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Statistical convergence on probalistic normed
spaces

Sevda Karakus∗

Abstract. In this paper we define concepts of statistical conver-
gence and statistical Cauchy on probabilistic normed spaces. Then we
give a useful characterization for statistically convergent sequences. Fur-
thermore, we display an example such that our method of convergence is
stronger than the usual convergence on probabilistic normed spaces. We
also introduce statistical limit points, statistical cluster points on proba-
bilistic normed spaces and then we give the relations between these and
limit points of sequence on probabilistic normed spaces.
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1. Introduction

An interesting and important generalization of the notion of a metric space was
introduced by Menger [10] under the name of statistical metric, which is now called a
probabilistic metric space. The theory of a probabilistic metric space was developed
by numerous authors, as it can be realized upon consulting the list of references in
[5], as well as those in [13] and [14]. An important family of probabilistic metric
spaces are probabilistic normed spaces. The theory of probabilistic normed spaces
is important as a generalization of deterministic results of linear normed spaces.
It seems therefore reasonable to think if the concept of statistical convergence can
be extended to probabilistic normed spaces and in that case enquire how the basic
properties are affected. But basic properties do not hold on probabilistic normed
spaces. The problem is that the triangle function in such spaces. In this paper
we extend the concept of statistical convergence to probabilistic normed spaces
and observe that some basic properties are also preserved on probabilistic normed
spaces. We also display an example such that our method of convergence is stronger
than the usual convergence on probabilistic normed spaces.

Now we recall some notations and definitions used in the paper.
∗Department of Mathematics, Faculty of Sciences and Arts Sinop, Ondokuz Mayis University,

57 000 Sinop, Turkey, e-mail: skarakus@omu.edu.tr



12 S.Karakus

Definition 1. A function f : R → R
+
0 is called a distribution function if it is

non-decreasing and left-continuous with inft∈R f(t) = 0, and supt∈R
f(t) = 1.

We will denote the set of all distribution functions by D.
Definition 2. A triangular norm, a briefly t-norm, is a binary operation on

[0, 1] which is continuous, commutative, associative, non-decreasing and has 1 as a
neutral element, i.e., it is the continuous mapping ∗ : [0, 1]× [0, 1] → [0, 1] such that
for all a,b,c ∈ [0, 1]:

(1) a ∗ 1 = a,

(2) a∗ b = b ∗ a,
(3) c ∗ d ≥ a ∗ b if c ≥ a and d ≥ b,

(4) (a ∗ b) ∗ c = a ∗ (b ∗ c).
Example 1. The ∗ operations a ∗ b = max {a+ b − 1,0}, a ∗ b = ab, and

a ∗ b = min {a,b} on [0, 1] are t−norms.
Definition 3. A triplet (X,N ,∗) is called a probabilistic normed space (briefly,

a PN−space) if X is a real vector space, N a mapping from X into D (for x ∈ X,
the distribution function N(x) is denoted by Nx, and Nx(t) is the value Nx at t ∈ R

) and ∗ a t−norm satisfying the following conditions:

(PN-1) Nx(0) = 0,

(PN-2) Nx(t) = 1 for all t > 0 iff x = 0,

(PN-3) Nαx(t) = Nx

(
t
|α|

)
for all α ∈ R/ {0},

(PN-4) Nx+y(s+ t) ≥ Nx(s) ∗Ny(t) for all x, y ∈ X , and s,t ∈ R
+
0 .

Example 2. Suppose that (X,||.||) is a normed space µ ∈ D with µ(0) = 0, and
µ 
= h, where

h(t) =
{
0, t ≤ 0,
1, t > 0.

Define

Nx(t) =

{
h(t), x = 0,
µ

(
t

||x||
)
, x 
= 0,

where x ∈ X , t ∈ R. Then (X ,N ,∗) is a PN−space. For example, if we define
functions µ and µ

′
on R by

µ(x) =
{
0, x ≤ 0,

x
1+x , x > 0, and µ

′
(x) =

{
0, x ≤ 0,
exp

(−1
x

)
, x > 0,

then we obtain the following well-known ∗−norms

Nx(t) =
{
h(t), x = 0,

t
t+||x|| , x 
= 0, and N

′
x(t) =

{
h(t), x = 0,
exp

(
−||x||

t

)
, x 
= 0.
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We recall that the concept of convergence and Cauchy sequence in a probabilistic
normed space are studied in [1].

Definition 4. Let (X,N, ∗) be a PN -space. Then, a sequence x = (xn) is
said to be convergent to L ∈ X with respect to the probabilistic norm N if for every
ε > 0 and λ ∈ (0, 1) there exists a positive integer k0 such that Nxn−L(ε) > 1 − λ

whenever n ≥ k0. It is denoted by N − limx = L or xn
N→ L as n → ∞.

Remark 1 [[1]]. Let (X, ||.||) be a real normed space, and Nx(t) = t
t+||x|| , where

x ∈ X and t ≥ 0 (standard ∗−norm induced by ||.||). Then it is not hard to see that

xn
||.||−→ x if and only if xn

N→ x.
Definition 5. Let (X,N, ∗) be a PN - space . Then, a sequence x = (xn) is

called a Cauchy sequence with respect to the probabilistic norm N if for every ε > 0
and λ ∈ (0, 1) there exists a positive integer k0 such that Nxn−xm(ε) > 1−λ for all
n,m ≥ k0.

2. Statistical convergence on PN-spaces

In this paper we deal with the statistical convergence on probabilistic normed
spaces. Before proceeding further, we should recall some notation on the statis-
tical convergence. If K is a subset of N, the set of natural numbers, then the
natural density of K denoted by δ (K), is given by

δ (K) := lim
n

1
n
|{k ≤ n : k ∈ K}|

whenever the limit exists, where |A| denotes the cardinality of the set A. The
natural density may not exist for each set K. But the upper density δ always exists
for each set K identified as follows:

δ (K) := lim sup
n

1
n
|{k ≤ n : k ∈ K}| .

Moreover, the natural density of K is different from zero which means δ (K) > 0.
A sequence x = (xk) of numbers is statistically convergent to L if

δ ({k ∈ N : |xk − L| ≥ ε}) = 0

for every ε > 0. In this case we write st− lim x = L.
Note that every convergent sequence is statistically convergent to the same value.

If x is statistically convergent, then x need not be convergent. It is also not neces-
sarily bounded. For example, x = (xk) be defined as

xk :=
{
k, if k is a square,
1, otherwise.

It is easy to see that st− limx = 1, since the cardinality of the set

|{k ≤ n : |xk − 1| ≥ ε}| ≤ √
n for every ε > 0.

But x is neither convergent nor bounded.
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The idea of the statistical convergence was first introduced by Steinhaus (1951)
[12] but rapid developments started after the papers of Connor [2] and Fridy [7].
Statistical convergence and its some generalizations have appeared in the study of
locally convex spaces [9]. It is also connected with the subsets of the Stone-Čech
compactification of the set of natural numbers [3]. Some results on characterizing
Banach spaces with separable duals via statistical convergence may be found in [4].
This notion of convergence is also considered in the measure theory [11], in the
trigonometric series [15] and in the approximation theory [6].

We are now ready to obtain our main results.
Definition 6. Let (X,N, ∗) be a PN - space. We say that a sequence x = (xk)

is statistically convergent to L ∈ X with respect to the probabilistic norm N provided
that for every ε > 0 and λ ∈ (0, 1)

δ ({k ∈ N : Nxk−L(ε) ≤ 1− λ}) = 0, (1)

or equivalently,

lim
n

1
n
|{k ≤ n : Nxk−L(ε) ≤ 1− λ}| = 0.

In this case we write stN − limx = L, where L is said to be stN−limit.
By using (1) and well-known density properties, we easily get the following

lemma.
Lemma 1. Let (X,N, ∗) be a PN− space. Then, for every ε > 0 and λ ∈ (0, 1),

the following statements are equivalent:

(i) stN − limx = L,

(ii) δ ({k ∈ N : Nxk−L(ε) ≤ 1− λ}) = 0,

(iii) δ ({k ∈ N : Nxk−L(ε) > 1− λ}) = 1,

(iv) st− limNxk−L(ε) = 1.

Theorem 1. Let (X,N, ∗) be a PN− space. If a sequence x = (xk) is sta-
tistically convergent with respect to the probabilistic norm N , then stN−limit is
unique.

Proof. Assume that stN − lim x = L1 and stN − limx = L2. For a given λ > 0
choose γ ∈ (0, 1) such that (1 − γ) ∗ (1 − γ) > 1 − λ. Then, for any ε > 0, define
the following sets:

KN , 1(γ, ε) := {k ∈ N : Nxk−L1(ε) ≤ 1− γ} ,
KN , 2(γ, ε) := {k ∈ N : Nxk−L2(ε) ≤ 1− γ} .

Since stN − limx = L1, δ {KN , 1(γ, ε)} = 0 for all ε > 0. Furthermore, using
stN − limx = L2, we get δ {KN , 2(γ, ε)} = 0 for all ε > 0. Now let KN(γ, ε) =
KN , 1(γ, ε) ∩ KN , 2(γ, ε). Then we observe that δ {KN(γ, ε)} = 0 which implies
δ {N/KN(γ, ε)} = 1. If k ∈ N/KN(γ, ε), then we have

NL1−L2(ε) ≥ Nxk−L1

(ε

2

)
∗Nxk−L2

(ε

2

)
> (1− γ) ∗ (1− γ).
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Since (1− γ) ∗ (1− γ) > 1− λ, it follows that

NL1−L2(ε) > 1− λ. (2)

Since λ > 0 was arbitrary, by (2) we get NL1−L2(ε) = 1 for all ε > 0, which
yields L1 = L2. Therefore, we conclude that stN−limit is unique. ✷

Theorem 2. Let (X,N, ∗) be a PN− space. If N − limx = L, then stN −
limx = L.

Proof. By hypothesis, for every λ ∈ (0, 1) and ε > 0, there is a number
k0 ∈ N such that Nxn−L(ε) > 1 − λ for all n ≥ k0. This guaranties that the
set {n ∈ N : Nxn−L(ε) ≤ 1− λ} has at most finitely many terms. Since every fi-
nite subset of the natural numbers has density zero, we immediately see that
δ ({n ∈ N : Nxn−L(ε) ≤ 1− λ}) = 0,whence the result. ✷

The following example shows that the converse of Theorem 2 is not valid.
Example 3. Let (R, |.|) denote the space of real numbers with the usual norm.

Let a ∗ b = ab and Nx(t) = t
t+|x| , where x ∈ X and t ≥ 0. In this case observe

that (R, N, ∗) is a PN− space. Now we define a sequence x = (xk) whose terms
are given by

xk :=
{
1, if k = m2 (m ∈ N),
0, otherwise. (3)

Then, for every λ ∈ (0, 1) and for any ε > 0, let Kn(λ, ε) := {k ≤ n : Nxk
(ε) ≤ 1− λ}.

Since

Kn(λ, ε) =
{
k ≤ n :

t

t+ |xk| ≤ 1− λ

}

=
{
k ≤ n : |xk| ≥ λt

1− λ
> 0

}
= {k ≤ n : xk = 1}
=

{
k ≤ n : k = m2 and m ∈ N

}
,

we get
1
n
|Kn(λ, ε)| ≤ 1

n

∣∣{k ≤ n : k = m2 and m ∈ N
}∣∣ ≤ √

n

n

which implies that lim
n

1
n |Kn(λ, ε)| = 0. Hence, by Definition 6, we get stN − limx =

0. However, since the sequence x = (xk) given by (3) is not convergence in the space
(R, |.|), by Remark 1, we also see that x is not convergent with respect to the prob-
abilistic norm N .

Theorem 3. Let (X,N, ∗) be a PN− space. Then, stN − limx = L if and only
if there exists an increasing index sequence K = {kn}n∈N

of the natural numbers
such that δ {K} = 1 and N − lim

n∈K
xn = L, i.e., N − lim

n
xkn = L.

Proof. Necessity: We first assume that stN − limx = L. Now, for any ε > 0
and j ∈ N, let

K(j, ε) :=
{
n ∈ N : Nxn−L (ε) > 1− 1

j

}
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Then observe that, for ε > 0 and j ∈ N,

K(j + 1, ε) ⊂ K(j, ε). (4)

Since stN − limx = L, it is clear that

δ{K(j, ε)} = 1, (j ∈ N and ε > 0). (5)

Now let p1 be an arbitrary number of K(1, ε). Then, by (5), there is a number
p2 ∈ K(2, ε), (p2 > p1), such that, for all n ≥ p2,

1
n

∣∣∣∣
{
k ≤ n : Nxk−L (ε) > 1− 1

2

}∣∣∣∣ > 1
2

Further, again by (5), there is a number p3 ∈ K(3, ε), (p3 > p2), such that, for all
n ≥ p3,

1
n

∣∣∣∣
{
k ≤ n : Nxk−L (ε) > 1− 1

3

}∣∣∣∣ > 2
3
,

and so on. So, by induction we can construct an increasing index sequence {pj}j∈N

of natural numbers such that pj ∈ K(j, ε) and that the following statement holds
for all n ≥ pj (j ∈ N):

1
n

∣∣∣∣
{
k ≤ n : Nxk−L (ε) > 1− 1

j

}∣∣∣∣ > j − 1
j

(6)

Now we construct the increasing index sequence K as follows:

K := {n ∈ N : 1 < n < p1} ∪

⋃

j∈N

{n ∈ K(j, ε) : pj ≤ n < pj+1}

 . (7)

Then by (4), (6) and (7) we conclude, for all n, (pj ≤ n < pj+1), that

1
n
|{k ≤ n : k ∈ K}| ≥ 1

n

∣∣∣∣
{
k ≤ n : Nxk−L (ε) > 1− 1

j

}∣∣∣∣ > j − 1
j

.

Hence it follows that δ(K) = 1. Now let ε > 0 and choose a number j ∈ N such

that
1
j
< ε. Assume that n ≥ vj and n ∈ K. Then, by the definition of K, there

exists a number m ≥ j such that vm ≤ n < vm+1 and n ∈ K(j, ε). Hence, we have,
for every ε > 0,

Nxn−L (ε) > 1− 1
j
> 1− ε

for all n ≥ vj and n ∈ K. This indicates that

N − lim
n∈K

xn = L.

So the proof of necessity is completed.
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Sufficiency: Suppose that there exists an increasing index sequenceK = {kn}n∈N

of natural numbers such that δ{K} = 1 and N− lim
n∈K

xn = L. Then, for every ε > 0,

there is a number n0 such that for each n ≥ n0 the inequalities Nxn−L (ε) > 1− ε
hold. Now define M(λ, ε) := {n ∈ N : Nxn−L (ε) ≤ 1− λ}. Then we have

M(λ, ε) ⊂ N − {kn0 , kn0+1, kn0+2, ...}.
Since δ{K} = 1, we get δ{N − {kn0 , kn0+1, kn0+2, ...}} = 0, which yields that

δ{M(λ, ε)} = 0.

Therefore, we conclude that stN − limx = L. ✷

Remark 2. If stN − lim
n
xn = L, then there exits a sequence y = (yn) such that

N − lim
n
yn = L and δ {n ∈ N : xn = yn} = 1.

We now introduce the notion of a statistical Cauchy sequence on a probabilistic
norm space and give a characterization.

Definition 7. Let (X,N, ∗) be a PN− space. We say that a sequence x =
(xn) is statistically Cauchy with respect to the probabilistic norm N provided that,
for every ε > 0 and λ ∈ (0, 1), there exists a positive integer m ∈ N satisfying
δ {n ∈ N : Nxn−xm(ε) ≤ 1− λ} = 0.

Now using a similar technique in the proof of Theorem 3 one can get the following
result at once.

Theorem 4. Let (X,N, ∗) be a PN - space, and let x = (xk) be a sequence whose
terms are in the vector space X. Then, the following conditions are equivalent:

(a) x is a statistically Cauchy sequence with respect to the probabilistic norm N .

(b) There exists an increasing index sequence K = {kn} of natural numbers such
that δ {K} = 1 and the subsequence {xkn}n∈N

is a Cauchy sequence with
respect to the probabilistic norm N .

We show that statistically convergence on PN−spaces has some arithmetical
properties similar to properties of the usual convergence on R.

Lemma 2. Let (X,N, ∗) be a PN− space.

(1) If stN − lim xn = ξ and stN − lim yn = η, then stN − lim (xn + yn) = ξ+ η,

(2) If stN − limxn = ξ and α ∈ R, then stN − limαxn = αξ,

(3) If stN − limxn = ξ and stN − lim yn = η, then stN − lim (xn − yn) = ξ − η.

Proof. (1) Let stN − limxn = ξ , stN − lim yn = η , ε > 0 and λ ∈ (0, 1).
Choose γ ∈ (0, 1) such that (1− γ) ∗ (1− γ) > 1− λ. Then we define the following
sets:

KN,1 (γ, ε) : = {n ∈ N : Nxn−ξ (ε) ≤ 1− γ}
KN,2 (γ, ε) : = {n ∈ N : Nyn−η (ε) ≤ 1− γ} .

Since stN − limxn = ξ, δ {KN,1 (γ, ε)} = 0 for all ε > 0. Furthermore, using
stN − lim yn = η we get δ {KN,2 (γ, ε)} = 0 for all ε > 0. Now let KN (γ, ε) =
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KN,1 (γ, ε) ∩ KN,2 (γ, ε). Then we observe that δ {KN (γ, ε)} = 0 which implies
δ {N/KN (γ, ε)} = 1. If n ∈ N/KN (γ, ε), then we have

N(xn−ξ)+(yn−η) (ε) ≥ Nxn−ξ

(ε

2

)
∗Nyn−η

(ε

2

)
> (1− γ) ∗ (1− γ) > 1− λ.

This shows that

δ
({
n ∈ N : N(xn−ξ)+(yn−η) (ε) ≤ 1− λ

})
= 0

so stN − lim (xn + yn) = ξ + η.
(2) Let stN − limxn = ξ , λ ∈ (0, 1) and ε > 0. First of all, we consider the case

of α = 0. In this case

N0xn−0ξ(ε) = N0(ε) = 1 > 1− λ.

So we obtain N − lim 0xn = 0. Then from Theorem 2 we have stN − lim 0xn = 0.
Now we consider the case of α ∈ R (α 
= 0) . Since stN − limxn = ξ , if we define

the set
KN (γ, ε) := {n ∈ N : Nxn−ξ (ε) ≤ 1− λ}

then we can say δ {KN (γ, ε)} = 0 for all ε > 0. In this case δ {N/KN (γ, ε)} = 1.
If n ∈ N/KN (γ, ε), then

Nαxn−αξ (ε) = Nxn−ξ

(
ε

|α|
)

≥ Nxn−ξ (ε) ∗N0

(
ε

|α| − ε

)
= Nxn−ξ (ε) ∗ 1 = Nxn−ξ (ε) > 1− λ

for α ∈ R (α 
= 0) . This shows that

δ ({n ∈ N : Nαxn−αξ (ε) ≤ 1− λ}) = 0.

So stN − limαxn = αξ.
(3) The proof is clear from (1) and (2). ✷

Definition 8. Let (X,N, ∗) be a PN− space. For x ∈ X, t > 0 and 0 < r < 1,
the ball centered at x with radius r is defined by

B (x, r, t) = {y ∈ X : Nx−y (t) > 1− r} .

Definition 9. Let (X,N, ∗) be a PN−space. A subset Y of X is said to
be bounded on PN−spaces if for every r ∈ (0, 1) there exists t0 > 0 such that
Nx (t0) > 1− r for all x ∈ Y .

It follows from Lemma 2 that the set of all bounded statistically convergent
sequences on PN−space is a linear subspace of the space *N

∞ (X) of all bounded
sequences on PN−spaces.
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Theorem 5. Let (X,N, ∗) be a PN− space and SN
b (X) the space of bounded

statistically convergent sequences on PN−spaces. Then the set SN
b (X) is a closed

linear subspace of the set *N
∞ (X) .

Proof. It is clear that SN
b (X) ⊂ SN

b (X). Now we show that SN
b (X) ⊂ SN

b (X).
Let y ∈ SN

b (X). Since B (y, r, t)∩SN
b (X) 
= ∅, there is an x ∈ B (y, r, t)∩SN

b (X) .
Let t > 0 and ε ∈ (0, 1). Choose r ∈ (0, 1) such that (1− r) ∗ (1− r) > 1 − ε.

Since x ∈ B (y, r, t) ∩ SN
b (X), there is a set K ⊆ N with δ (K) = 1 such that

Nyn−xn

(
t

2

)
> 1− r and Nxn

(
t

2

)
> 1− r

for all n ∈ K. Then we have

Nyn (t) = Nyn−xn+xn (t)

≥ Nyn−xn

(
t

2

)
∗Nxn

(
t

2

)
> (1− r) ∗ (1− r) > 1− ε

for all n ∈ K. Hence δ {n ∈ K : Nyn (t) > 1− ε} = 1 and thus y ∈ SN
b (X). ✷

3. Statistical limit points and statistical cluster points on
IFNS

Fridy introduced the concepts of statistical limit points and statistical cluster points
of real number sequences in 1993 [8]. Also he gives relations between them and the
set of ordinary limit points. Now we study the analogues of these on probabilistic
normed spaces.

Definition 10. Let (X,N, ∗) be a PN−space. * ∈ X is called a limit point of
the sequence x = (xk) with respect to the probabilistic norm N provided that there
is a subsequence of x that converges to * with respect to the probabilistic norm N .
Let LN (x) denote the set of all limit points of the sequence x.

Definition 11. Let (X,N, ∗) be a PN−space. If
{
xk(j)

}
is a subsequence of

x = (xk) and K := {k (j) ∈ N : j ∈ N} then we abbreviate
{
xk(j)

}
by {x}K which

in case δ (K) = 0. {x}K is called a subsequence of density zero or thin subsequence.
On the other hand, {x}K is a nonthin subsequence of x if K does not have density
zero.

Definition 12. Let (X,N, ∗) be a PN -space. Then ξ ∈ X is called a statistical
limit point of sequence x = (xk) with respect to the probabilistic norm N provided
that there is a nonthin subsequence of x that converges to ξ with respect to the
probabilistic norm N . In this case we say ξ is an stN−limit point of seqence x =
(xk). Let ΛN (x) denote the set of all stN−limit points of the sequence x.

Definition 13. Let (X,N, ∗) be a PN−space.Then γ ∈ X is called a statistical
cluster point of sequence x = (xk) with respect to the probabilistic norm N provided
that for every ε > 0 and λ ∈ (0, 1).

δ ({k ∈ N : Nxk−γ (ε) > 1− λ}) > 0.
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In this case we say γ is an stN−cluster point of sequence x = (xk). Let ΓN (x)
denote the set of all stN−cluster points of the sequence x.

Theorem 6. Let (X,N, ∗) be a PN−space. For any sequence x ∈ X, ΛN (x) ⊂
ΓN (x).

Proof. Suppose ξ ∈ ΛN (x), then there is a nonthin subsequence
(
xk(j)

)
of

x = (xk) that converges to ξ with respect to the probabilistic norm N , i.e.

δ
({

k (j) ∈ N : Nxk(j)−ξ (ε) > 1− λ
})

= d > 0.

Since

{k ∈ N : Nxk−ξ (ε) > 1− λ} ⊃ {
k (j) ∈ N : Nxk(j)−ξ (ε) > 1− λ

}
for every ε > 0, we have

{k ∈ N : Nxk−ξ (ε) > 1− λ}
⊇ {k (j) ∈ N : j ∈ N} \{

k (j) ∈ N : Nxk(j)−ξ (ε) ≤ 1− λ
}
.

Since
(
xk(j)

)
converges to ξ with respect to the probabilistic norm N , the set

{
k (j) ∈ N : Nxk(j)−ξ (ε) ≤ 1− λ

}
is finite for any ε > 0. Therefore,

δ ({k ∈ N : Nxk−ξ (ε) > 1− λ}) ≥ δ {k (j) ∈ N : j ∈ N}
−δ

{
k (j) ∈ N : Nxk(j)−ξ (ε) ≤ 1− λ

}
.

Hence
δ ({k ∈ N : Nxk−ξ (ε) > 1− λ}) > 0

which means that ξ ∈ ΓN (x). ✷

Theorem 7. Let (X,N, ∗) be a PN−space. For any sequence x ∈ X, ΓN (x) ⊆
LN (x).

Proof. Let γ ∈ ΓN (x), then

δ ({k ∈ N : Nxk−γ (ε) > 1− λ}) > 0

for every ε > 0 and λ ∈ (0, 1). We set {x}K a nonthin subsequence of x such that

K :=
{
k (j) ∈ N : Nxk(j)−γ (ε) > 1− λ

}
for every ε > 0 and δ (K) 
= 0. Since there are infinitely many elements in K,
γ ∈ LN (x). ✷

Theorem 8. Let (X,N, ∗) be a PN−space. For a sequence x = (xk), stN −
limx = x0 then ΛN (x) = ΓN (x) = {x0}.

Proof. First we show that ΛN (x) = {x0}. We suppose that ΛN (x) = {x0, y0}
such that x0 
= y0. In this case, there exist

{
xk(j)

}
and

{
xl(i)

}
nonthin subsequences

of x = (xk) that converge to x0, y0 with respect to the probabilistic norm N ,
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respectively. Since
{
xl(i)

}
converge to y0 with respect to the probabilistic norm N

for every ε > 0 and λ ∈ (0, 1)

K :=
{
l (i) ∈ N : Nxl(i)−y0 (ε) ≤ 1− λ

}
is a finite set so δ (K) = 0. Then we observe that

{l (i) ∈ N : i ∈ N} =
{
l (i) ∈ N : Nxl(i)−y0 (ε) > 1− λ

}
∪{

l (i) ∈ N : Nxl(i)−y0 (ε) ≤ 1− λ
}

which implies that

δ
({
l (i) ∈ N : Nxl(i)−y0 (ε) > 1− λ

}) 
= 0. (8)

Since stN − lim x = x0,

δ ({k ∈ N : Nxk−x0 (ε) ≤ 1− λ}) = 0 (9)

for every ε > 0. Therefore, we can write

δ ({k ∈ N : Nxk−x0 (ε) > 1− λ}) 
= 0.

For every x0 
= y0{
l (i) ∈ N : Nxl(i)−y0 (ε) > 1− λ

} ∩ {k ∈ N : Nxk−x0 (ε) > 1− λ} = ∅.

Hence {
l (i) ∈ N : Nxl(i)−y0 (ε) > 1− λ

} ⊆ {k ∈ N : Nxk−x0 (ε) ≤ 1− λ} .

Therefore

δ
({

l (i) ∈ N : Nxl(i)−y0 (ε) > 1− λ
}) ≤ δ ({k ∈ N : Nxk−x0 (ε) ≤ 1− λ}) = 0.

This contradicts (8). Hence ΛN (x) = {x0}.
Now we assume that ΓN (x) = {x0, z0} such that x0 
= z0. Then

δ ({k ∈ N : Nxk−z0 (ε) > 1− λ}) 
= 0. (10)

Since

{k ∈ N : Nxk−x0 (ε) > 1− λ} ∩ {k ∈ N : Nxk−z0 (ε) > 1− λ} = ∅

for every x0 
= z0, so

{k ∈ N : Nxk−x0 (ε) ≤ 1− λ} ⊇ {k ∈ N : Nxk−z0 (ε) > 1− λ} .

Therefore

δ ({k ∈ N : Nxk−x0 (ε) ≤ 1− λ}) ≥ δ ({k ∈ N : Nxk−z0 (ε) > 1− λ}) . (11)
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From (10), the right hand-side of (11) is greater than zero and from (9), the left
hand-side of (11) equals zero. This is a contradiction. Hence ΓN (x) = {x0}. ✷

Theorem 9. Let (X,N, ∗) be a PN−space. Then the set ΓN is closed in X for
each x = (xk) of elements of X.

Proof. Let y ∈ ΓN (x). Take 0 < r < 1 and t > 0. There exists γ ∈ ΓN (x) ∩
B (y, r, t) such that

B (y, r, t) = {x ∈ X : Ny−x (t) > 1− r} .

Choose η > 0 such that B (γ, η, t) ⊂ B (y, r, t). We have

{k ∈ N : Ny−xk
(t) > 1− r} ⊃ {k ∈ N : Nγ−xk

(t) > 1− η}

hence
δ ({k ∈ N : Ny−xk

(t) > 1− r}) 
= 0

and y ∈ ΓN . ✷

Conclusion 1. In this paper we obtained results on statistical convergence in
probabilistic normed spaces. As every ordinary norm induces a probabilistic norm,
the results obtained here are more general than the corresponding of normed spaces.

References

[1] A.Asadollah, K.Nourouzi, Convex sets in probabilistic normed spaces,
Chaos, Solitons & Fractals, doi:10.1016/j.chaos.2006.06.051.

[2] J.Connor, The statistical and strong p−Cesaro convergence of sequences,
Analysis 8(1988), 47-63.

[3] J.Connor, M.A. Swardson, Strong integral summability and the Stone-
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