that a monotonically normal space is paracompact if and only if no stationary
subset of a regular uncountable cardinal is homeomorphic to a closed subset
of X . Now, if X is discretely paracompact and not paracompact then there
is a closed subspace S ⊂ X homeomorphic to a stationary subset of an
uncountable regular cardinal. In particular, S is scattered so we can find
a discrete D ⊂ S such that S = D. Therefore S is paracompact by discrete
paracompactness of X ; this is a contradiction with [5, Theorem I] applied to
the embedding of S in S.

It is an open problem of Arhangel’skii (see [3, Problem 14]) whether
the Lindelöf property is discretely reflexive in any space. Arhangel’skii and
Buzyakova established in [4] that discretely Lindelöf spaces of countable
tightness are Lindelöf. It turns out that the Lindelöf property is discretely
reflexive in monotonically normal spaces.

Corollary 3.11. If X is a monotonically normal space and D is Lindelöf
for any discrete D ⊂ X then X is Lindelöf. In other words, Lindelöfness is
discretely reflexive in monotonically normal spaces.

Proof. If X is a discretely Lindelöf monotonically normal space then it
is paracompact by Proposition 3.10. Any discretely Lindelöf space trivially
has countable extent and paracompact spaces of countable extent are Lindelöf
so X has to be Lindelöf.
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Theorem 3.12. Suppose that a space X has a nested base at a point x.
Then X is locally compact at x if and only if D is locally compact at x for
any discrete D ⊂ X with x ∈ D.

Proof. Suppose that X is not locally compact at a point x but D is
locally compact at x for any discrete D ⊂ X with x ∈ D. For technical
convenience, we also consider that D is locally compact at x if x /∈ D. For
some infinite regular cardinal κ there exists a strictly decreasing local base
{Gα : α < κ} at the point x. Take a set G ∈ τ(x,X) such that G ⊂ G0

and observe that G is not compact; since compactness is discretely reflexive
by [18, Lemma 4.13], there exists a discrete set D ⊂ G such that D is not
compact. It follows from local compactness of D at x that we can find a set
U ∈ τ(x,X) such that U ⊂ G and the closure of D ∩ U is compact. As an
immediate consequence, the set D0 = D\U is discrete, D0 ⊂ G0 and D0 is
not compact; let µ0 = 0.

Proceeding inductively, assume that β < κ and we have constructed
discrete sets {Dα : α < β} and ordinals {µα : α < β} with the following
properties:

(1) Dα ⊂ Gµα
, and x /∈ Dα for each α < β;

(2) if α < γ < β then µα < µγ and Dα ∩Gµγ
= ∅;

(3) the set Dα is not compact for any α < β.

Let µ = sup{µα : α < β}; there exists an ordinal ξ > µ such that
Gξ ∩ Dα = ∅ for any α < β. Take a set H ∈ τ(x,X) such that H ⊂ Gξ

and observe that H is not compact; since compactness is discretely reflexive
by [18, Lemma 4.13], there exists a discrete set E ⊂ H such that E is not
compact. It follows from local compactness of E at the point x that we can
find a set V ∈ τ(x,X) such that V ⊂ H and the closure of E ∩ V is compact.
Let Dβ = E\V and µβ = ξ; it is immediate that the conditions (1)–(3) still
hold for all α ≤ β so our inductive procedure can be continued to construct
a family D = {Dα : α < κ} and a κ-sequence {µα : α < κ} of ordinals such
that the conditions (1)–(3) are satisfied for all β < κ.

It follows from (2) that the family W = {Gµα
\Gµα+1

: α < κ} is disjoint;

since also Dα ⊂ Gµα
\Gµα+1

for all α < κ, the set D =
⋃
{Dα : α < κ}

is discrete. Besides, the family W is a π-base at x so every U ∈ τ(x,X)
contains a set Dα for some α < κ. Therefore every neighbourhood of x in D
contains some Dα which shows that no closure of a neighbourhood of x in D
is compact, i.e. D is not locally compact at x, a contradiction.

Corollary 3.13. If X is an l-nested space and the closure of every
discrete subspace of X is locally compact then X is locally compact.

Corollary 3.14. If X is a first countable space and the closure of every
discrete subspace of X is locally compact then X is locally compact.
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Corollary 3.15. If X is a GO space and the closure of every discrete
subspace of X is locally compact then X is locally compact.

Proof. There exists a linear order < on X for which there is a base in
X whose elements are convex. Fix a point x ∈ X and observe that x has a
nested base in the space Rx = {y ∈ X : x ≤ y} so we can apply Theorem 3.12
to see that x has a compact neighbourhood Vr in Rx.

Analogously, x has a nested base in the space Lx = {y ∈ X : y ≤ x} so
we can apply Theorem 3.12 to see that x has a compact neighbourhood Vl in
Lx. It is immediate that V = Vr ∪ Vl is a compact neighbourhood of x in X
so X is locally compact at x.

Theorem 3.16. If X is a Borel set then X is Čech-complete if and only
if it is discretely Čech-complete.

Proof. Suppose thatX is a discretely Čech-complete non-Čech-complete
Borel set and take a metrizable compactification M of the space X . To see
that Q is not discretely Čech-complete is a simple exercise and so, to obtain
a contradiction, it suffices to find a closed copy of Q in X .

Since X is not Čech-complete, the set M\X is not σ-compact; the set
M\X is also Borel so we can apply [9, Lemma 8.8] to find a closed set P of
the space M\X homeomorphic to the irrationals. The set G = clM (P ) ∩ X
is closed in X and dense in K = clM (P ). Besides, P is Čech-complete so it is
a Gδ-subset of K which shows that G is σ-compact.

Every compact set F ⊂ G misses P which is dense in K so it has empty
interior; therefore it follows from σ-compactness ofG thatG is of first category
in itself. This makes it possible to apply a classical theorem of Hurewicz (see
[15]; an easier proof in English can be found in [11]) to conclude that G (and
hence X) has a closed subspace homeomorphic to Q.

Corollary 3.17. A countable metric space is Čech-complete if and only
if it is discretely Čech-complete.

Corollary 3.18. If a second countable space X is discretely Čech-
complete then it has the Baire property.

Proof. Assume that X is discretely Čech-complete and P =
⋂
{Un : n ∈

ω} is not dense in X for some family {Un : n ∈ ω} of dense open subsets of
X . The set U = X\P is open in X , non-empty and has first category. Let
F = {Fn : n ∈ ω} be a family of closed nowhere dense subsets of X such that⋃
F = U .
It is standard (see e.g. [21, Lemma 4.39]) to find a discrete set Dn ⊂ U

such that Fn ⊂ Dn; as a consequence, every Fn is a Borel set being closed in a
Čech-complete space Dn. Therefore U is a Borel set being a countable union
of Borel sets; besides an open subset of a discretely Čech-complete space must
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be discretely Čech-complete so U is Čech-complete by Theorem 3.16. Thus,
U is a Čech-complete space of first category which is a contradiction.

Corollary 3.19. A metrizable space is scattered if and only if it is
discretely scattered.

Proof. Suppose that X is a metrizable discretely scattered space. If X
is not scattered then it is standard to find a crowded countable set Y ⊂ X . It
was proved in [17] that a countable second countable space is Čech-complete
if and only if it is scattered so the closure in Y of every discrete D ⊂ Y is
Čech-complete. Applying Corollary 3.17 we conclude that Y is Čech-complete
and hence scattered, which is a contradiction.

Theorem 3.20. If a GO space is discretely scattered, then it is scattered.

Proof. Suppose that X is a discretely scattered subspace of a LOTS;
then we can fix a linear order < on X such that X has a base consisting of
convex sets. Recall that every GO space is hereditarily collectionwise normal
so

(∗) if D is a discrete subset of X then we can find an open convex set
Ud ∋ d for any d ∈ D such that the family {Ud : d ∈ D} is disjoint.

We will also need the following property.

(∗∗) If A is a family of disjoint convex open sets such that x /∈ A for any

A ∈ A and x ∈
⋃
A then A is a π-base at x.

To see that (∗∗) holds, let L = {y ∈ X : y < x} and R = {y ∈ X : y > x}
and observe that either A ⊂ L or A ⊂ R for any A ∈ A so we can assume,
without loss of generality, that A ⊂ R for all A ∈ A. Take any convex
V ∈ τ(x,X); there exists A ∈ A with A∩V 6= ∅. Pick a point a ∈ A∩V . The
set (←, a) being open in X , we can find B ∈ A\{A} for which B ∩ (x, a) 6= ∅;
it easily follows from the fact that A is disjoint and convexity of B that
B ⊂ (x, a) ⊂ V so (∗∗) is proved.

Now assume that X is not scattered and fix a crowded set Y ⊂ X . Call a
set A ⊂ X adequate if A is open, convex and A∩Y 6= ∅. It is clear that every
adequate set has an infinite intersection with Y . We will inductively construct
a non-empty discrete set Dn ⊂ Y and a disjoint family En of adequate sets
for each n ∈ ω in such a way that

(4) Dn ⊂ Dn+1\Dn+1 for any n ∈ ω;

(5) Dn ⊂
⋃
En\

⋃
{E : E ∈ En} for any n ∈ ω;

(6) if n ∈ ω then Di ∩ (
⋃
{E : E ∈ Ej}) = ∅ whenever i, j ≤ n;

(7) the family
⋃

i≤n Ei is disjoint for any n ∈ ω;

(8) there exists a set Gn ∈ τ(X) such that Gn ∩ ((
⋃

i≤n Ei)∪Dn) = ∅ and

Dn ⊂ Gn ∩ Y \Gn for every n ∈ ω.
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If we succeed in constructing the promised sets and families, then it follows
from (4) that Z =

⋃
n∈ω Dn is a crowded subset of X . If E =

⋃
n∈ω En

then the family E is disjoint by (7) and the properties (4)–(6) show that

(
⋃
{E : E ∈ E}) ∩ Z = ∅ and Z ⊂

⋃
E . This, together with the property (∗∗)

implies that if we choose a point xE ∈ E for any E ∈ E thenD = {xE : E ∈ E}
is a discrete set such that Z ⊂ D which is a contradiction with the fact that
D is scattered.

To start off, take any point x0 ∈ Y and let D0 = {x0}. Since X is
discretely generated by [12, Theorem 2.10], we can find a discrete set P ⊂ Y
such that x0 ∈ P\P . Apply hereditary collectionwise normality of X to find
an adequate set Up such that p ∈ Up and x0 /∈ Up for every p ∈ P while the

family {Up : p ∈ P} is disjoint. It is easy to find disjoint adequate sets Vp,Wp

such that Vp ∪Wp ⊂ Up for each p ∈ P . Now, letting E0 = {Vp : p ∈ P} and
G0 =

⋃
{Wp : p ∈ P} we can use (∗∗) to see that the sets D0, G0 and the

family E0 have the properties (5)–(8) and the property (4) holds vacuously.
Suppose that m ∈ ω and we have sets D0, G0, . . . , Dm, Gm and the

families E0, . . . , Em with the properties (4)–(8). Apply hereditary collection-
wise normality of X to find an adequate set Ux such that x ∈ Ux for every
x ∈ Dm and the family {Ux : x ∈ Dm} is disjoint. Since x ∈ Ux ∩Gm ∩ Y , we
can find a discrete set Px ⊂ Ux ∩Gm ∩ Y such that x ∈ P x. For every y ∈ Px

pick an adequate set A(y, x) such that y ∈ A(y, x) ⊂ A(y, x) ⊂ Ux ∩Gm and

the family {A(y, x) : y ∈ Px} is disjoint.
It is easy to find disjoint adequate sets W (y, x) and V (y, x) such that

W (y, x) ∪ V (y, x) ⊂ A(y, x); choose a point b(y, x) ∈ V (y, x) for any y ∈ Px.
The set Dm+1 = {b(y, x) : x ∈ Dm and y ∈ Px} is easily seen to be discrete

and it follows from (∗∗) that x ∈ {b(y, x) : y ∈ Px} for any x ∈ Dm whence
Dm ⊂ Dm+1. Letting Em+1 = {W (y, x) : x ∈ Dm and y ∈ Px} and applying
(∗∗) again we can see that (5) holds for n = m+1. It follows from

⋃
{E : E ∈

Em+1} ⊂ Gm that the conditions (6) and (7) are also satisfied for n = m+ 1.
Using once more the fact that V (y, x) ∩ Y is infinite, we can find an

adequate set H(y, x) ⊂ H(y, x) ⊂ V (y, x) such that b(y, x) /∈ H(y, x) for any
x ∈ Dm and y ∈ Px; let Gm+1 =

⋃
{H(y, x) : x ∈ Dm, y ∈ Px}. It is

straightforward that the conditions (4)–(8) are now satisfied for all n ≤ m+1
and hence our inductive procedure can be continued to construct the promised
sets and families.

Recall that an uncountable space X is a Luzin space if it is dense in itself
and every nowhere dense subset of X is countable. The following example was
originally constructed under CH. The authors are grateful to the referee who
indicated that the same idea works for any Luzin space. Since the existence
of a Luzin space is a weaker assumption than CH, we have a more general
result with an easier proof.
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Example 3.21. If there exists a Luzin set L ⊂ R, then there exists a set
X ⊂ R which is discretely Čech-complete but not Čech-complete.

Proof. Our space will be X = L\L; it is easy to see that X is dense in
L. The space X is not Čech-complete for otherwise X is a Gδ-subset of L
and hence L is an Fσ-subset of R so L contains an uncountable closed subset
of R which is impossible.

If N is a closed nowhere dense subspace of X then P = N is closed
nowhere dense in L so P ∩L is nowhere dense in L and hence countable. As a
consequence, N is a Gδ-subset of a Čech-complete space P . Therefore every
closed nowhere dense subset of X is Čech-complete. Since D is nowhere dense
in X for any discrete D ⊂ X , we conclude that X is discretely Čech-complete.

Lemma 3.22. If X is a LOTS and U a T1-separating family of open
intervals of X then

∧
U is a base of X.

Proof. Take any x, a, b ∈ X with x ∈ (a, b). We can find U, V ∈ U such
that x ∈ U ∩V while b /∈ U and a /∈ V . If y ∈ U ∩V and y ≥ b then it follows
from {x, y} ⊂ U and b ∈ (x, y] that b ∈ U because U is a convex set. This
contradiction shows that y < b. Analogously, y ≤ a implies that a ∈ V which
is a contradiction. Therefore a < y < b for any point y ∈ U ∩ V ∈

∧
U , i.e.,

x ∈ U ∩ V ⊂ (a, b). The cases x ∈ (←, b) and x ∈ (a,→) are easier.

Lemma 3.23. Suppose that a linearly ordered space X is either finite or
we have the equality w(I) = w(X) for any non-empty open interval I ⊂ X.
Then there exists a discrete set D ⊂ X ×X such that ∆X ⊂ D.

Proof. If X is finite then it is discrete so ∆ = ∆X is discrete as well and
hence there is nothing to prove. If X is infinite then the cardinal κ = w(X)
is also infinite. Fix a base B in X such that every U ∈ B is a non-empty open
interval and |B| = κ; let {Gα : α < κ} be an enumeration of B.

Take a point x0 ∈ G0; pick any y0 ∈ G0\{x0} and let z0 = (x0, y0). We
can find disjoint open intervals U0 and V0 such that x0 ∈ U0 and y0 ∈ V0.
Proceeding by induction let z0 = (x0, y0) and assume that α < κ and we have
a set {zβ : β < α} and a family {Uβ, Vβ : β < α} of open intervals with the
following properties:

(9) zβ = (xβ , yβ) ∈ (X ×X)\∆ for any β < α;
(10) xβ ∈ Uβ , yβ ∈ Vβ and Uβ ∩ Vβ = ∅ for every β < α;

(11) zβ /∈ {zγ : γ < β} for all β < α;
(12) zβ /∈ Hβ =

⋃
{Uγ × Vγ : γ < β} for each β < α;

(13) {zγ : γ ≤ β} ∩ (Gβ ×Gβ) 6= ∅ for any β < α.

Let Dα = {zβ : β < α}; if Dα ∩ (B × B) 6= ∅ for any B ∈ B then we set
D = Dα and stop the induction. If Dα does not meet B×B for some B ∈ B,
then the property (13) shows that γ = min{β : Dα ∩ (Gβ ×Gβ) = ∅} ≥ α.
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Suppose that the set (Gγ×Gγ)\∆ is contained in Hα =
⋃
{Uβ×Vβ : β <

α}. Then the family H = {Uβ ∩Gγ , Vβ ∩Gγ : β < α} is T1-separating in Gγ .
If κ = ω then we obtain a finite T1-separating family on an infinite set; it is
easy to see that this is impossible. If κ > ω then it follows from Lemma 3.22
that w(Gγ) ≤ |H| · ω < κ which is a contradiction.

Therefore (Gγ × Gγ)\∆ is not contained in Hα and hence we can find
distinct points xα, yα ∈ Gγ such that zα = (xα, yα) /∈ Hα. Choose disjoint
open intervals Uα, Vα such that xα ∈ Uα and yα ∈ Vα. It is immediate that
the conditions (9)–(13) are still satisfied for all β ≤ α.

For some α ≤ κ our inductive procedure will conclude and we will have
the set D = Dα; by our choice of D (and the property (13) if α = κ) we have
D∩(B×B) 6= ∅ for any B ∈ B. This trivially implies that ∆ ⊂ D so it suffices
to show that Dα is discrete for any α ≤ κ. Fix any β < α and observe that

it follows from (11) that zβ /∈ {zγ : γ < β}. Besides, we have the inclusion

{zγ : γ > β} ⊂ (X ×X)\(Uβ × Vβ) by the property (12) so zβ /∈ {zγ : γ > β}
and hence the set Dα is discrete.

Observation 3.24. In [6] it was established that for an arbitrary Lindelöf
p-space X it is possible to find a discrete subset D ⊂ X × X such that
∆X = {(x, x) : x ∈ X} ⊂ D. In particular, if X is a Lindelöf p-space and
X × X is discretely Čech-complete then X is Čech-complete. It was also
proved in [6] that under CH there exists a crowded countable space X such
that every discrete set D ⊂ X×X is closed. In particular, X×X is discretely
Čech-complete space of first category.

Example 3.25. It was proved in [20, Theorem 6.14] that under the
negation of the Souslin Hypothesis there exists a Souslin line L with a point-
countable base. It is easy to see that A is second countable for any countable
A ⊂ L. Furthermore, L is hereditarily Lindelöf so every discrete D ⊂ L is
countable and therefore D is second countable. Therefore L is a discretely
second countable LOTS which fails to be separable.

Theorem 3.26. If X is a LOTS then there exists a discrete set D ⊂ X×X
such that ∆X ⊂ D.

Proof. Call a non-empty open interval I ⊂ X adequate if w(J) = w(I)
for any non-empty open interval J ⊂ I. If U is a non-empty open subset of
X then we can choose a non-empty open interval I ⊂ U of minimal weight;
it is immediate that I is adequate so adequate intervals form a π-base of X .

Take a maximal disjoint family I of adequate intervals; then
⋃
I is dense

in X . Observe that Lemma 3.23 is applicable to any adequate interval so
there exists a discrete set DI ⊂ I × I such that ∆I ⊂ DI for every I ∈ I. It
is straightforward that D =

⋃
{DI : I ∈ I} will be a discrete subset of X×X

such that ∆X ⊂ D.
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Corollary 3.27. If P is a topological property which is closed-hereditary
and X is a LOTS such that X × X is discretely P then X has P. In
particular, if X × X is discretely Čech-complete (discretely metrizable or
discretely zero-dimensional) then X is Čech-complete (metrizable or zero-
dimensional respectively).

Proof. Apply Theorem 3.26 to find a discrete subspace D ⊂ X×X such
that ∆X ⊂ D. The set ∆X must have P because it is closed in the space D
so X has P being homeomorphic to ∆X .

4. Open problems

Discrete reflexivity of topological properties turned out to be an interesting
topic with a potential to provide new information about local compactness
and Čech-completeness even in second countable spaces. That there are still
a lot of relevant facts to be discovered can be seen from the following list of
open questions.

Question 4.1. Suppose that X is an analytic second countable discretely
Čech-complete space. Must it be Čech-complete?

Question 4.2. Does there exist in ZFC a second countable discretely
Čech-complete space which is not Čech-complete?

Question 4.3. Does there exist in ZFC a metrizable discretely Čech-
complete space which is not Čech-complete?

Question 4.4. Suppose that X is a monotonically normal discretely
locally compact space. Must X be locally compact?

Question 4.5. Suppose that X is a monotonically normal discretely
locally compact space. Must X be Čech-complete?

Question 4.6. Suppose that X is a monotonically normal discretely
locally compact space. Must X have the Baire property?

Question 4.7. Suppose that X is a monotonically normal discretely
scattered space. Must X be scattered?

Question 4.8. Suppose that X is a monotonically normal discretely
Čech-complete space. Must X have the Baire property?

Question 4.9. Suppose that X is a linearly ordered discretely Čech-
complete space. Must X have the Baire property?

Question 4.10. Suppose that X is a GO space. Is it true that there exists
a discrete set D ⊂ X ×X such that ∆X ⊂ D?

Question 4.11. Suppose that X is a monotonically normal space. Is it
true that Xω is d-separable?
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Question 4.12. Suppose that X is a monotonically normal space and
X ×X is discretely Čech-complete. Must X be Čech-complete?

Question 4.13. Suppose that X is a monotonically normal space and
X ×X is discretely locally compact. Must X be locally compact?

Question 4.14. Suppose that X is a monotonically normal space and
X ×X is discretely zero-dimensional. Must X be zero-dimensional?

Question 4.15. Suppose that X is a monotonically normal space and
X ×X is discretely scattered. Must X be scattered?
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