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A simple bijection is established between Morgan trees and Dyck
paths. As a consequence, exact enumerative results for Morgan tre-
es on given number of vertices are obtained in terms of Catalan
numbers. The results are further refined by enumerating all Mor-
gan trees with prescribed number of internal vertices and by com-
puting the average number of internal vertices in a Morgan tree.
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INTRODUCTION

The main purpose of this paper is to present a simple bijection between
the set of all Morgan trees on a given number of vertices n and the set of all
Dyck paths on 2(n – 2) steps. Dyck paths are just one of many combinatorial
families enumerated by Catalan numbers, probably the best-researched and
the best-understood of them all. Hence, by constructing the said bijection,
many known enumerative results for Dyck paths can be directly applied to
Morgan trees. It is our hope that the simplicity of this correspondence will
prompt the researchers in mathematical chemistry to pay a closer attention
to the area of lattice-paths combinatorics, whose many exact results might
have a chemical significance.

MATHEMATICAL PRELIMINARIES

In this section we give only the basic definitions and results necessary
for our immediate goal. For a wider combinatorial background we refer the
reader to the monograph of Stanley.1
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A Dyck path on 2n steps is a lattice path in the coordinate plane (x,y)
from (0,0) to (2n,0) with steps (1,1) (Up) and (1,–1) (Down), never falling be-
low the x-axis. The set of all Dyck paths of length 2n we denote by D (n). A
typical Dyck path of length 14 is shown in Figure 1.

A peak of a Dyck path is a place where an Up step is immediately fol-
lowed by a Down step. The set of all Dyck paths of length 2n with exactly k

peaks we denote by Dk(n). Obviously, Dk(n) � Dl(n) = 0 for k � l and D (n) =
�1� �k n k nD ( ).

In a similar way, motivated by the obvious resemblance of Dyck paths to
mountain landscapes, we define valleys as the places where a Down step is
followed by an Up step, and ascents and descents as consecutive sequences
of Up and Down steps, respectively.
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paths on 2n steps. Probably the simplest way is to first count all paths from

(0,0) to (2n,0) with the steps Up and Down, dropping the condition that the
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	 ways to chose n Up steps from the total of 2n steps. Then a

simple reflection principle is applied that reduces this number by the factor

of 1
1n �
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2 is called the n-th Catalan num-

ber, and the sequence (Cn)n 
 0 is called Catalan sequence. The first few mem-
bers are 1, 1, 2, 5, 14, 42, 132, 429, 1030... It turns out that this sequence
enumerates many apparently unrelated combinatorial families. Some sev-
enty of them are listed in Ex. 6.19 of Stanley’s book,1 and there are many
more. The best known of these families are triangulations of a convex
(n + 2)-gon, binary trees with n vertices, plane trees with n+1 vertices, n
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Figure 1. A Dyck path from D (7).



non-intersecting chords connecting 2n points on the circumference of a circle
and sequences of n nondecreasing integers ai such that ai � i.

Literature on Catalan numbers is vast. A good starting point is the ex-
cellent monograph of Stanley,1 and a reader proficient in Croatian will cer-
tainly find the recent monograph of Veljan2 very useful. We refer the reader
to these references for proofs of the following properties of Catalan num-
bers.

The Catalan numbers satisfy the following convolutional recurrence:
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with the initial condition C0 = 1. They also satisfy the short recurrence,
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 0, with the same initial condition. Starting from the

convolutional recurrence, it is easy to obtain the generating function for the

Catalan sequence,
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For a given sequence (an)n
0 we define its generating function as a for-
mal power series a x a xn
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. Similarly, for a two-indexed sequence

(bn,k)n,k
0, we define its bivariate generating function by b(x,t) = b x tn k
n k

n k

,
, 
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0

.

Generating functions are very useful in establishing asymptotic properties
of sequences, in finding averages, etc. For a more detailed treatment of this
matter, we refer the reader to the classical monograph of Wilf.3

The set of C3 = 5 Dyck paths of length 6 is shown in Figure 2. It is obvi-
ous that there is only one Dyck path in D1(n), three Dyck paths in D2(n),
and one Dyck path in D3(n). There are also other ways of partitioning the
set D(n), for example with respect to the number of path’s returns to the x

-axis, but the partition with respect to the number of peaks will be the most
important for our purposes. For more results on enumeration of Dyck paths
with respect to various parameters, we refer the reader to the recent article
of Deutsch.4
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Figure 2. All Dyck paths from D (3).



The Narayana numbers N(n,k) are defined for integers n, k 
 1 by
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with the initial value N(0,0) = 1 and the boundary values N(n,0) = 0,
N(n,1) = 1 for n 
 1.

It is easy to see, by a direct computation, that the Narayana numbers
decompose the Catalan numbers, i.e. that N n k Cn

k

( , ) �



�
0

, for all n � 0. The

more interesting is the fact that this decomposition is the one defined by the
number of peaks in Dyck paths. In other words, the Narayana numbers
N(n,k) enumerate Dyck paths on 2n steps with exactly k peaks.

Proposition 1

Dk n N n k( ) ( , )� .

For a combinatorial proof of this result, we refer the reader to the arti-
cle.5

Some of the most interesting properties of Narayana numbers are sum-
marized in the following proposition. Since all claims can be checked using
the explicit formulae for N(n,k), we omit the proof.

Proposition 2

For integers n,k �0, we have

(a) N(n, k) = N(n, n + 1 – k) (symmetry);
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(g) The sequence ( ( , ))N n k k
n

�1 is log-concave in k. As a consequence, it has
one maximum for n odd, and two equal neighboring maximums for n even;
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(h) The bivariate generating function N x y N n k x yn k

n k
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the functional equation
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The Narayana numbers form a triangle whose row-sums equal the Cata-
lan numbers. The first few rows of this triangle are shown in Table I.

MORGAN TREES

Let us consider labeled trees on n vertices. The classical result of Cayley
states that there are nn – 2 such trees. A refined concept, known as a physi-
cal tree, has been introduced by Knop et al.6 A physical tree is obtained by
assigning labels to the vertices of a tree consecutively, and each vertex to be
labeled must have an already labeled neighbour. Hence, each vertex, except
the vertex labeled 1, has exactly one neighbour with a lower label. It means
that the adjacency matrix A = A(T) of a physical tree T must contain exactly
one non-zero element in each column of its upper triangle. A direct conse-
quence of this property is that the total number of different physical trees
on n vertices is (n–1)!. (There are (i – 1) ways to chose the non-zero element
in the i-th column of the upper triangle of A. Since the choices are independ-
ent, the total number of ways equals ( – ) ( – ) !i n

i

n 1 1
2

�
�� .)
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TABLE I

The beginning rows of the Narayana triangle

n
k 0 1 2 3 4 5 6 7 � = Cn

0 1 1

1 0 1 1

2 0 1 1 2

3 0 1 3 1 5

4 0 1 6 6 1 14

5 0 1 10 20 10 1 42

6 0 1 15 50 50 15 1 132

7 0 1 21 105 175 105 21 1 429



By imposing further restriction on the labeling process, we arrive at the
concept of a Morgan tree. We present here the labeling algorithm in a modi-
fied form, according to the reference.7 It consists of four steps:

1. Assign label 1 to a vertex of the lowest degree (i.e. to an endpoint of the
tree), and label 2 to its only neighbour.

2. If the vertex 2 is of degree p, assign the labels 3, �, p + 2 to the vertices
adjacent to vertex 2.

3. Consider the next vertex possessing the lowest label and which still has
non-labeled neighbours. Label its q non-labeled neighbours using q con-
secutive numbers, starting with the smallest non-used label.

4. Repeat the step 3 while there still are non-labeled vertices.

It is obvious that so defined procedure must terminate after a finite
number of steps, so it is indeed an algorithm.

It is worthwhile to note that, due to the step 1 in our naming algorithm,
the element A1,2 is the only non-zero element in the first row of the upper
triangle of the adjacency matrix A of a Morgan tree. Also, the element A2,3 is
always non-zero. Let us establish another property of A that will prove cru-
cial for our later results.

Lemma 3

Let A be the adjacency matrix of a Morgan tree on n vertices, and let
Ai,j = 1, for some 1 � i < j � n. Then Ak,l = 0, for all k < i, l 
 j.

Proof

The claim of the lemma is a simple consequence of the monotonicity pro-
perty of the labeling algorithm: For any two vertices k, i, with k < i, all
neighbours of k must be labeled before we assign any label to the neigh-
bours of i.

Now we can state our main results.

Theorem 4

The number of all Morgan trees on n vertices is Cn–2. The number of all
Morgan trees on n vertices with exactly k internal vertices is N(n – 2,k).

Proof

Let MT(n) be the set of all Morgan trees on n vertices. For a given tree T
� MT(n), let us consider its adjacency matrix A(T). From Lemma 3 we know
that this matrix has a characteristic pattern of non-zero elements, best visu-
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alized in the form of a staircase. To this matrix, we assign a lattice path
D(T) on 2n – 2 steps as follows. Start the path D(T) by an Up step, followed
by a Down step. Now consider the second row of the matrix A(T). For each
non-zero element of this row (there must be at least one, A2,3), add an Up

step to the already constructed part of D(T). After reaching the last non-zero
element of the second row, say, A2,j, add a Down step. Now add an Up step
for each non-zero element of the third row; if there are none, add another
Down step. Repeat this procedure for all rows of A(T). Because of Lemma 3,
the path D(T) is indeed a Dyck path on 2(n – 1) steps, and it is obvious from
the construction that the correspondence is bijective. An example is shown
in Figure 3.

So, we have reduced our task of enumerating all Morgan trees on n ver-
tices to the enumeration of all Dyck paths on 2(n – 1) steps that begin with
the (Up, Down) pair of steps. Obviously, there are exactly Cn–2 such paths,
and this proves the first claim of the theorem.

To prove the second claim, it suffices to note that the peaks of Dyck paths
correspond bijectively to the internal vertices in Morgan trees, and vice versa.

In Figure 4 we show all five different Morgan trees on five vertices, to-
gether with the corresponding Dyck paths.

The second claim of Theorem 4 can be also stated in terms of leaves of
Morgan trees.

Corollary 5

The number of Morgan trees on n vertices with exactly k leaves is equal
to N(n – 2, k – 1).
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Figure 3. With the proof of Theorem 4.



Proof

A Morgan tree on n vertices with exactly k leaves has n – k internal ver-
tices. According to Theorem 4, there are N(n – 2, n – k) such Morgan trees.
Applying the symmetry property of Narayana numbers, we get

N n n k N n n n k N n k( – , – ) ( – , – – ) ( – , – )2 2 2 1 2 1� � � � .

Our final result concerns the expected number of internal vertices in a
Morgan tree on n vertices, assuming that all such trees are equiprobable.

Corollary 6

The expected number of internal vertices in a Morgan tree on n vertices

equals n–1
2

.

Proof

Let us consider the set of all Dyck paths of length 2n, D (n), and denote
by �n the number of all peaks in D (n). The generating function of the se-
quence �n is then obtained3,4 by taking a partial derivative of the bivariate
generating function for the Narayana numbers with respect to t, and substi-
tuting the value t = 1. In other words,

�n
n

n
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t
x t�
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�

�0
1( , ) ,

888 T. DO[LI]

Figure 4. Morgan trees on 5 vertices and the corresponding Dyck paths.



where N(x,t) is the bivariate generating function for the Narayana numbers.
A simple calculation then yields
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Expanding the right hand side via binomial theorem, we obtain �n
n

n
� �

�
�

�
�
	1

2
2 ,

for n 
 0. So, the total number of peaks in D(n) is 1
2

2n

n

�
�
�

�
�
	, and the average (or

expected) number of peaks is obtained by dividing this quantity by the total

number of paths, Cn. Hence, in a given Dyck path on 2n steps there are, on

average, n �1
2

peaks. Our claim now follows by replacing n by n – 2.
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Morganova stabla i Dyckovi putovi

Tomislav Do{li}

Uspostavljena je jednostavna bijekcija izme|u Morganovih stabala i Dyckovih
putova. Kao posljedica, egzaktno su prebrojena Morganova stabla sa zadanim bro-
jem vrhova s pomo}u Catalanovih brojeva. Rezultati su dalje uto~njeni prebrojava-
njem Morganovih stabala sa zadanim brojem unutarnjih vrhova i ra~unanjem o~e-
kivanog broja unutarnjih vrhova u Morganovu stablu.
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