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VIBRATIONS AND RESPONSE TO SEISMIC EXCITATIONS
OF FLEXURE AND SHEAR BEAMS ON HINGED END

SUPPORTS AND A CONTINUOUS DEFORMABLE
FOUNDATION

Riko Rosman

Summary
Simple formulas are derived for the fundamental periods of the free lat-

eral vibrations and the response to sine loads of flexure beams and shear
beams on laterally fix hinged end supports and a continuous elastic founda-
tion. It is shown how the mechanical charasteristics and the response quanti-
ties of systems with flexure-shear beams can be approximated by those of a
flexure or a shear beam by appropriately defining their equivalent cross-sec-
tional stiffnesses. Applications of the developed theories in the design and
analysis of some engineering structures are also dealt with and two numeri-
cal examples elucidate the procedures.

Key-words: vibrations, response to seismic excitations, flexure beams,
shear beams, flexure-shear beams, periods

1. Introduction

Beams with laterally fix hinged end supports and a continuous elastic founda-
tion along its length often occur in engineering structures. The beam can be either
a flexure beam, i.e. a beam whose deformation is dominantly due to flexure, a
shear beam, i.e. a beam whose deformation is dominantly due to shear or a flex-
ure-shear beam whose deformation is due to both flexure and shear so that neither
of the two contributions is negligible compared with that of the other. The elastic
foundation is supposed to be of the Winkler type.

Simple formulas are derived for the fundamental period of the systems' free lat-
eral vibrations and its response to a sine load.

A possible practical application of the developed theories are bracing structures
of some flat-roofed buildings subjected to earhtquake excitations; the derived for-
mulas can be applied in both their preliminary-design and final-analyses phases.
Numerical examples of two typical structures with a roof truss beam and a roof
decking consisting of stressed-skin corrugated metal sheeets, respectively, eluci-
date the systems' mechanical behavior.
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2. Reduced cross-sectional stiffnesses of the simple
flexure and shear beams

Fig 1A shows the simple flexure-shear beam subjected to an uniform load and the
corresponding displacement line. The meaning of the symbols is: L..span, K

M

o and
K

V

o .. cross-sectional flexure and shear stifnesses, respectively, q..load intensity, wo..
mid-span displacement.

The mid-span displacements due to flexure and shear and their sum are easily
found to be

w
qL

K
w

qL

K
w w w

M

o

M

o V

o

V

o

o

M

o

V

o� � � �
5

384 8

4 2

, , (1)

If the beam is approximated by a flexure beam, its mid-span displacement can
be written down as
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Fig. 1 Flexure-shear beams subjected to A) an uniform load and B) a sine load
and corresponding displacement lines



is the beam´s reduced or equivalent cross-sectional stiffness corresponding to an
uniform load. Of course, if K

V

o ��, then K K
M M

o� .
If the beam is approximated by a shear beam. its mid-span displacement is
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is the beam´s reduced or equivalent cross-sectional stiffness corresponding to an
uniform load. Of course, if K

M

o ��, then K K
V V

o� .

Fig. 1B shows the simple flexure-shear beam subjected to a sine load. If the total
load is Q, te mid-span intensity and the intesity at x are
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The mid-span displacements due to flexure and shear are
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their sum
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If the beam is approximated by a flexure beam, its mid-span displacement can
be formulated as
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is the beams reduced or equivalent cross-sectional stiffness corresponding to a sine
load. Of course, if K

V

o ��, then K K
M M

o� .
If the beam is approximated by a shear beam, its displacement is
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is the beam's reduced or equivalent cross-sectional stiffness corresponding to a
sine load. Of course, if K

M

o ��, then K K
V V

o� .
Comparing Eqs. (5) and (12) and considering that �2 = 9,87 it becomes obvious,

that the equivalent stiffnesses only insignificantly depend on the distribution of
the load along the beam's span.

3. Fundamental free-vibrations' periods of flexure beams

Fig. 2 A shows a simple flexure beam subjected to an uniform load and the cor-
responding displacement line. KM denotes the beam´s reduced flexural stiffness
(Eq. (10)), which indireclty approximately takes into account the effect of shear
onto the deformation, q the load intensity numerically equal to the system's weight
intensity and w

M

o the coresponding mid-span displacement.
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Fig. 2. Flexure beams subjected to an uniform load on A) hinged end supports
and B) hinged end supports and a continuous deformable foundation and corre-
sponding displacement lines



The exact value of the fundamental period of the beam's free vibrations follows
from ¢1£ to be
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where g is the gravitational acceleration (9,81 m/sec2). In the second and the third
expressions on the right-hand side of Eq. (13) lenghts must be expressed in meters
and the period is obtained in seconds.

To obtain the period of the simple flexure beam with an additional continous
elastic foundation (Fig. 2B) two simple approximate methods are proposed.

Firstly, in the last expression for T
M

o on the right-hand side of Eq. (13) the dis-
placement w

M

o of the simple beam is replaced by the displacement R w
w M M

o

, of the
beam with the additional foundation. Herein, the displacement-reduction coeffi-
cient amounts to
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is the systems dimensionless parameter ¢2£. In practice, U assumes values in the do-
main (0; �/2); for U = �/2 the discharging effect of the foundation is nearly nil.

Herewith, the period to be determined is

T R w t T
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where the dimensionless period-reduction coefficient with respect to the period of
the simple flexure beam amount to
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In the left part of the Table numerical values of tM are listed for some values of U.
Secondly, the method of splitting the given system into subsystems ¢3£ is ap-

plied. The two subsystems are the simple beam and the continous foundation.
With their periods
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the relationship
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holds, so that the maximal possible value of the period looked for is
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the dimensionless period-reduction coefficient with respect to the period of the
simple flexure beam is
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Hence, with both methods, the periodT
M

o of the simple flexure beam is the refer-
ence value. For the period-reduction coefficient tM two values are derived (Eqs. (17)
and (21)); for the systems parameters L = 42 m, KM = 8,21 GNm2 and KF = 49,6
kN/m2 for example the first method gives, with U = 0,73619, the approximate value
tM = 0,9152, whilst according to the second there is tM � 0,9156. Obviously, both
values excellently agree.

4. Fundamental free-vibrations' periods of shear beams

Fig. 3A shows a simple shear beam subjected to an uniform load and the corre-
sponding displacement line. KV denotes the beam's reduced shear stiffness. (Eq.
(12)), which indirectly approximately takes into account the effect of flexure onto
the deformation, q the load intensity numerically equal to the system's weight in-
tensity and w

V

o the corresponding mid-span displacement.
The exact value of the fundamental period of the beam's free vibrations is, start-

ing from ¢1£, found to be
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In the second and third expressions on the right-hand side of Eq. (22) lenghts
must be expressed in meters so that the period is obtained in seconds. The author's
simple energy approach ¢4£ leads to practically the same result, concretely to the
factor 0,6344 sec/�m instead of 0,6386 sec/�m in the second expression on the
right-hand side of Eq. (22).

To obtain the period of the simple shear beam with an additional continuous
elastic foundation (Fig. 3B) again two simple approximate methods are proposed.

Firstly, in the last expression for T
V

o on the right-hand side of Eq. (22) the dis-
placement w

V

o of the simple beam is replaced by the displacement R w
w V V

o

, of the
beam with the additional foundation. Herein, the displacement-reduction coeffi-
cient amounts to
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Fig. 3. Shear beams subjected to a sine load on A) hinged end supports and B)
hinged end supports and a continuous deformable foundation and corresponding
displacement lines.



is the systems dimensionless parameter ¢5£. Theoretically, A is defined in the do-
main (0;�), but a considerable discharging effect of the foundation is obtained only
if A � 5.

Herewith, the period to be determined is
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where the dimensionless period-reduction coefficient amounts to
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In the right part of the Table numerical values of tV are listed for some values of A.
Secondly, the method of splitting the given system into subsystems ¢3£ is ap-

plied again. The two subsystems are the simple beam and the contionous founda-
tion. With their periods
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holds, so that the maximal possible value of the period looked for is
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the dimensionless period-reduction coefficient with respect to the period of the
simple shear beam is
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Hence, with both methods, the period T
V

o of the simple shear beam is the refer-
ence value. For the period-reduction coefficient tV two values are derived (Eqs. (26)
and (30)); for the system's parameters L = 36 m, KV = 67 MN akd KF = 84,2 kN/m2

for example the first method gives, with A = 0,6381, the approximate value
tV = 0,9244, whilst according to the second there is tV � 0,9265. Againg, both values
excellently agree.
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5. Response of flexure beams

Fig. 4A shows one half of the simple flexure beam subjected to a sine load, its re-
action, the shear-force and bending-moment diagrams and the displacement line.

If S denotes the total load, its - maximal - intensity at the mid-span and at an ar-
bitrary x are
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S
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�
2

, sin( ). (31)

The maximal values of the beam's response quantities are easily found to
amount
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whilst at an arbitrary x there is
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Fig. 4B shows one half of the simple flexure beam with the additional continous
elastic foundation subjected to a sine load, its end-support's reaction, the beam's
load, its shear-force and bending moment diagrams, the foundation´s load and the
displacement line.

In ¢2£ it is shown that the beam's load and its response quantities are equal to
those of the reference beam (Fig. 4A) multiplied by the response-reduction factor

R
L K

K
F

M

�
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1

1 4( )
;

�

(36)

herein, the second term in the denominator is the dimensionless system's parame-
ter corresponding to a sine load. Herewith there is

sB = R s, F = V = RVo, M = RMo, (37)

sF = (1 - R) s, (38)

w = R wo (39)
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and for an arbitrary x

s s
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L
V V
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s s
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� sin( ),� (41)

w w
x

Lx � sin( )� . (42)

Numerical example. As an engineering application of the developed theories
let consider the bracing structure (Fig. 5A) consisting of a longitudinal roof truss
beam, rigid gables and elastic transverse frames of a flat-roofed building subjected
to a seismic load in the building's transverse direction.

Data. Buildings lenght: L = 42 m. Panel length: l = 7 m. The roof beam acts as a
flexural beam its cross-sectional stiffness being KM = 8,21 GNm2. The lateral stiff-
ness of a frame is KR = 347 kN/m, so that the stiffness of the roof-beam's continuous
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Fig. 4. A) One half of a flexure beam on hinged end supports subjected to a sine
load, corresponding reaction, shear-force and bending-moment diagrams and dis-
placement line. B) One half of a flexure beam on hinged end supports and a contin-
uous deformable foundation subjected to a sine load, corresponding end reaction,
beam load, shear-force and bending-moment diagrams, foundation load and dis-
placement line



foundation is KF = KR / l = 49,6 kN/m2. The roof's weight per unit building's length
including a reasonable part of the snow load is q = 30 kN/m.

Free-vibrations period. T
M

o � 0 6855, sec, tM = 0,915, TM = 0,627 sec.
Total seismic load. Assuming that it amounts to 5% of the governing roof's

weight, there is S = 0,05�30�42 = 63 kN. Load's mid-span intensity: s = 2,36 kN/m.
Maximal response values of the reference beam: Fo = Vo = 31,5 kN, Mo = 421

kNm, wo = 9,17 mm.
Response-reduction factor: R = 0,838. Hence the maximal values of the systems

response are: F = V = 26,4 kN, M = 353 kNm, w = 7,68 mm, sF = 0,382 kN/m.

6. Response of shear beams

To determine the response of shear beams to seismic loads let first consider an
infinitesimal element or cutout in the region (x, x +dx) of the beam (Fig. 6). The
symbols sx, Vx, Mx, wx and �wx denote the load intensity, the shear force, bending
moment, displacement and slope of the displacement line at x, respectively. Primes
generally denote derivatives with respect to the abscissa x. The governing equa-
tions are

V M V s w
V

Kx x x x x

x

V

� �� �ð ð ð, , ; (43)

the first and the second are the equilibrium requirements of the element, the third
is the constitutive equation. Integrating the third equation yields
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Fig. 5. Two examples of bracing structures consisting of a longitudinal roof
beam, rigid gables and deformable transverse frames of a flat-roofed building sub-
jected to a transverse sine load. The roof beam is A) a flexure and B) a shear beam
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, (44)

D being an integration constant, so that the profile of wx corresponds to that of Mx

provided, if necessary, the boundary condition is considered.
Fig. 7A shows one half of a simple shear beam subjected to a sine load, the

raction, its shear-force and bending-moment diagrams and the displacement line.
The maximal value of the response quantities are easily found to be
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whilst at an arbitrary x there is

V V
X

L
M M

x

Lx
o o

x
o o� �cos( ), sin( ),� � (46)

w w
x

Lx
o o� sin( )� . (47).

Of course, the results for the internal forces are the same as those of the flexure
beam - they follow from only equilibrium requirements.

Fig. 7B shows one half of a shear beam with hinged end supports and a continu-
ous elastic foundation subjected to a sine load, its end-support's reaction, the
beam's load, its shear-force and bending moment diagrams, the foundation's load
and the displacement line.
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Fig. 6. Free-body diagram of an infinitesimal element of a shear beam and corre-
sponding displacement line



To formulate the problem, the basic Eqs. (43) must be supplemented by the re-
quirement, that the sum of the beam's load intensity and the foundation's load in-
tensity must at any x be equal to the total load's intensity,

sBx + sFx = s. (48)

Combining Eq. (48) with the equilibrium condition of the vertical forces on an
infinitesimal beam's cutout,

V sx Bx

ð ,�� (49)

the intensity of the foundation's load can be expressed as

s s V
Fx x x� � ð . (50)

The complementary energy of the system per unit length is

U
V

K K
s Vx

V F

x x� � �
2

2

2
1

2
( ) ;ð (51)

the first and the second term on the right-hand side represent the contributions of
the beam and the foundation, respectively.
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Fig. 7. A) One half of a simple shear beam subjected to a sine load, its reaction,
its shear-force and bending-moment diagrams and displacement line. B) One half
of the simple shear beam with an additional continuous elastic foundation sub-
jected to a sine load, its end reaction, the beam load, its shear-force and bend-
ing-moment diagrams, the foundation load and the displacement line.



The Euler equation

�
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�
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V x
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Vx x
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�
d

d
0 (52)

of the calculus of variations associated with the functional U yields, after the deri-
vations are performed, the second-order differential equation
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V

L
s
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F

V

x
ðð cos( )

�
� (53)

of the beam's shear force. The corresponding boundary requirements are that 1) at
x =0 the beam's load intensity vanishes, because there both the total load's inten-
sity and the foundation's load intensity vanish and 2) at x = L/2 due to the symme-
try the beam's shear force vanishes. So,

V V
L0 20 0ð

/, .� � (54)

D-Eq. (53) and B.Eqs. (54) uniquely formulate the boundary-value problem
dealt with.

The solution of D-Eq. (53) consists of a complementary and a particular part,
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x Z
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F
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V

� �1 2sinh( ) cosh( ), (55)

V C
x
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� cos( )� . (56)

The constant C is found by inserting VP and its second derivative into D-Eq. (53)
to be

C R
S
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2

, (57)

where

R
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Herewith

V R
S x
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2
cos( ).� (59)
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Now the complete solution

V = VH + VP (60)

of D-Eq. (53) is inserted into the B-Eqs. (54); it is easily shown that both constants Z1

and Z2 are equal to zero, so that VH identically vanishes and thus

V R
S x

L
�

2
cos( ).� (61)

To check this result it is proven that V satisfies both the D-Eq. (53) and the B-Eqs.
(54).

Herewith, the maximal values of the system's response are

sB = Rs, F = V = R Vo, M = R Mo, (62)

sF = (1 - R) s, (63)

w = R wo, (64)

whilst at an arbitrary x there is

s s
x
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� sin( ),� (65)

V V
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L
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Lx x� �cos( ), sin( ),� � (66)

s s
x

LFx F
� sin( ),� (67)

w w
x

Lx � sin( ).� (68)

Obviously, the response-reduction factor R translates the response quantities of
the simple beam (Fig. 7A) into those of the beam with the additional continous
fooundation (Fig. 7B).

Numerical example. As an engineering application of the developed theories
let consider the bracing structure (fig. 5B) consisting of a longitudinal roof
stressed-skin decking made of corrugated metal sheets, rigid gables and elastic
transverse frames of a flat-roofed building subjected to a seismic load in the build-
ings transverse direction.

Data. Building's lenght: L = 36 m. Panel length: l = 4,5 m. The roof beam acts as
a shear beam its cross-sectional stiffness being KV = 67 MN. The lateral stiffness of a
frame is KR = 379 kN/m, so that the stiffness of the roof-beam's continous founda-
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tion is KF = KR/l = 84,2 kN/m2. The roof's weight per unit building's lenght includ-
ing a reasonable part of the snow load is q = 30 kN/m.

Free-vibration's period: T
V

o � 0 487, sec, tV = 0,924, TV = 0,450 sec.
Total seismic load. Assuming that it amounts to 5% of the governing roof's

weight, there is S = 0,05�30�36 = 54 kN. Loads mid-span intensity: s = 2,36 kN/m2.
Maximal response values of the reference beam: Fo = Vo = 27,0 kN, Mo = 309

kNm, wo = 4,62 mm.
Response-reduction factor: R = 0,858. Hence the maximal values of the system's

response are: F = V = 23,2 kN, M = 266 kNm, w = 3,96 mm, sF = 0,334 kN/m.

7. Conclusion

Starting from the known results for the free-vibration's fundamental period of
the simple flexure beam and applying the method of splitting the given system
into subsystems, the free-vibration's fundamental period of the simple flexure
beam with an additional elastic foundation is determined. For practical reasons,
the result is expressed as a product of the period of the reference beam and a
dimensionless reduction coefficient which depends on the system's parameters,
i.e. its span, beam stiffness and foundation stiffness.

Analogously, starting from the known result for the free-vibration's fundamen-
tal period of the simple shear beam and again using the method of splitting the
system into subsystems, the free-vibration's fundamental period of the simple
shear beam with an additional elastic foundation is found.

Knowing the governing period, the total seismic load can be determined on the
basis of the relevant code. With respect to its distribution along the system's length
it is assumed to be a sine load.

In the analysis of the response of the flexure system to a sine load the shear
forces, bending moments and displacements of the reference's beam are deter-
mined first. Then, the beam's load, shear forces, bending moments and displace-
ments and the foundation load of the flexure system are found. It is shown that the
beams response quantities are equal to those of the reference beam multiplied by a
dimensionless reduction coefficient which depends on the system's parameters.

The response of the shear system is analyzed using the stationary complemen-
tary energy theorem. The problem is formulated by the second-order differential
equation of the beam's shear force and the corresponding boundary conditions.
The practical analysis algorithm is shown to be formally analogous to that of the
flexure system.

The effect of shear in the flexure system and the effect of flexure in the shear
system are introduced by appropriately defining the beam's cross-sectional
stiffnesses.

An example of engineering structures to which the developed theories and the
derived simple formulas can be applied are those of flat-roofed buildings having
gables, cross frames and a longitudinal roof diaphragm formed by either a truss or
a corrugated metal stressed skin decking. So the paper also intends to contribute to
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an easier design and preliminary and simple final dynamic analyses of some spa-
tial building structures.

Table. Numerical values of the period-reduction coefficients tM for flexure
beams and tV for shear beams with hinged end supports and a continuous elastic
foundation

U tM A tV

0
0,25
0,5
0,6
0,65
0,7
0,75
0,8
0,85
0,9
0,95
1
1,05
1,1
1,15
1,2
1,25
1,3
1,35
1,4
1,45
1,5
1,55
�/2

1
0,999
0,980
0,960
0,946
0,929
0,909
0,887
0,863
0,835
0,806
0,776
0,744
0,713
0,680
0,649
0,618
0,587
0,559
0,530
0,503
0,477
0,454
0,444

0
0,25
0,5
0,75
1
1,25
1,5
1,75
2
2,25
2,5
2,75
3
3,25
3,5
3,75
4
4,25
4,5
4,75
5
5,25
5,5
5,75

1
0,987
0,952
0,900
0,839
0,776
0,715
0,658
0,606
0,559
0,518
0,480
0,447
0,418
0,392
0,368
0,347
0,328
0,311
0,295
0,281
0,268
0,256
0,245
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Vibracije i odziv na potresne uzbude savojnih greda i posmi~nih greda
oslonjenih na krajevima na zglobne le`aje a du` raspona na

deformabilnu podlogu

Riko Rosman

SA@ETAK

Izvedeni su jednostavni obrasci za osnovne periode vlastitih bo~nih vi-
bracija te za odziv na sinusno optere}enje savojnih greda i posmi~nih greda
oslonjenih na krajevima na zglobne le`aje a du` raspona na deformabilnu
podlogu. Pokazano je, da mehani~ke karakteristike i odzivne veli~ine sa-
vojno-posmi~ne grede mogu biti aproksimirane odgovaraju}im veli~inama
savojne grede odnosno posmi~ne grede ako se prikladno definiraju njene
ekvivalentne karakteristike popre~nog presjeka. Nadalje je prikazana pri-
mjena razra|enih teorija u dizajnu i analizi nekih in`enjerskih konstrukcija, a
dva broj~ana primjera obja{njavaju algoritam prora~una.

Riko Rosman
Hrvatska akademija znanosti i umjetnosti
Razred za matemati~ke, fizi~ke i kemijske znanosti
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