A condition that a tangential quadrilateral is also a chordal one

Mirko Radić*, Zoran Kaliman ${ }^{\dagger}$ and Vladimir Kadum ${ }^{\ddagger}$

Abstract

In this article we present a condition that a tangential quadrilateral is also a chordal one. The main result is given by Theorem 1 and Theorem 2.

Key words: tangential quadrilateral, bicentric quadrilateral
AMS subject classifications: 51E12
Received September 1, 2005
Accepted March 9, 2007

1. Introduction

A polygon which is both tangential and chordal will be called a bicentric polygon. The following notation will be used.

If $A_{1} A_{2} A_{3} A_{4}$ is a considered bicentric quadrilateral, then its incircle is denoted by C_{1}, circumcircle by C_{2}, radius of C_{1} by r, radius of C_{2} by R, center of C_{1} by I, center of C_{2} by O, distance between I and O by d.

Figure 1.1

[^0]The first one who was concerned with bicentric quadrilaterals was a German mathematician Nicolaus Fuss (1755-1826), see [2]. He found that C_{1} is the incircle and C_{2} the circumcircle of a bicentric quadrilateral $A_{1} A_{2} A_{3} A_{4}$ iff

$$
\begin{equation*}
\left(R^{2}-d^{2}\right)^{2}=2 r^{2}\left(R^{2}+d^{2}\right) \tag{1.1}
\end{equation*}
$$

The problem of findings relation (1.1) has ranged in [1] as one of 100 great problems of elementary mathematics.

A very remarkable theorem concerning bicentric polygons is given by a French mathematician Poncelet (1788-1867). This theorem is known as the Poncelet's closure theorem. For the case when conics are circles, one inside the other, this theorem can be stated as follows:

If there is a bicentric n-gon whose incircle is C_{1} and circumcircle C_{2}, then there are infinitely many bicentric n-gons whose incircle is C_{1} and circumcircle C_{2}. For every point P_{1} on C_{2} there are points P_{2}, \ldots, P_{n} on C_{2} such that $P_{1} \ldots P_{n}$ are a bicentric n-gon whose incircle is C_{1} and circumcircle C_{2}.

In the following (Section 3) bicentric quadrilaterals will also be considered, where instead of an incircle there is an excircle. As will be seen, there is a great analogy between those two kinds of bicentric quadrilaterals.

2. About one condition concerning bicentric quadrilaterals

First, let us briefly discuss the notations to be used.
If $A_{1} A_{2} A_{3} A_{4}$ is a given tangential quadrilateral, then by $t_{1}, t_{2}, t_{3}, t_{4}$ we denote its tangent lengths such that

$$
\begin{equation*}
t_{i}+t_{i+1}=\left|A_{i} A_{i+1}\right|, \quad i=1,2,3,4 \tag{2.1}
\end{equation*}
$$

By $\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}$ we denote angles $\measuredangle I A_{i} A_{i+1}, i=1,2,3,4$, where I is the center of the incircle of $A_{1} A_{2} A_{3} A_{4}$. (See Figure 2.1)

Figure 2.1.
The following theorem will be proved.

Theorem 1. Let $A_{1} A_{2} A_{3} A_{4}$ be any given tangential quadrilateral, and let t_{1}, t_{2}, t_{3}, t_{4} be its tangent lengths such that (2.1) holds. Then this quadrilateral is also a chordal one if and only if

$$
\begin{equation*}
\frac{\left|A_{1} A_{3}\right|}{t_{1}+t_{3}}=\frac{\left|A_{2} A_{4}\right|}{t_{2}+t_{4}}=\sqrt{k} \tag{2.2}
\end{equation*}
$$

where

$$
\begin{equation*}
1<k \leq 2 \tag{2.3}
\end{equation*}
$$

Proof. First we suppose that (2.2) holds. From Figure 2.1 we see that the equality $\left|A_{1} A_{3}\right|^{2}=k\left(t_{1}+t_{3}\right)^{2}$ can be written as

$$
\left|A_{1} A_{2}\right|^{2}+\left|A_{2} A_{3}\right|^{2}-2\left|A_{1} A_{2}\right|\left|A_{2} A_{3}\right| \cos 2 \beta_{2}=k\left(t_{1}+t_{3}\right)^{2}
$$

or

$$
\begin{equation*}
\left(t_{1}+t_{2}\right)^{2}+\left(t_{2}+t_{3}\right)^{2}-2\left(t_{1}+t_{2}\right)\left(t_{2}+t_{3}\right) \frac{t_{2}^{2}-r^{2}}{t_{2}^{2}+r^{2}}=k\left(t_{1}+t_{3}\right)^{2} \tag{2.4}
\end{equation*}
$$

since

$$
\cos 2 \beta_{2}=\frac{1-\tan ^{2} \beta_{2}}{1+\tan ^{2} \beta_{2}}, \quad \tan \beta_{2}=\frac{r}{t_{2}}
$$

The equality $\left|A_{1} A_{3}\right|^{2}=k\left(t_{1}+t_{3}\right)^{2}$ can also be written as

$$
\begin{equation*}
\left(t_{1}+t_{4}\right)^{2}+\left(t_{4}+t_{3}\right)^{2}-2\left(t_{1}+t_{4}\right)\left(t_{4}+t_{3}\right) \frac{t_{4}^{2}-r^{2}}{t_{4}^{2}+r^{2}}=k\left(t_{1}+t_{3}\right)^{2} \tag{2.5}
\end{equation*}
$$

where

$$
2 \beta_{4}=\text { measure of } \varangle A_{1} A_{4} A_{3}, \quad \cos 2 \beta_{4}=\left(t_{4}^{2}-r^{2}\right) /\left(t_{4}^{2}+r^{2}\right)
$$

In the same way can see that the equality $\left|A_{2} A_{4}\right|^{2}=k\left(t_{2}+t_{4}\right)^{2}$ can be written in the following two ways:

$$
\begin{align*}
& \left(t_{1}+t_{2}\right)^{2}+\left(t_{1}+t_{4}\right)^{2}-2\left(t_{1}+t_{2}\right)\left(t_{1}+t_{4}\right) \frac{t_{1}^{2}-r^{2}}{t_{1}^{2}+r^{2}}=k\left(t_{2}+t_{4}\right)^{2} \tag{2.6}\\
& \left(t_{3}+t_{2}\right)^{2}+\left(t_{3}+t_{4}\right)^{2}-2\left(t_{3}+t_{2}\right)\left(t_{3}+t_{4}\right) \frac{t_{3}^{2}-r^{2}}{t_{3}^{2}+r^{2}}=k\left(t_{2}+t_{4}\right)^{2} \tag{2.7}
\end{align*}
$$

Solving equation (2.4) for t_{2} we get

$$
\begin{align*}
\left(t_{2}\right)_{1}= & {\left[-4 r^{2} t_{1}-4 r^{2} t_{3}-\right.} \\
& \left(\left(4 r^{2} t_{1}+4 r^{2} t_{3}\right)^{2}-4\left(4 r^{2}+t_{1}^{2}-k t_{1}^{2}-2 t_{1} t_{3}-2 k t_{1} t_{3}+t_{3}^{2}-k t_{3}^{2}\right)\right. \\
& \left.\left.\left(r^{2} t_{1}^{2}-k r^{2} t_{1}^{2}+2 r^{2} t_{1} t_{3}-2 k r^{2} t_{1} t_{3}+r^{2} t_{3}^{2}-k r^{2} t_{3}^{2}\right)\right)^{\frac{1}{2}}\right] / \\
& \left(2\left(4 r^{2}+t_{1}^{2}-k t_{1}^{2}-2 t_{1} t_{3}-2 k t_{1} t_{3}+t_{3}^{2}-k t_{3}^{2}\right)\right) \tag{2.8}
\end{align*}
$$

$$
\begin{align*}
\left(t_{2}\right)_{2}= & {\left[-4 r^{2} t_{1}-4 r^{2} t_{3}+\right.} \\
& \left(\left(4 r^{2} t_{1}+4 r^{2} t_{3}\right)^{2}-4\left(4 r^{2}+t_{1}^{2}-k t_{1}^{2}-2 t_{1} t_{3}-2 k t_{1} t_{3}+t_{3}^{2}-k t_{3}^{2}\right)\right. \\
& \left.\left.\left(r^{2} t_{1}^{2}-k r^{2} t_{1}^{2}+2 r^{2} t_{1} t_{3}-2 k r^{2} t_{1} t_{3}+r^{2} t_{3}^{2}-k r^{2} t_{3}^{2}\right)\right)^{\frac{1}{2}}\right] / \\
& \left(2\left(4 r^{2}+t_{1}^{2}-k t_{1}^{2}-2 t_{1} t_{3}-2 k t_{1} t_{3}+t_{3}^{2}-k t_{3}^{2}\right)\right) \tag{2.9}
\end{align*}
$$

It is easy to see that equation (2.4) in t_{2} has the same solutions as equation (2.5) in t_{4}, that is

$$
\left\{\left(t_{2}\right)_{1},\left(t_{2}\right)_{2}\right\}=\left\{\left(t_{4}\right)_{1},\left(t_{4}\right)_{2}\right\} .
$$

Since equation (2.4) has t_{2} as one solution, and equation (2.5) has t_{4} as one solution, it follows that

$$
\begin{equation*}
\left\{\left(t_{2}\right)_{1},\left(t_{2}\right)_{2}\right\}=\left\{\left(t_{4}\right)_{1},\left(t_{4}\right)_{2}\right\}=\left\{t_{2}, t_{4}\right\} . \tag{2.10}
\end{equation*}
$$

Putting $t_{2}=\left(t_{2}\right)_{1}, t_{4}=\left(t_{2}\right)_{2}$ in (2.6) we get

$$
\begin{equation*}
\frac{(-1+k) r^{2}\left(t_{1}+t_{3}\right)^{2}}{-4 r^{2}+(-1+k) t_{1}^{2}+2(1+k) t_{1} t_{3}+(-1+k) t_{3}^{2}}=t_{1} t_{3} . \tag{2.11}
\end{equation*}
$$

Solving this equation for t_{3} yields

$$
t_{3} \in\left\{\frac{r^{2}}{t_{1}}, \frac{-t_{1}-2 \sqrt{k} t_{1}-k t_{1}}{-1+k}, \frac{-t_{1}+2 \sqrt{k} t_{1}-k t_{1}}{-1+k}\right\}
$$

Thus, the only positive t_{3} is given by

$$
\begin{equation*}
t_{3}=\frac{r^{2}}{t_{1}} \tag{2.12}
\end{equation*}
$$

Now we find that from (2.8) and (2.9) there follows

$$
\left(t_{2}\right)_{1} \cdot\left(t_{2}\right)_{2}=\frac{r^{2}\left(t_{1}+t_{3}\right)^{2}(1-k)}{\left(t_{1}-t_{3}\right)^{2}+4 r^{2}-k\left(t_{1}+t_{3}\right)^{2}}
$$

which according to (2.10) and (2.12) can be written as

$$
\begin{equation*}
t_{2} t_{4}=r^{2} \tag{2.13}
\end{equation*}
$$

That also $t_{1} t_{3}=r^{2}$, that is

$$
\begin{equation*}
t_{1} t_{3}=t_{2} t_{4}=r^{2} \tag{2.14}
\end{equation*}
$$

follows from $\left(t_{1}+t_{2}+t_{3}+t_{4}\right) r^{2}=t_{1} t_{2} t_{3}+t_{2} t_{3} t_{4}+t_{3} t_{4} t_{1}+t_{4} t_{1} t_{2}$ putting $t_{4}=r^{2} / t_{2}$. Namely, we get $r^{2}\left(t_{2}+t_{4}\right)=t_{1} t_{3}\left(t_{2}+t_{4}\right)$, from which follows $t_{1} t_{3}=r^{2}$.

We shall prove that these relations are sufficient for a tangential quadrilateral to be a chordal one. The proof is as follows.

Since

$$
\cos 2 \beta_{2}=\frac{t_{2}^{2}-r^{2}}{t_{2}^{2}+r^{2}}, \quad \cos 2 \beta_{4}=\frac{t_{4}^{2}-r^{2}}{t_{4}^{2}+r^{2}}
$$

using (2.14) we can write

$$
\cos 2 \beta_{4}=\frac{\left(r^{2} / t_{2}\right)^{2}-r^{2}}{\left(r^{2} / t_{2}\right)^{2}+r^{2}}=-\frac{t_{2}^{2}-r^{2}}{t_{2}^{2}+r^{2}}=-\cos 2 \beta_{2} .
$$

In the same way we find that $\cos 2 \beta_{3}=-\cos 2 \beta_{1}$.
Thus, from (2.2) it follows that the given tangential quadrilateral $A_{1} A_{2} A_{3} A_{4}$ is also a chordal one since $2 \beta_{1}+2 \beta_{3}=2 \beta_{2}+2 \beta_{4}=\pi$. In this connection let us remark that it is not difficult to check that identically holds

$$
r\left(t_{1}+t_{2}+t_{3}+t_{4}\right)=\sqrt{\left(t_{1}+t_{2}\right)\left(t_{2}+t_{3}\right)\left(t_{3}+t_{4}\right)\left(t_{4}+t_{1}\right)}
$$

for every positive numbers $r, t_{1}, t_{2}, t_{3}, t_{4}$ such that $t_{1} t_{3}=t_{2} t_{4}=r^{2}$.
Now we prove that relations (2.14) are necessarily for a tangential quadrilateral to be a chordal one. The proof is easy; namely, it is easy to see that

$$
\cos 2 \beta_{2}=-\cos 2 \beta 4
$$

or

$$
\frac{t_{2}^{2}-r^{2}}{t_{2}^{2}+r^{2}}=-\frac{t_{4}^{2}-r^{2}}{t_{4}^{2}+r^{2}}
$$

is valid only if $t_{2} t_{4}=r^{2}$.
In the same way it can be seen that $\cos 2 \beta_{1}=-\cos 2 \beta_{3}$ only if $t_{1} t_{3}=r^{2}$.
Here let us remark that the following holds. If $A_{1} A_{2} A_{3} A_{4}$ and $B_{1} B_{2} B_{3} B_{4}$ are two bicentric quadrilaterals which have the same incircle and

$$
\begin{aligned}
t_{i}+t_{i+1} & =\left|A_{i} A_{i+1}\right|, \quad i=1,2,3,4 \\
u_{i}+u_{i+1} & =\left|B_{i} B_{i+1}\right|, \quad i=1,2,3,4 \\
t_{1} t_{3} & =t_{2} t_{4}=r^{2}, \\
u_{1} u_{3} & =u_{2} u_{4}=r^{2},
\end{aligned}
$$

then these quadrilateral need not have the same circumcirle. It will be only if

$$
t_{1} t_{2}+t_{2} t_{3}+t_{3} t_{4}+t_{4} t_{1}=u_{1} u_{2}+u_{2} u_{3}+u_{3} u_{4}+u_{4} u_{1}=2\left(R^{2}-d^{2}\right)
$$

(See Theorem 3.2 in [3].)
In this connection may be interesting how radius R can be obtained and some other relations. In short about this.

Let C_{1} and C_{2} denote the incircle and the circumcircle of the considered bicentric quadrilateral $A_{1} A_{2} A_{3} A_{4}$, and let the other notation be as stated in the introduction.

The radius of C_{2} can be obtained using well-known relations which hold for a bicentric quadrilateral:

$$
R^{2}=\frac{\left(a_{1} a_{2}+a_{3} a_{4}\right)\left(a_{1} a_{3}+a_{2} a_{4}\right)\left(a_{1} a_{4}+a_{2} a_{3}\right)}{16 J^{2}}, \quad J^{2}=a_{1} a_{2} a_{3} a_{4}
$$

where $a_{1}=t_{1}+t_{2}, a_{2}=t_{2}+t_{3}, a_{3}=t_{3}+t_{4}, a_{4}=t_{4}+t_{1}, J=$ area of $A_{1} A_{2} A_{3} A_{4}$. It can be found that

$$
\begin{equation*}
16 R^{2}=a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}+\frac{a_{1} a_{2} a_{3}}{a_{4}}+\frac{a_{2} a_{3} a_{4}}{a_{1}}+\frac{a_{3} a_{4} a_{1}}{a_{2}}+\frac{a_{4} a_{1} a_{2}}{a_{3}} \tag{2.15}
\end{equation*}
$$

or, using relations (2.14),

$$
\begin{equation*}
R^{2}=\frac{\left[\left(r^{2}+t_{1}^{2}\right)\left(r^{2}+t_{2}^{2}\right)\right]\left[\left(r^{2}+t_{1}^{2}\right)\left(r^{2}+t_{2}^{2}\right)+4 r^{2} t_{1} t_{2}\right]}{16 r^{2} t_{1}^{2} t_{2}^{2}} \tag{2.16}
\end{equation*}
$$

Now we shall prove that

$$
\begin{equation*}
k=\frac{2 R^{2}}{R^{2}+d^{2}} \tag{2.17}
\end{equation*}
$$

For this purpose, in (2.8) and (2.9) we shall put $\frac{2 R^{2}}{R^{2}+d^{2}}$ instead of k, and $\frac{r^{2}}{t_{1}}$ instead of t_{3}. It can be found that

$$
\begin{align*}
& \left(t_{2}\right)_{1}=\frac{\left(R^{2}-d^{2}\right) t_{1}+\sqrt{D}}{r^{2}+t_{1}^{2}} \tag{2.18}\\
& \left(t_{2}\right)_{2}=\frac{\left(R^{2}-d^{2}\right) t_{1}-\sqrt{D}}{r^{2}+t_{1}^{2}} \tag{2.19}
\end{align*}
$$

where

$$
\begin{equation*}
D=\left(R^{2}-d^{2}\right)^{2} t_{1}^{2}-r^{2}\left(r^{2}+t_{1}^{2}\right)^{2} . \tag{2.20}
\end{equation*}
$$

It is easy to check that $\left(t_{2}\right)_{1} \cdot\left(t_{2}\right)_{2}=r^{2}$ or, since (2.10) holds,

$$
\begin{equation*}
t_{2} t_{4}=r^{2} \tag{2.21}
\end{equation*}
$$

Besides, we have to prove one lemma. In this lemma will be used values t_{m} and t_{M} given by

$$
\begin{equation*}
t_{m}=\sqrt{(R-d)^{2}-r^{2}}, \quad t_{M}=\sqrt{(R+d)^{2}-r^{2}} \tag{2.22}
\end{equation*}
$$

See Figure 2.2. As can be seen, t_{m} and t_{M} are the lengths of the least and the largest tangent that can be drawn from C_{2} to C_{1}.

Figure 2.2
Lemma 1. Let u_{1} be any given value (tangent length) such that

$$
\begin{equation*}
t_{m} \leq u_{1} \leq t_{M} \tag{2.23}
\end{equation*}
$$

and let u_{2}, u_{3}, u_{4} be given by

$$
\begin{align*}
& u_{2}=\frac{\left(R^{2}-d^{2}\right) u_{1}+\sqrt{D}}{r^{2}+u_{1}^{2}} \tag{2.24}\\
& u_{3}=\frac{r^{2}}{u_{1}} \tag{2.25}\\
& u_{4}=\frac{r^{2}}{u_{2}} \tag{2.26}
\end{align*}
$$

where

$$
\begin{equation*}
D=\left(R^{2}-d^{2}\right)^{2} u_{1}^{2}-r^{2}\left(r^{2}+u_{1}^{2}\right)^{2} . \tag{2.27}
\end{equation*}
$$

Then the bicentric quadrilateral $B_{1} B_{2} B_{3} B_{4}$, where $\left|B_{i} B_{i+1}\right|=u_{i}+u_{i+1}, i=$ $1,2,3,4$, has the same incircle and circumcircle as the considered quadrilateral $A_{1} A_{2} A_{3} A_{4}$.

Proof. Since in the expression of u_{2} appears the term \sqrt{D}, we have to prove that $D \geq 0$ for every u_{1} such that $t_{m} \leq u_{1} \leq t_{M}$. For this purpose, as can be readily seen, it is sufficient to prove that $D=0$ for $u_{1}=t_{m}$ and $u_{1}=t_{M}$. The proof is as follows:

$$
\left(R^{2}-d^{2}\right)^{2} t_{m}^{2}-r^{2}\left(r^{2}+t_{m}^{2}\right)^{2}=(R-d)^{2}\left[\left(R^{2}-d^{2}\right)^{2}-2 r^{2}\left(R^{2}+d^{2}\right)\right]=0
$$

because of (1.1)

$$
\left(R^{2}-d^{2}\right)^{2} t_{M}^{2}-r^{2}\left(r^{2}+t_{M}^{2}\right)^{2}=(R-d)^{2}\left[\left(R^{2}-d^{2}\right)^{2}-2 r^{2}\left(R^{2}+d^{2}\right)\right]=0
$$

That C_{1} is incircle of $B_{1} B_{2} B_{3} B_{4}$ it is clear from

$$
\begin{aligned}
r^{2}\left(u_{1}+u_{2}+u_{3}+u_{4}\right) & =u_{1} u_{2} u_{3}+u_{2} u_{3} u_{4}+u_{3} u_{4} u_{1}+u_{4} u_{1} u_{2} \\
& =r^{2}\left(u_{2}+u_{3}+u_{4}+u_{1}\right), \text { since } u_{1} u_{3}=u_{2} u_{4}=r^{2}
\end{aligned}
$$

To prove that C_{2} is circumcircle of $B_{1} B_{2} B_{3} B_{4}$ we have to prove that

$$
\begin{equation*}
\frac{\left[\left(r^{2}+u_{1}^{2}\right)\left(r^{2}+u_{2}^{2}\right)\right]\left[\left(r^{2}+u_{1}^{2}\right)\left(r^{2}+u_{2}^{2}\right)+4 r^{2} u_{1} u_{2}\right]}{16 r^{2} u_{1}^{2} u_{2}^{2}}=R^{2} \tag{2.28}
\end{equation*}
$$

First, using u_{2} given by (2.24), we find that $\left(r^{2}+u_{1}^{2}\right)\left(r^{2}+u_{2}^{2}\right)$ in (2.28) can be written as $2\left(R^{2}-d^{2}\right) u_{1} u_{2}$.

Now, it is easy to see that

$$
2\left(R^{2}-d^{2}\right) u_{1} u_{2}\left[2\left(R^{2}-d^{2}\right) u_{1} u_{2}+4 r^{2} u_{1} u_{2}\right]=16 R^{2} r^{2} u_{1}^{2} u_{2}^{2}
$$

is equivalent to Fuss' relation (1.1).
Thus, Lemma 1 is proved. (Cf. with Theorem 3.3 in [3].)
It remains to prove that k given by (2.17) is not only sufficient but also necessary for $A_{1} A_{2} A_{3} A_{4}$ to be a bicentric one. It will be proved using one of the relations
(2.4)-(2.7). So, starting from (2.4) we can write

$$
\begin{aligned}
& t_{2}^{2}\left[\left(t_{1}+t_{3}\right)^{2}-k\left(t_{1}+t_{3}\right)^{2}\right]+4 r^{2}\left(t_{1}+t_{3}\right) t_{1} t_{2}+r^{2}\left(t_{1}+t_{3}\right)^{2}(1-k)=0 \\
& t_{2}^{2}\left(t_{1}+t_{3}\right)(1-k)+4 r^{2} t_{1} t_{2}+r^{2}\left(t_{1}+t_{3}\right)(1-k)=0 \\
& 1-k=\frac{-4 r^{2} t_{1} t_{2}}{\left(r^{2}+t_{1}^{2}\right)\left(r^{2}+t_{2}^{2}\right)} \\
& 1-k=\frac{-4 r^{2} t_{1} t_{2}}{2\left(R^{2}-d^{2}\right) t_{1} \cdot \frac{\left(R^{2}-d^{2}\right) t_{1}+\sqrt{D}}{r^{2}+t_{1}^{2}}}=-\frac{2 r^{2}}{R^{2}-d^{2}}
\end{aligned}
$$

since $t_{2}=\left(t_{2}\right)_{1}$ given by (2.18).
Now, we have

$$
1-\frac{2 R^{2}}{R^{2}+d^{2}}=-\frac{2 r^{2}}{R^{2}-d^{2}} \quad \text { or } \quad \frac{R^{2}-d^{2}}{R^{2}+d^{2}}=-\frac{2 r^{2}}{R^{2}-d^{2}}
$$

since Fuss' relation (1.1) holds.
At the end we prove the following assertion: If $A_{1} A_{2} A_{3} A_{4}$ is a bicentric quadrilateral, then $\frac{\left|A_{1} A_{3}\right|}{t_{1}+t_{3}}=\frac{\left|A_{2} A_{4}\right|}{t_{2}+t_{4}}=\sqrt{k}$.

Proof. Let denote by F relation obtained from (2.4) putting

$$
t_{2}=\frac{\left(R^{2}-d^{2}\right) t_{1}+\sqrt{D}}{r^{2}+t_{1}^{2}}, \quad t_{3}=\frac{r^{2}}{t_{1}}, \quad t_{4}=\frac{r^{2}}{t_{2}}, \quad k=\frac{2 R^{2}}{R^{2}+d^{2}},
$$

where

$$
D=\left(R^{2}-d^{2}\right)^{2} t_{1}^{2}-r^{2}\left(r^{2}+t_{1}^{2}\right)^{2}
$$

Using computer algebra it is easy to show that

$$
F \Longleftrightarrow\left(R^{2}-d^{2}\right)^{2}-2 r^{2}\left(R^{2}+d^{2}\right)=0
$$

which proves $\left|A_{1} A_{3}\right|=\left(t_{1}+t_{3}\right) \sqrt{k}$. In the same way can be proved that $\left|A_{2} A_{4}\right|=$ $\left(t_{2}+t_{4}\right) \sqrt{k}$.

This completes the proof of Theorem 1.
Now some of its corollaries will be stated.
Corollary 1. Let $t_{1}, t_{2}, t_{3}, t_{4}$ be any given lengths (in fact positive numbers) such that $t_{1} t_{3}=t_{2} t_{4}=r^{2}$, and let R^{2} and d^{2} be given by

$$
\begin{align*}
& R^{2}=\frac{\left[\left(r^{2}+t_{1}^{2}\right)\left(r^{2}+t_{2}^{2}\right)\right]\left[\left(r^{2}+t_{1}^{2}\right)\left(r^{2}+t_{2}^{2}\right)+4 r^{2} t_{1} t_{2}\right]}{16 r^{2} t_{1}^{2} t_{2}^{2}} \tag{2.29}\\
& d^{2}=\frac{\left[\left(r^{2}+t_{1}^{2}\right)\left(r^{2}+t_{2}^{2}\right)\right]\left[\left(r^{2}+t_{1}^{2}\right)\left(r^{2}+t_{2}^{2}\right)-4 r^{2} t_{1} t_{2}\right]}{16 r^{2} t_{1}^{2} t_{2}^{2}} \tag{2.30}
\end{align*}
$$

Then holds Fuss' relation (1.1).
Proof. From (2.29) and (2.30) it follows

$$
\begin{align*}
\left(R^{2}-d^{2}\right)^{2} & =\frac{\left[\left(r^{2}+t_{1}^{2}\right)\left(r^{2}+t_{2}^{2}\right)\right]^{2}}{4 t_{1}^{2} t_{2}^{2}}, \tag{2.31}\\
2 r^{2}\left(R^{2}+d^{2}\right) & =\frac{\left[\left(r^{2}+t_{1}^{2}\right)\left(r^{2}+t_{2}^{2}\right)\right]^{2}}{4 t_{1}^{2} t_{2}^{2}} .
\end{align*}
$$

Corollary 2. Under the condition of Corollary 1 it holds

$$
t_{1} t_{2}+t_{2} t_{3}+t_{3} t_{4}+t_{4} t_{1}=2\left(R^{2}-d^{2}\right)
$$

Proof. Since (2.31) holds we can write

$$
\begin{gather*}
2\left(R^{2}-d^{2}\right) \quad=\frac{\left(r^{2}+t_{1}^{2}\right)\left(r^{2}+t_{2}^{2}\right)}{t_{1} t_{2}} \tag{2.32}\\
=\left(t_{1}+\frac{r^{2}}{t_{1}}\right)\left(t_{2}+\frac{r^{2}}{t_{2}}\right) \\
=\left(t_{1}+t_{3}\right)\left(t_{2}+t_{4}\right)\left(\text { since } t_{3}=\frac{r^{2}}{t_{1}}, t_{4}=\frac{r^{2}}{t_{2}}\right) \\
=t_{1} t_{2}+t_{2} t_{3}+t_{3} t_{4}+t_{4} t_{1}
\end{gather*}
$$

Corollary 3. If $k=\frac{2 R^{2}}{R^{2}+d^{2}}$ and (1.1) hold, then every positive solution of the system with equations (2.4)-(2.7) can be expressed such that there holds

$$
\begin{gathered}
t_{m} \leq t_{1} \leq t_{M} \\
t_{2}=\frac{\left(R^{2}-d^{2}\right) t_{1}+\sqrt{D}}{r^{2}+t_{1}^{2}}, \quad t_{3}=\frac{r^{2}}{t_{1}}, \quad t_{4}=\frac{r^{2}}{t_{2}}
\end{gathered}
$$

where $D=\left(R^{2}-d^{2}\right)^{2} t_{1}^{2}-r^{2}\left(r^{2}+t_{1}^{2}\right)^{2}$.
Corollary 4. Let $A_{1} A_{2} A_{3} A_{4}$ be any given tangential quadrilateral and let t_{1}, t_{2}, t_{3}, t_{4} be lengths of its tangents such that

$$
t_{i}+t_{i+1}=\left|A_{i} A_{i+1}\right|, \quad i=1,2,3,4
$$

Then this quadrilateral is also a chordal one iff

$$
\begin{equation*}
t_{1} t_{3}=r^{2} \tag{2.33}
\end{equation*}
$$

where r is radius of the incircle of $A_{1} A_{2} A_{3} A_{4}$.
Proof. From $\left(t_{1}+t_{2}+t_{3}+t_{4}\right) r^{2}=t_{1} t_{2} t_{3}+t_{2} t_{3} t_{4}+t_{3} t_{4} t_{1}+t_{4} t_{1} t_{2}$ it follows

$$
t_{4}=\frac{t_{1} t_{2} t_{3}-r^{2}\left(t_{1}+t_{2}+t_{3}\right)}{r^{2}-t_{1} t_{2}-t_{2} t_{3}-t_{3} t_{1}}
$$

Putting $t_{3}=\frac{r^{2}}{t_{1}}$ we get

$$
t_{4}=\frac{r^{2}\left(t_{1}^{2}+r^{2}\right)}{\left(t_{1}^{2}+r^{2}\right) t_{2}}=\frac{r^{2}}{t_{2}} .
$$

Thus, (2.14) it holds and Corollary 4 is proved.
Corollary 5. Instead of (2.33) in Corollary 4 it can be put $t_{2} t_{4}=r^{2}$.
Corollary 6. Instead of (2.33) in Corollary 4 it can be put

$$
\begin{equation*}
\frac{t_{1}}{t_{1}^{2}+r^{2}}=\frac{t_{3}}{t_{3}^{2}+r^{2}} . \tag{2.34}
\end{equation*}
$$

Proof. From (2.34) it follows

$$
t_{1} t_{3}\left(t_{1}-t_{3}\right)=r^{2}\left(t_{1}-t_{3}\right)
$$

Let us remark that $t_{1}=t_{3}$ only if $d=0$, and in this case it holds $t_{1}=t_{3}=r$, $t_{1} t_{3}=r^{2}$.

Corollary 7. Instead of (2.33) in Corollary 4 can be put

$$
\begin{equation*}
\frac{t_{2}}{t_{2}^{2}+r^{2}}=\frac{t_{4}}{t_{4}^{2}+r^{2}} \tag{2.35}
\end{equation*}
$$

Corollary 8. Instead of (2.33) in Corollary 4 can be put

$$
\frac{t_{1}^{2}-r^{2}}{t_{1}^{2}+r^{2}}=\frac{r^{2}-t_{3}^{2}}{r^{2}+t_{3}^{2}}
$$

Corollary 9. If (2.33) is fulfilled, then

$$
\prod_{i=1}^{4} \sin \alpha_{i}=\frac{2 r^{2}}{R^{2}+d^{2}}
$$

where $\alpha_{i}=$ measure of $\varangle A_{i-1} A_{i} A_{i+1}$ (Of course, $A_{0}=A_{4}$).
Proof. As

$$
\sin \alpha_{i}=\frac{2 r t_{i}}{t_{i}^{2}+r^{2}}=\frac{2 r t_{i}}{t_{i}^{2}+t_{i} t_{i+2}}=\frac{2 r}{t_{i}+t_{i+2}}
$$

we can write

$$
\prod_{i=1}^{4} \sin \alpha_{i}=\frac{16 r^{4}}{\left[\left(t_{1}+t_{3}\right)\left(t_{2}+t_{4}\right)\right]^{2}}=\frac{4 r^{4}}{\left(R^{2}-d^{2}\right)^{2}}=\frac{2 r^{2}}{R^{2}+d^{2}}
$$

since $\left(t_{1}+t_{3}\right)\left(t_{2}+t_{4}\right)=t_{1} t_{2}+t_{2} t_{3}+t_{3} t_{4}+t_{4} t_{1}=2\left(R^{2}-d^{2}\right)$ and holds (1.1).
Corollary 10. It holds

$$
\sum_{i=1}^{4} \sin \alpha_{i} \sin \alpha_{i+1}=\frac{8 r^{2}}{R^{2}-d^{2}}
$$

Corollary 11. It holds

$$
\sum_{i=1}^{4} \cos \alpha_{i} \cos \alpha_{i+1}=0
$$

Proof. $\quad \cos \alpha_{i}=\frac{t_{i}^{2}-r^{2}}{t_{i}^{2}+r^{2}}, \quad \cos \alpha_{i+2}=\frac{r^{2}-t_{i}^{2}}{r^{2}+t_{i}^{2}}$.

Corollary 12. Let t_{1}, t_{2}, t_{3} be any given lengths (in fact positive numbers). Then there are lengths t_{4} and r such that

$$
\begin{equation*}
\left(\sum_{i=1}^{4} t_{i}\right) r^{2}=\sum_{i=1}^{4} t_{i} t_{i+1} t_{i+2}, \quad t_{1} t_{2} t_{3} t_{4}=r^{4} \tag{2.36}
\end{equation*}
$$

Proof. From

$$
t_{4}=\frac{t_{1} t_{2} t_{3}-r^{2}\left(t_{1}+t_{2}+t_{3}\right)}{r^{2}-t_{1} t_{2}-t_{2} t_{3}-t_{3} t_{1}}, \quad t_{4}=\frac{r^{4}}{t_{1} t_{2} t_{3}}
$$

we get the following cubic equation for r^{2}

$$
r^{6}-r^{4}\left(t_{1} t_{2}+t_{2} t_{3}+t_{3} t_{1}\right)+r^{2}\left(t_{1}+t_{2}+t_{3}\right) t_{1} t_{2} t_{3}-t_{1}^{2} t_{2}^{2} t_{3}^{2}=0
$$

Its roots are given by

$$
\left(r^{2}\right)_{1}=t_{1} t_{2}, \quad\left(r^{2}\right)_{2}=t_{2} t_{3}, \quad\left(r^{2}\right)_{3}=t_{3} t_{1}
$$

Corollary 13. If (2.36) holds, then there are three possibilities:

$$
t_{1} t_{2}=t_{3} t_{4}, \quad t_{2} t_{3}=t_{4} t_{1}, \quad t_{1} t_{3}=t_{2} t_{4} .
$$

Proof. According to Corollary 12, it holds

$$
\left(t_{4}\right)_{1}=\frac{t_{1} t_{2}}{t_{3}}, \quad\left(t_{4}\right)_{2}=\frac{t_{2} t_{3}}{t_{1}}, \quad\left(t_{4}\right)_{3}=\frac{t_{3} t_{1}}{t_{2}}
$$

In the third case we have a bicentric quadrilateral.
Corollary 14. If the first part of (2.36) holds, then

$$
t_{1} t_{2} t_{3} t_{4}=r^{4} \Longleftrightarrow \sum_{i=1}^{4} \frac{r}{t_{i}}=\sum_{i=1}^{4} \frac{t_{i}}{r}
$$

Corollary 15. All of the bicentric quadrilaterals which have the same incircle and the same circumcircle have the same product of diagonals. In other words, if $A_{1} A_{2} A_{3} A_{4}$ is a bicentric quadrilateral, then

$$
\left|A_{1} A_{3}\right| \cdot\left|A_{2} A_{4}\right|=2\left(R^{2}+2 r^{2}-d^{2}\right)
$$

Proof. Since

$$
\left|A_{1} A_{3}\right| \cdot\left|A_{2} A_{4}\right|=\left(t_{1}+t_{3}\right)\left(t_{2}+t_{4}\right) \frac{2 R^{2}}{R^{2}+d^{2}}=2\left(R^{2}-d^{2}\right) \frac{2 R^{2}}{R^{2}+d^{2}}
$$

it is easy to show that

$$
2\left(R^{2}-d^{2}\right) \cdot \frac{2 R^{2}}{R^{2}+d^{2}}-2\left(R^{2}+2 r^{2}-d^{2}\right)=0 \Longleftrightarrow\left(R^{2}-d^{2}\right)^{2}-2 r^{2}\left(R^{2}+d^{2}\right)=0
$$

3. The case when a quadrilateral is a tangential one in relation to an excircle

Let $A_{1} A_{2} A_{3} A_{4}$ be a tangential quadrilateral such that there is a circle C_{1} with the property that

$$
\begin{equation*}
\left|A_{i} A_{i+1}\right|=\left|t_{i}-t_{i+1}\right|, \quad i=1,2,3,4 \tag{3.1}
\end{equation*}
$$

where t_{i} is the length of the tangent drawn from A_{i} to C_{1} (see Figure 3.1).

Figure 3.1.
Such a tangential quadrilateral, for convenience in the following expression, will be called ex-tangential quadrilateral. In the case when $A_{1} A_{2} A_{3} A_{4}$ is also a chordal one, then such a quadrilateral will be called ex-bicentric quadrilateral. The following notation will be used.

If $A_{1} A_{2} A_{3} A_{4}$ is a considered ex-bicentric quadrilateral, then its excircle is denoted by C_{1}, circumcircle by C_{2}, radius of C_{1} by r, radius of C_{2} by R, center of C_{1} by I, center of C_{2} by O, distance between I and O by d.

As it is well-known, the Fuss' relation (1.1) also holds for ex-bicentric quadrilaterals. In this connection let us remark that from (1.1) it follows

$$
d^{2}=R^{2}+r^{2} \pm \sqrt{4 R^{2} r^{2}+r^{4}}
$$

and that for ex-bicentric quadrilaterals holds

$$
\begin{equation*}
d^{2}=R^{2}+r^{2}+\sqrt{4 R^{2} r^{2}+r^{4}} \tag{3.2}
\end{equation*}
$$

whereas for bicentric quadrilateral considered in the preceding section holds

$$
\begin{equation*}
d^{2}=R^{2}+r^{2}-\sqrt{4 R^{2} r^{2}+r^{4}} \tag{3.3}
\end{equation*}
$$

Also let us remark that circles C_{1} and C_{2} are not intersecting in the case of ex-bicentric quadrilateral since from (3.2) it follows

$$
d^{2}>R^{2}+r^{2}+2 R r \quad \text { or } \quad d>R+r
$$

Now we can prove the following theorem.
Theorem 2. Let $A_{1} A_{2} A_{3} A_{4}$ be any given ex-tangential quadrilateral and let t_{1}, t_{2}, t_{3}, t_{4} be its tangent lengths such that

$$
\begin{equation*}
\left|t_{i}-t_{i+1}\right|=\left|A_{i} A_{i+1}\right|, \quad i=1,2,3,4 \tag{3.4}
\end{equation*}
$$

Then this quadrilateral is also a chordal one if and only if

$$
\begin{equation*}
\frac{\left|A_{1} A_{3}\right|}{t_{1}+t_{3}}=\frac{\left|A_{2} A_{4}\right|}{t_{2}+t_{4}}=\sqrt{k}, \tag{3.5}
\end{equation*}
$$

where

$$
\begin{equation*}
0<k<1 . \tag{3.6}
\end{equation*}
$$

Proof. First we suppose that (3.5) holds. From Figure 3.2 we see that the equality $\left|A_{1} A_{3}\right|^{2}=k\left(t_{1}+t_{3}\right)^{2}$ can be written as

$$
\left|A_{1} A_{2}\right|^{2}+\left|A_{2} A_{3}\right|^{2}-2\left|A_{1} A_{2}\right|\left|A_{2} A_{3}\right| \cos \alpha_{2}=k\left(t_{1}+t_{3}\right)^{2}
$$

or

$$
\begin{equation*}
\left(t_{1}-t_{2}\right)^{2}+\left(t_{2}-t_{3}\right)^{2}+2\left(t_{1}-t_{2}\right)\left(t_{2}-t_{3}\right) \frac{t_{2}^{2}-r^{2}}{t_{2}^{2}+r^{2}}=k\left(t_{1}+t_{3}\right)^{2} \tag{3.7}
\end{equation*}
$$

since

$$
\cos \alpha_{2}=-\cos 2 \beta_{2}=-\frac{t_{2}^{2}-r^{2}}{t_{2}^{2}+r^{2}}
$$

The equality $\left|A_{1} A_{3}\right|^{2}=k\left(t_{1}+t_{3}\right)^{2}$ can also be written as

$$
\begin{equation*}
\left(t_{1}-t_{4}\right)^{2}+\left(t_{4}-t_{3}\right)^{2}+2\left(t_{1}-t_{4}\right)\left(t_{4}-t_{3}\right) \frac{t_{4}^{2}-r^{2}}{t_{4}^{2}+r^{2}}=k\left(t_{1}+t_{3}\right)^{2} \tag{3.8}
\end{equation*}
$$

Figure 3.2.
In the same way can be seen that equality $\left|A_{2} A_{4}\right|^{2}=k\left(t_{2}+t_{4}\right)^{2}$ can be written in the following two ways:

$$
\begin{align*}
& \left(t_{1}-t_{2}\right)^{2}+\left(t_{1}-t_{4}\right)^{2}-2\left(t_{1}-t_{2}\right)\left(t_{1}-t_{4}\right) \frac{t_{1}^{2}-r^{2}}{t_{1}^{2}+r^{2}}=k\left(t_{2}+t_{4}\right)^{2} \tag{3.9}\\
& \left(t_{3}-t_{2}\right)^{2}+\left(t_{3}-t_{4}\right)^{2}-2\left(t_{3}-t_{2}\right)\left(t_{3}-t_{4}\right) \frac{t_{3}^{2}-r^{2}}{t_{3}^{2}+r^{2}}=k\left(t_{2}+t_{4}\right)^{2} . \tag{3.10}
\end{align*}
$$

Solving equation(3.7) for t_{2} we get

$$
\begin{equation*}
\left(t_{2}\right)_{1,2}=\frac{2 r^{2}\left(t_{1}+t_{3}\right) \pm \sqrt{D}}{\left(t_{1}-t_{3}\right)^{2}-k\left(t_{1}+t_{3}\right)^{2}+4 r^{2}} \tag{3.11}
\end{equation*}
$$

where

$$
\begin{equation*}
D=4 r^{4}\left(t_{1}+t_{3}\right)^{2}-\left[\left(t_{1}-t_{3}\right)^{2}-k\left(t_{1}+t_{3}\right)^{2}+4 r^{2}\right]\left[r^{2}\left(t_{+} t_{3}\right)^{2}(1-k)\right] . \tag{3.12}
\end{equation*}
$$

It is easy to see that equation (3.7) in t_{2} has the same solutions as equation (3.8) in t_{4}, that is

$$
\left\{\left(t_{2}\right)_{1},\left(t_{2}\right)_{2}\right\}=\left\{\left(t_{4}\right)_{1},\left(t_{4}\right)_{2}\right\} .
$$

Since equation (3.7) has t_{2} as one solution, and equation (3.8) has t_{4} as one solution, it follows that

$$
\begin{equation*}
\left\{\left(t_{2}\right)_{1},\left(t_{2}\right)_{2}\right\}=\left\{\left(t_{4}\right)_{1},\left(t_{4}\right)_{2}\right\}=\left\{t_{2}, t_{4}\right\} . \tag{3.13}
\end{equation*}
$$

Putting $t_{2}=\left(t_{2}\right)_{1}, t_{4}=\left(t_{2}\right)_{2}$ in (3.9) we get

$$
\begin{equation*}
\frac{r^{2}\left(t_{1}+t_{3}\right)^{2}(1-k)}{\left(t_{1}-t_{3}\right)^{2}-k\left(t_{1}+t_{3}\right)^{2}+4 r^{2}}=t_{1} t_{3} . \tag{3.14}
\end{equation*}
$$

From (3.11) it follows

$$
\begin{equation*}
\left(t_{2}\right)_{1}\left(t_{2}\right)_{2}=\frac{r^{2}\left(t_{1}+t_{3}\right)^{2}(1-k)}{\left(t_{1}-t_{3}\right)^{2}-k\left(t_{1}+t_{3}\right)^{2}+4 r^{2}} \tag{3.15}
\end{equation*}
$$

which according to (3.13) and (3.14) can be written as

$$
\begin{equation*}
t_{1} t_{3}=t_{2} t_{4} \tag{3.16}
\end{equation*}
$$

Solving equation (3.14) for t_{3} we get

$$
\begin{equation*}
\left(t_{3}\right)_{1}=\frac{r^{2}}{t_{1}}, \quad\left(t_{3}\right)_{2}=\frac{(1+\sqrt{k}) t_{1}}{1-\sqrt{k}}, \quad\left(t_{3}\right)_{3}=\frac{(1-\sqrt{k}) t_{1}}{1+\sqrt{k}} \tag{3.17}
\end{equation*}
$$

First we consider the case when t_{3} is given by

$$
\begin{equation*}
t_{3}=\frac{r^{2}}{t_{1}} \tag{3.18}
\end{equation*}
$$

In this case, according to (3.16), it holds

$$
\begin{equation*}
t_{1} t_{3}=t_{2} t_{4}=r^{2} \tag{3.19}
\end{equation*}
$$

The proof that $A_{1} A_{2} A_{3} A_{4}$ is in this case also a chordal one is done in the same way as that in Theorem 1.

Let C_{2} denote the circumcircle of $A_{1} A_{2} A_{3} A_{4}$ and let the other notation be stated as in the beginning of this section. The radius of C_{2} is given by

$$
R^{2}=\frac{(a b+c d)(a c+b d)(a d+b c)}{16 J^{2}}, \quad J^{2}=a b c d
$$

where $a=t_{1}-t_{2}, b=t_{2}-t_{3}, c=t_{4}-t_{3}, d=t_{1}-t_{4}$. It can be found that

$$
\begin{equation*}
R^{2}=\frac{\left[\left(r^{2}+t_{1}\right)^{2}\left(r^{2}+t_{2}^{2}\right)\right]\left[\left(r^{2}+t_{1}^{2}\right)\left(r^{2}+t_{2}\right)^{2}-4 r^{2} t_{1} t_{2}\right]}{16 r^{2} t_{1}^{2} t_{2}^{2}} \tag{3.20}
\end{equation*}
$$

Now we shall prove that

$$
\begin{equation*}
k=\frac{2 R^{2}}{R^{2}+d^{2}} \tag{3.21}
\end{equation*}
$$

For this purpose in $\left(t_{2}\right)_{1}$ and $\left(t_{2}\right)_{2}$, given by (3.11), we shall put $\frac{2 R^{2}}{R^{2}+d^{2}}$ instead of k, and $\frac{r^{2}}{t_{1}}$ instead of t_{3}. It can be found that

$$
\begin{equation*}
\left(t_{2}\right)_{1}=\frac{\left(d^{2}-R^{2}\right) t_{1}+\sqrt{D}}{r^{2}+t_{1}^{2}}, \quad\left(t_{2}\right)_{2}=\frac{\left(d^{2}-R^{2}\right) t_{1}-\sqrt{D}}{r^{2}+t_{1}^{2}} \tag{3.22}
\end{equation*}
$$

where

$$
\begin{equation*}
D=\left(d^{2}-R^{2}\right)^{2} t_{1}^{2}-r^{2}\left(r^{2}+t_{1}^{2}\right)^{2} \tag{3.23}
\end{equation*}
$$

It is easy to check that $\left(t_{2}\right)_{1} \cdot\left(t_{2}\right)_{2}=r^{2}$ or, since (3.13) holds,

$$
t_{2} t_{4}=r^{2}
$$

In the following lemma will be used lengths t_{m} and t_{M} given by

$$
\begin{equation*}
t_{m}=\sqrt{(d-R)^{2}-r^{2}}, \quad t_{M}=\sqrt{(d+R)^{2}-r^{2}} \tag{3.24}
\end{equation*}
$$

See Figure 3.3. It holds

$$
t_{m}=|M N|=\sqrt{(d-R)^{2}-r^{2}}, \quad t_{M}=|P Q|=\sqrt{(d+R)^{2}-r^{2}} .
$$

Figure 3.3.
Lemma 2. Let u_{1} be any given value (tangent length) such that

$$
\begin{equation*}
t_{m} \leq u_{1} \leq t_{M} \tag{3.25}
\end{equation*}
$$

and let u_{2}, u_{3}, u_{4} be given by

$$
\begin{align*}
& u_{2}=\frac{\left(d^{2}-R^{2}\right) u_{1}+\sqrt{D}}{r^{2}+u_{1}^{2}}, \tag{3.26}\\
& u_{3} \quad=\frac{r^{2}}{u_{1}}, \tag{3.27}\\
& u_{4} \quad=\frac{r^{2}}{u_{2}}, \tag{3.28}
\end{align*}
$$

where

$$
\begin{equation*}
D=\left(d^{2}-R^{2}\right)^{2} u_{1}^{2}-r^{2}\left(r^{2}+u_{1}^{2}\right)^{2} . \tag{3.29}
\end{equation*}
$$

Then the ex-bicentric quadrilateral $B_{1} B_{2} B_{3} B_{4}$, where $\left|B_{i} B_{i+1}\right|=\left|u_{i}-u_{i+1}\right|, i=$ $1,2,3,4$, has the same excircle and circumcircle as the considered quadrilateral $A_{1} A_{2} A_{3} A_{4}$.

Proof. Since in the expression of u_{2} there appears the term \sqrt{D}, we have to prove that $D \geq 0$ for every u_{1} such that $t_{m} \leq u_{1} \leq t_{M}$. For this purpose, as can be readily seen, it is sufficient to prove that $D=0$ for $u_{1}=t_{m}$ and $u_{1}=t_{M}$. The proof is as follows:

$$
\begin{aligned}
\left(d^{2}-R^{2}\right)^{2} t_{m}^{2}-r^{2}\left(r^{2}+t_{m}^{2}\right)^{2} & =(d-R)^{2}\left[\left(d^{2}-R^{2}\right)^{2}-2 r^{2}\left(d^{2}+R^{2}\right)\right]=0 \\
\left(d^{2}-R^{2}\right)^{2} t_{M}^{2}-r^{2}\left(r^{2}+t_{M}^{2}\right)^{2} & =(d-R)^{2}\left[\left(d^{2}-R^{2}\right)^{2}-2 r^{2}\left(d^{2}+R^{2}\right)\right]=0
\end{aligned}
$$

That C_{1} is the excircle of $B_{1} B_{2} B_{3} B_{4}$ is clear from

$$
r^{2}\left(u_{1}-u_{2}+u_{3}-u_{4}\right)=-u_{1} u_{2} u_{3}+u_{2} u_{3} u_{4}-u_{3} u_{4} u_{1}+u_{4} u_{1} u_{2}
$$

since $u_{1} u_{3}=u_{2} u_{3}=r^{2}$. (See relation (3.10) in [4].)
To prove that C_{2} is the circumcircle of $B_{1} B_{2} B_{3} B_{4}$ we have to prove that

$$
\begin{equation*}
\frac{\left[\left(r^{2}+u_{1}^{2}\right)\left(r^{2}+u_{2}^{2}\right)\right]\left[\left(r^{2}+u_{1}^{2}\right)\left(r^{2}+u_{2}^{2}\right)-4 r^{2} u_{1} u_{2}\right]}{16 r^{2} u_{1}^{2} u_{2}^{2}}=R^{2} . \tag{3.30}
\end{equation*}
$$

The proof is analogous to the proof of (2.28). The Lemma 2 is proved.
In connection with the relation (3.21) let us remark that in the case when (3.19) holds, then from each of the relations (3.7)-(3.10) follows k given by (3.21). So, starting from the relation (3.7), we can write:

$$
\begin{gathered}
\left(t_{1}^{2}+r^{2}\right)(1-k) t_{2}^{2}-4 r^{2} t_{1} t_{2}+r^{2}\left(t_{1}^{2}+r^{2}\right)(1-k)=0 \\
1-k=\frac{4 r^{2} t_{1} t_{2}}{\left(r^{2}+t_{1}^{2}\right)\left(r^{2}+t_{2}^{2}\right)}
\end{gathered}
$$

from which, since $t_{2}=\frac{\left(d^{2}-R^{2}\right) t_{1}+\sqrt{D}}{r^{2}+t_{1}^{2}}$, we get

$$
1-k=\frac{2 r^{2}}{d^{2}-R^{2}}
$$

Putting $k=\frac{2 R^{2}}{d^{2}+R^{2}}$ we have the equality

$$
1-\frac{2 R^{2}}{d^{2}+R^{2}}=\frac{2 r^{2}}{d^{2}-R^{2}}
$$

since Fuss' relation $\left(d^{2}-R^{2}\right)^{2}=2 r^{2}\left(d^{2}+R^{2}\right)$ holds.
Now we shall consider the other two solutions for t_{3} given by (3.17), that is

$$
\left(t_{3}\right)_{2}=\frac{(1+\sqrt{k}) t_{1}}{1-\sqrt{k}}, \quad\left(t_{3}\right)_{3}=\frac{(1+\sqrt{k}) t_{1}}{1-\sqrt{k}} .
$$

Putting $\left(t_{3}\right)_{2}$ instead of t_{3} in (3.11) we get

$$
\left(t_{2}\right)_{1}=\frac{(1+\sqrt{k}) t_{1}}{1-\sqrt{k}}, \quad\left(t_{2}\right)_{2}=t_{1}
$$

It is not difficult to see that from

$$
\left\{t_{1}, t_{2}, t_{3}, t_{4}\right\}=\left\{t_{1}, \frac{(1+\sqrt{k}) t_{1}}{1-\sqrt{k}}, \frac{(1+\sqrt{k}) t_{1}}{1-\sqrt{k}}, t_{1}\right\}
$$

follows that C_{2} must be a point, that is, $t_{1}=0$.
In the same way can be seen that $\left(t_{3}\right)_{3}$ is possible only if $t_{1}=0$.
At the end we prove the following assertion: If $A_{1} A_{2} A_{3} A_{4}$ is an ex-bicentric quadrilateral, then

$$
\frac{\left|A_{1} A_{3}\right|}{t_{1}+t_{3}}=\frac{\left|A_{2} A_{4}\right|}{t_{2}+t_{4}}=\sqrt{k}
$$

Proof. Let denote by F relation obtained from (3.8) putting

$$
t_{2}=\frac{\left(d^{2}-R^{2}\right) t_{1}+\sqrt{D}}{r^{2}+t_{1}^{2}}, \quad t_{3}=\frac{r^{2}}{t_{1}}, \quad t_{4}=\frac{r^{2}}{t_{2}}, \quad k=\frac{2 R^{2}}{R^{2}+d^{2}},
$$

where

$$
D=\left(d^{2}-R^{2}\right)^{2} t_{1}^{2}-r^{2}\left(r^{2}+t_{1}^{2}\right)^{2} .
$$

Using computer algebra it is easy to show that

$$
F \Longleftrightarrow\left(d^{2}-R^{2}\right)^{2}-2 r^{2}\left(d^{2}+R^{2}\right),
$$

which proves $\left|A_{1} A_{3}\right|=\left(t_{1}+t_{3}\right) \sqrt{k}$. In the same way can be proved that $\left|A_{2} A_{4}\right|=$ $\left(t_{2}+t_{4}\right) \sqrt{k}$.

This completes the proof of Theorem 2.
Here are some of its corollaries.
Corollary 16. Let $A_{1} A_{2} A_{3} A_{4}$ be an ex-bicentric quadrilateral and let $\left|A_{i} A_{i+1}\right|=$ $\left|t_{i}-t_{i+1}\right|, i=1,2,3,4$. Then

$$
\begin{align*}
& R^{2}=\frac{\left[\left(r^{2}+t_{1}^{2}\right)\left(r^{2}+t_{2}^{2}\right)\right]\left[\left(r^{2}+t_{1}^{2}\right)\left(r^{2}+t_{2}^{2}\right)-4 r^{2} t_{1} t_{2}\right]}{16 r^{2} t_{1}^{2} t_{2}^{2}} \tag{3.31}\\
& d^{2}=\frac{\left[\left(r^{2}+t_{1}^{2}\right)\left(r^{2}+t_{2}^{2}\right)\right]\left[\left(r^{2}+t_{1}^{2}\right)\left(r^{2}+t_{2}^{2}\right)+4 r^{2} t_{1} t_{2}\right]}{16 r^{2} t_{1}^{2} t_{2}^{2}} \tag{3.32}
\end{align*}
$$

The proof is analogous to the proof of Corollary 1.
Corollary 17. It holds

$$
2\left(d^{2}-R^{2}\right)=\frac{\left(r^{2}+t_{1}^{2}\right)\left(r^{2}+t_{2}^{2}\right)}{t_{1} t_{2}}=t_{1} t_{2}+t_{2} t_{3}+t_{3} t_{4}+t_{4} t_{1}
$$

The proof is analogous to the proof of Corollary 2.
Corollary 18. If $k=\frac{2 R^{2}}{d^{2}+R^{2}}$ and (1.1) holds, then every positive solution of the system with equations (3.7)-(3.10) can be expressed such that following holds

$$
\begin{gathered}
t_{m} \leq t_{1} \leq t_{M} \\
t_{2}=\frac{\left(d^{2}-R^{2}\right) t_{1}+\sqrt{D}}{r^{2}+t_{1}^{2}}, \quad t_{3}=\frac{r^{2}}{t_{1}}, \quad t_{4}=\frac{r^{2}}{t_{2}}
\end{gathered}
$$

where $D=\left(d^{2}-R^{2}\right)^{2} t_{1}^{2}-r^{2}\left(r^{2}+t_{1}^{2}\right)^{2}$.
Corollary 19. Let $A_{1} A_{2} A_{3} A_{4}$ be any given ex-tangential quadrilateral and let $t_{1}, t_{2}, t_{3}, t_{4}$ be lengths of its tangents such that

$$
\left|t_{i}-t_{i+1}\right|=\left|A_{i} A_{i+1}\right|, \quad i=1,2,3,4
$$

Then this quadrilateral is also a chordal one iff

$$
\begin{equation*}
t_{1} t_{3}=r^{2} \tag{3.33}
\end{equation*}
$$

where r is the radius of the excircle of $A_{1} A_{2} A_{3} A_{4}$.
Proof. From

$$
\left(t_{1}-t_{2}+t_{3}-t_{4}\right) r^{2}=-t_{1} t_{2} t_{3}+t_{2} t_{3} t_{4}-t_{3} t_{4} t_{1}+t_{4} t_{1} t_{2}
$$

it follows

$$
t_{4}=\frac{t_{1} t_{2} t_{3}+r^{2}\left(t_{1}-t_{2}+t_{3}\right)}{r^{2}+t_{1} t_{2}+t_{2} t_{3}-t_{3} t_{1}}
$$

Putting $t_{3}=\frac{r^{2}}{t_{1}}$ we get

$$
t_{4}=\frac{r^{2}\left(t_{1}+r^{2}\right)}{t_{2}\left(t_{1}^{2}+r^{2}\right)}=\frac{r^{2}}{t_{2}}
$$

Corollary 20. Instead of the relation given by (3.33) each of the following five relations can be put:

$$
\begin{gathered}
t_{2} t_{4}=r^{2}, \\
\frac{t_{1}}{r^{2}+t_{1}^{2}}=\frac{t_{3}}{r^{2}+t_{3}^{2}}, \quad \frac{t_{2}}{r^{2}+t_{2}^{2}}=\frac{t_{4}}{r^{2}+t_{4}^{2}}, \\
\frac{t_{1}^{2}-r^{2}}{t_{1}^{2}+r^{2}}=\frac{r^{2}-t_{3}^{2}}{r^{2}+t_{3}^{2}}, \quad \frac{t_{2}^{2}-r^{2}}{t_{2}^{2}+r^{2}}=\frac{r^{2}-t_{4}^{2}}{r^{2}+t_{4}^{2}} .
\end{gathered}
$$

Corollary 21. Let (3.33) be fulfilled. Then

$$
\sum_{i=1}^{4} \sin \alpha_{i}=\frac{2 r^{2}}{d^{2}+R^{2}}
$$

where $\alpha_{i}=$ measure of $\varangle A_{i-1} A_{i} A_{i+1}, A_{0}=A_{4}$.
Proof. Analogous to the proof of Corollary 9.
Corollary 22. It holds

$$
\sum_{i=1}^{4} \sin \alpha_{i} \sin \alpha_{i+1}=\frac{8 r^{2}}{d^{2}-r^{2}}
$$

Corollary 23. It holds

$$
\sum_{i=1}^{4} \cos \alpha_{i} \cos \alpha_{i+1}=0
$$

Corollary 24. Let t_{1}, t_{2}, t_{3} be any given lengths (in fact positive numbers). Then there are lengths t_{4} and r such that

$$
\begin{gather*}
\left(t_{1}-t_{2}+t_{3}-t_{4}\right) r^{2}=-t_{1} t_{2} t_{3}+t_{2} t_{3} t_{4}-t_{3} t_{4} t_{1}+t_{4} t_{1} t_{2} \tag{3.34}\\
t_{1} t_{2} t_{3} t_{4}=r^{4} \tag{3.35}
\end{gather*}
$$

Proof. Analogous to the proof of Corollary 12. Here we have the equation

$$
r^{6}+r^{4}\left(t_{1} t_{2}+t_{2} t_{3}-t_{3} t_{1}\right)-r^{2}\left(t_{1}-t_{2}+t_{3}\right) t_{1} t_{2} t_{3}-t_{1}^{2} t_{2}^{2} t_{3}^{2}=0,
$$

whose roots for r^{2} are given by

$$
\left(r^{2}\right)_{1}=-t_{1} t_{2}, \quad\left(r^{2}\right)_{2}=-t_{2} t_{3}, \quad\left(r^{2}\right)_{3}=t_{1} t_{3} .
$$

Corollary 25. Let (3.34) and (3.35) be fulfilled. Then

$$
t_{1} t_{2} t_{3} t_{4}=r^{4} \Longleftrightarrow \sum_{i=1}^{4}(-1)^{i} \frac{r}{t_{i}}=\sum_{i=1}^{4}(-1)^{i} \frac{t_{i}}{r}
$$

Corollary 26. All of ex-bicentric quadrilaterals which have the same excircle and the same circumcircle have the same product of diagonals. In other words, if $A_{1} A_{2} A_{3} A_{4}$ is an ex-bicentric quadrilateral, then

$$
\left|A_{1} A_{3}\right| \cdot\left|A_{2} A_{4}\right|=2\left(d^{2}-2 r^{2}-R^{2}\right)
$$

Proof. The proof is obtained in the same way as the proof of Corollary 15, namely it holds

$$
2\left(d^{2}-R^{2}\right) \cdot \frac{2 R^{2}}{d^{2}+R^{2}}-2\left(d^{2}-2 r^{2}-R^{2}\right)=0 \Longleftrightarrow\left(d^{2}-R^{2}\right)^{2}-2 r^{2}\left(d^{2}+R^{2}\right)=0
$$

In this connection let us remark that in [4, Theorem 3.2] it is proved that

$$
t_{1} t_{2}+t_{2} t_{3}+t_{3} t_{4}+t_{4} t_{1}=2\left(d^{2}-R^{2}\right)
$$

Acknowledgement. The authors wish to acknowledge the remarks and sugestions from the referee.

References

[1] H. Dörrie, 100 Great Problems of Elementary Mathematics, Their History and Solution, Dover Publication, Inc., 1965. (Originally published in German under the title Triumph der Mathematik)
[2] N. Fuss, De quadrilateris quibus circulum tam inscribere quam circumscribere licet, Nova acta acad. sci. Petrop. 10 (St Petersburg 1797), 103-125.
[3] M. Radić, Some relations concerning triangles and bicentric quadrilaterals in connection with Poncelet's closure theorem, Math. Maced. 1 (2003), 35-58.
[4] M. Radić, Some relations concerning triangles and bicentric quadrilaterals in connection with Poncelet's closure theorem when conics are circles not one inside of the other, Elemente der Mathematik 59(2004), 96-116.

[^0]: *Faculty of Philosophy, University of Rijeka, Omladinska 14, HR-51 000 Rijeka, Croatia, e-mail: mradic@ffri.hr
 ${ }^{\dagger}$ Faculty of Philosophy, University of Rijeka, Omladinska 14, HR-51 000 Rijeka, Croatia, e-mail: kaliman@ffri.hr
 \ddagger University "Juraj Dobrila" of Pula, Preradovićeva 1, HR-52 100 Pula, Croatia, e-mail: vladimir.kadum@pu.t-com.hr

