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Fitting data in the plane by algebraic curves in
parametric representation

Helmuth Späth∗

Abstract. We consider fitting given data points in the plane by
an algebraic curve in parametric form. The objective function to be
minimized is the sum of squared orthogonal distances (TLS) with an
infinite number of equivalent solutions. Some descent algorithm will
normally find one of those depending on starting values. Numerical
examples are given.
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1. The problem

Let data points (xi, yi), i = 1, . . . , k be given in the plane, i.e. neither
x1 < . . . < xk nor y1 < . . . < yk is valid. Figure 1 shows such a set of num-
bered points for k = 8. We will try to find some curve in the plane such that
the sum of squared orthogonal distances (TLS) from the points onto the curve will
become minimal (Figure 2), i.e. some curve fitting in this sense. Such a curve may
be given by a pair.

(x(t), y(t)), −∞ ≤ t ≤ ∞ (1)

being suitable functions of the curve parameter t. E. g. one could take two cubic
spline functions [2].
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Here we will discuss the case of

x(t) = antn + an−1t
n−1 + . . .+ a1t+ a0,

(2)
y(t) = bmtm + bm−1t

m−1 + . . .+ b1t+ b0,

where n ≥ 1 and m ≥ 1. For n = m = 1 we have a straight line, for n = m = 2
we have some parabola, and for n, m > 2 we have some arbitrarily complicated
algebraic curve in the plane, see Examples 2 and 3 later. First we have to determine
coefficient vectors

a = (an, an−1, . . . , a1, a0)T , b = (bm, bm−1, . . . , b1, b0)T (3)

in the above sense, i.e. for each given point (xi, yi) we have to find values t = ti,
i.e. altogether some vector

t = (t1, . . . , tk), (4)

such that

S(a, b, t) =
n∑

k=1

min
t

[
(x(t) − xi)2 + (y(t)− yi)2

]
(5)

is minimized.

2. Nonuniqueness of solutions

Consider as example
x(t) = a2t

2 + a1t+ a0

and the transformation
t −→ αt+ β (α �= 0) . (6)

Then we have

x(αt + β) = a2(αt+ β)2 + a1(αt + β) + a0

= a2α
2t2 + (2a2αβ + a1α)t + (a2β

2 + a1β + a0)
= ã2t

2 + ã1t + ã0 (7)
= x̃(t),
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and also

x̃

(
t − β

α

)
= x(t) (8)

As both
S(ã, b̃, t1, . . . , tk) = S(a, b, αt1 + β, . . . , αtk + β) (9)

and

S(a, b, t1, . . . , tk) = S

(
ã, b̃,

t1 − β

α
, . . . ,

tk − β

α

)
(10)

are valid, we will have an infinite number of equivalent solutions.

3. Necessary conditions for some solution

If we denote by ti the minimal value of t in the i-th term in (5), then we can write

S(a, b, t) =
k∑

i=k

[(
antni + an−1t

n−1
i + . . .+ a1ti + a0 − xi

)2

+
(
bmtmi + bm−1t

m−1
i + . . .+ b1t1 + b0 − yi

)2]
. (11)

The necessary conditions for the ti are

1
2

∂S

∂ti
= (nantn−1

i + . . .+ a1)(antni + . . .+ a0 − xi)

+(mbmtm−1
i + . . .+ b1)(bmtmi + . . .+ b0 − yi) = 0 (12)

(i = 1, . . . , k)

These are polynomial equations with odd degree max(2n − 1, 2m − 1). If there
are several real zeroes, then that one is to choose for each i that gives the smallest
value in the i-th term of (5). For a numerical solution the subroutine RPOLY [1]
is strongly recommended.
The further necessary conditions are

1
2

∂S

∂aj
=

k∑
i=1

tji (antni + . . .+ a0 − xi) = 0 (j = 0, . . . , n), (13)

1
2

∂S

∂bj
=

k∑
i=1

tji (bmtmi + . . .+ b0 − yi) = 0 (j = 0, . . . , m), (14)

Denoting

x = (x1, . . . , xk)T , y = (y1, . . . , yk)T

C = (cij) = tn+1−j
i (i = 1, . . . , k; j = 1, . . . , n+ 1),

(15)
D = (dij) = tm+1−j

i (i = 1, . . . , k; j = 1, . . . , m+ 1),
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we see that (13) and (14) are the normal equations of the two minimization problems

‖Ca − x‖2
2 −→ min,

(16)‖Db − y‖2
2 −→ min,

where a and b are the unknown vectors (3). For given values t1, . . . , tk the two
problems (16) can easily be solved by the modified Gram-Schmidt method, see e.g.
subroutine MGS from [3]. To avoid terms 00 we require ti �= 0 (i = 1, . . . , k).

4. A descent method

The two problems (15) and the k equations (12) will now be interatively solved such
that the objective function (11) will decrease at each step. Convergence to some
minimum or even to some global minimum is not guaranteed. But empirically that
method works pretty well if not counting an often large number of iterations.

Step 1: For the iteration index � with � = 0 let t(0) be given with t
(0)
i �= 0 (i =

1, . . . , k), e.g. t
(0)
i = i or some other values with t

(0)
1 < t

(0)
2 < . . . < t

(0)
k , if

the given points ought to be ordered in this way. Set S(0) equal to a big
number.

Step 2: Put t(�) into (15) and solve the two problems (16) for a(�+1) = a and
b(�+1) = b. As a and b are linear, S is reduced by this way.

Step 3: Determine t(�+1) by calculating for each i = 1, . . . , k all real zeroes of
(12) and by selecting that one that minimizes the i-th term within (11).
Calculate S(�+1) = S(a(�+1), b(�+1), t(�+1)). S is reduced again.

Step 4: If some maximal number of iterations (to be given) is not reached and if
S(�+1) < S(�), then set � := �+1, S(�+1) := S(�+2), and go back to Step 2.

5. Examples

We consider one set of data for different values of n and m. Those given data points
(k = 12) are

x −1 −3 −5 −6 −5 −2 0 3 5 4 2 −1
y −7 −5 −4 −2 0 1 0 −2 −1 2 3 4

and the starting vector t(0) in each case was

t(0) = (1.25, 1.75, 3.25, 3.75, 5.25, 5.75, 7.25, 7.75, 9.25, 9.75, 11.25, 11.75)T .

Example 1. n = m = 2. The coefficients of (12) are

t3 : 2a2
2 + 2b2

2,
t2 : 3a1a2 + 3b1b2,
t : 2a2(a0 − xi) + 2b2(b0 − yi),
1 : a1(a0 − xi) + b1(b0 − yi).
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We ended up with

t = (.96, 1.65, 2.19, 2.89, 3.36, 10.05, 10.78, 11.75, 12.02, 11.45, 10.86, 9.90)T ,

S = 22.31 (S(0) = 89.27),
a = (.283,−3.089, 1.234)T ,

b = (−.263, 3.981,−10.91)T .

The corresponding parabola together with the given points can be seen in Figure 3.

Example 2. n = m = 3. The coefficients of (12) are

t5 : 3a2
3 + 3b

2
3,

t4 : 5a2a3 + 5b2b3,
t3 : 4a1a3 + 2a2

2 + 4b1b2 + 2b2
2,

t2 : 3a3(a0 − xi) + 3a1a2 + 3b3(b0 − yi) + 3b1b3,
t : 2a2(a0 − xi) + a2

1 + 2b2(b0 − yi) + b2
1,

1 : a1(a0 − xi) + b1(b0 − yi).

Here we ended up with

t = (1.53, 1.90, 2.26, 2.76, 4.70, 5.61, 6.17, 7.03, 7.51, 11.11, 11.41, 11.75)T,

S = 2.749 (S(0) = 8.849),
a = (−.15, 2.82,−14.19, 14.63)T ,

b = (.07,−1.52, 9.41,−18.09)T.
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In this case t1 < t2 < . . . < t12 was not changed as against to Example 1. The
resulting curve can be seen in Figure 4.

Example 3. n = 3, m = 4. This time the coefficients of (12) are not symmetric
with respect to a and b and they are

t7 : 4b2
4,

t6 : 7b3b4,
t5 : 3a2

3 + 6b2b4 + 3b2
3,

t4 : 5a2a3 + 5b1b4 + 5b2b3,
t3 : 4a1a3 + 2a2

2 + 4b4(b0 − yi) + 4b1b3 + 2b2
2,

t2 : 3a3(a0 − xi) + 3a1a2 + 3b3(b0 − yi) + 3b1b3,
t : 2a2(a0 − xi) + a2

1 + 2b2(b0 − yi) + b2
1,

1 : a1(a0 − xi) + b1(b0 − yi).

Here we got

t = (1.54, 1.89, 2.21, 2.64, 4.92, 5.76, 6.31, 7.16, 7.66, 11.07, 11.39, 11.76)T ,

S = 2.727 (S(0) = 8.546),
a = (−.106, 2.074,−10.65, 10.05)T ,

b = (.002, .0084,−.7713, 6.288,−14.26)T .

The corresponding curve is in Figure 5. Because of the small value for b5, both the
final S (though a little bit smaller) and the curves from Example 2 and 3 do not
differ very much.
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The calculations for the three examples were repeated with t
(0)
i = i and t

(0)
i =

i/2+ .5 . We got the same values for the final S and of course not for a and b with
different numbers of iterations (between 100 and 200).
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