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The Resonant Recognition Model (RRM) of protein bioactivity is
applied to the protein secondary structure prediction. The method
is based on the physical and mathematical model of the electron-
ion interaction pseudopotential (EIIP) and uses signal analysis to
interpret linear information contained in a macromolecular se-
quence. The method of analysis is based on a two-step procedure.
Protein sequence is first transformed into a numerical series by
means of the individual EIIP amino acid values. The second step of
the model involves the Fourier spectral analysis of the obtained
numerical series. ]osi} et al.1–8 have shown that single frequency
peaks of the spectrum define characteristic positions of the amino
acids, i.e., hot spots, correlated to the biological function of the pro-
tein. We have analysed the secondary protein structure by compar-
ing the patterns of 20 most prominent frequency peaks of the sin-
gle-series Fourier RRM periodogram. The patterns within 140
nonhomologous �- and �-protein folds obtained from the Jpred and
SCOP databases were analysed by means of the classification tree
in order to obtain the algorithm for the �- and �-fold classification.
This quick and simple procedure of the secondary fold prediction
showed high accuracy of 98.55%. The stability of the tree algorithm
solution was confirmed by jack-knife testing of the tree algorithm
(mean error 2.6). This method of the secondary structure predic-

* Author to whom correspondence should be addressed. (E-mail: stambuk@rudjer.irb.hr)

CROATICA CHEMICA ACTA CCACAA 75 (4) 899¿908 (2002)



tion is presented in more detail on a subset of 30 different cyto-
kines, hormones, enzymes and viral proteins. Our results indicate
that resonant spectral analysis of the protein primary amino acid
sequence may be used to extract information about its secondary
structure.

Key words: resonance, recognition, model, protein folding, second-
ary structure, prediction, bioactive macromolecules.

INTRODUCTION

The Resonant Recognition Model (RRM) of protein bioactivity is a physi-
cal and mathematical model that uses signal analysis to interpret linear in-
formation contained in the macromolecular sequence.1–8 The method of ana-
lysis is based on a two-stage procedure.1–4 The first step involves the trans-
formation of the protein amino acid sequence into a numerical series, which
is called the Information Spectrum Method (ISM). Each of the amino acid
elements is described by means of the electron-ion interaction pseudopo-
tential value (EIIP).1–8 This amino acid pseudopotential model represents
the average energy states of all valence electrons.1–8 The second step of the
model involves the Fourier spectral analysis of the obtained numerical se-
ries.1–8

]osi} et al. showed that prominent frequency peaks obtained by means
of the spectral analysis denote characteristic positions of the amino acids,
i.e., hot spots, correlated to the biolological function of the protein.1–8 The
model was confirmed by the successful prediction of a) macromolecular re-
ceptor binding; b) enzyme and oncogene activity; c) protein-DNA interacti-
ons; d) bioactive parts of cytokines, hormones, viral proteins and antibod-
ies.1–8

Despite successful RRM applications in the prediction of particular pro-
tein hot spots of the protein secondary (and tertiary) structure, the problem
of defining its basic structural classes was not solved by the single charac-
teristic frequency approach. Since the defining of the protein secondary
structure is essential for defining its structure and function,1,9,10 we have
adopted a slightly different approach to the spectral analysis of the protein
RRM sequence. Instead of searching for a single common characteristic fre-
quency peak of different folding types (which is often not found due to se-
quence diversity irrespective of the secondary structure), we have analysed
a limited number of the most prominent frequency peaks in the protein
spectrum of different folds.
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METHODS

Protein Sequences

The test set of a total of 140 nonhomologous �- and �-protein folds was retrieved
from Jpred and SCOP databases for the protein secondary structure prediction.9–12

The proteins had the structure defined by means of X-ray or NMR. The lengths of
the folds ranged from 24 aa to 414 aa, and a set consisted of 70 �-helices and 70
�-sheets. The sequences are listed in the Appendix.

Information Spectrum Method

Protein sequences of the test set were transformed into numerical sequences of
the RRM by assigning the electron-ion interaction pseudopotential value in Ry to
each amino acid of the macromolecule.1–8 The values of EIIP for 20 amino acids are
given in Table I.
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TABLE I

Electron-ion interaction pseudopotential (EIIP)1 of amino acids

Amino acid EIIP/Ry

D (Aspartic acid) 0.1263

R (Arginine) 0.0959

F (Phenylalanine) 0.0946

T (Threonine) 0.0941

C (Cysteine) 0.0829

S (Serine) 0.0829

M (Methionine) 0.0823

Q (Glutamine) 0.0761

W (Tryptophan) 0.0548

Y (Tyrosine) 0.0516

A (Alanine) 0.0373

K (Lysine) 0.0371

H (Histidine) 0.0242

P (Proline) 0.0198

E (Glutamic acid) 0.0058

V (Valine) 0.0057

G (Glycine) 0.0050

N (Asparagine) 0.0036

I (Isoleucine) 0.0000

L (Leucine) 0.0000



Spectral Analysis

Molecular resonant analysis of the string spectra was performed by means of a
single-series Fourier analysis with the software STATISTICA� for Windows version
5.0 (www.StatSoft.com). Twenty frequency peaks of the largest periodogram values
were obtained for each protein sequence, and a new database was constructed. Fre-
quency peak patterns of different �- and �-protein folding spectra were analysed by
means of the classification trees, with the software R version 1.1.1 (The R Develop-
ment Core Team, 2000).

RESULTS AND DISCUSSION

Protein sequences can be easily converted into a numerical sequence by
assigning EIIP value (Table I) to each amino acid of the macromolecule.1–8

An example of this procedure for the basic Fibroblast Growth Factor is gi-
ven in Figure 1. Following the transformation of the protein amino acid se-
quence into its information spectrum, the Fourier spectral analysis of the
obtained numerical series was performed.

Spectral analysis is concerned with the exploration of the cyclical pat-
terns of data. The purpose of the procedure is to decompose a complex time
series with cyclical components into a few underlying sinusoidal (sine and
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Figure 1. Protein sequence of the basic Fibroblast Growth Factor is transformed into
a numerical sequence, i.e., information spectrum, by assigning an electron-ion inter-
action pseudopotential value (Table I) to each amino acid.



cosine) functions of particular wavelengths. Numerical series representing
protein EIIP spectrum function were transformed into the frequency domain
using the Discrete Fourier Transform (DFT), i.e., the Fast Fourier Trans-
form (FFT).1–8,13

Implementation of the FFT algorithm in the Time Series analysis by
means of the STATISTICA� software allows the user to take full advantage
of the savings afforded by this algorithm on most standard computers. For
the analysis of protein strings, which are of relatively small size (< 1000),
the Time Series module of the software uses the simple explicit computa-
tional formulas, and the number of computations can be performed in a rel-
atively short amount of time, i.e., the analysis of each string takes only a
few seconds.

Frequencies of the 20 largest periodogram values of 140 �- and �-protein
folds were compared with respect to the similarities in their patterns (Table
II, Figure 2). Twenty frequency peaks were selected by analogy to 20 amino
acid elements that constitute the spectrum (Table I). The similarity of the
frequency patterns of the �- and �-protein folds was subsequently analysed
by means of the classification tree (Figure 3).

The decision making classification tree is a useful procedure for encap-
sulating and structuring the knowledge by selecting the variables that en-
able the best prediction possible.14 Each terminal node of the tree gives a
predicted class and the resulting tree represents the decision making algo-
rithm. The tree based classification model in Figure 3 enabled correct classi-
fication of 98.55% of nonhomologous �- and �-protein folds, from their spec-
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TABLE II

Classification of 140 secondary protein folds from the JPred database. Decision
tree based pattern analysis was done for 20 largest single series Fourier

periodogram values of the frequency parameter. Protein series were obtained
by transforming amino acids into the corresponding EIIP values of the

Resonant Recognition Model (Table I).

Classification of 70 �- and 70 � -protein folds

Correctly classified 138

Missclassified 2

Missclassification Error rate 0.0145

Residual mean deviance 0.0482

Jack-knife mean 2.629

Jack-knife SE 12.71
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Figure 2. Resonant Recognition Model of the basic Fibroblast Growth Factor (Figure
1, Table I) defined by the frequency parameter of the single series Fourier periodo-
gram.

Figure 3. Classification tree for 20 largest Fourier periodogram frequency peaks (V)
of the �- (A) and � -protein folds (B). Protein spectrum patterns were obtained by
means of the Resonant Recognition Model (Figures 1 and 2, Table I).



tral frequency patterns (Table II). Cross-validation of the procedure by the
jack-knife testing9,14 confirmed the stability and validity of the classification
algorithm (Table II). Accurate classification of 30 different �- and �-protein
folds of the test set is presented in Tables III and IV. The folds belong to dif-
ferent hormones, cytokines, growth factors, signal trandsduction factors, en-
zymes and viral proteins. The classification algorithm is stable regardless of
the species and protein function (Tables II-IV, Appendix).

Our results indicate that the pattern recognition of protein EIIP fre-
quency periodogram obtained by the spectral Fourier analysis enables accu-
rate classification of the secondary protein folds. Searching for the »common
characteristic frequency« peak of different folding types1,2 is not the most
appropriate method for defining protein folding. The latter is probably due
to the low information content of a single periodogram peak, unable to pro-
vide a discriminating parameter for the complex structure, which is highly
diverse, and consequently often spectrally deviant, with respect to the spe-
cies and function. The decision tree based pattern analysis of a large num-
ber of Fourier periodogram frequency peaks seems to provide a useful alter-
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TABLE III

Prediction of �-protein folds by means of the classification tree for the analysis of
protein RRM frequency patterns (Figure 3)

Class
Predicted
Class

Protein Organism JPred Code

�-fold �-fold Phospholipid binding protein Homo sapiens 1avhb3

�-fold �-fold Phospholipid binding protein Homo sapiens 1avhb3

�-fold �-fold Gag polyprotein HIV type 1 1hiws-1-AS

�-fold �-fold Interleukin 10 Homo sapiens 1lik-1-AS

�-fold �-fold Interleukin 10 Homo sapiens 1lik-2-AS

�-fold �-fold Leukemia inhib. factor Homo sapiens 1lki-1-AS

�-fold �-fold Apolipoprotein E Homo sapiens 1lpe-1-DOMAK

�-fold �-fold P-26 Ca-binding protein Bos taurus 1rec1

�-fold �-fold P-26 Ca-binding protein Bos taurus 1rec2

�-fold �-fold Colony stimulating factor Homo sapiens 1rhgc-1-DOMAK

�-fold �-fold Coat protein Tobacco mo. virus 2tmvp

�-fold �-fold Vit.-D Ca-binding protein Bos taurus 3icb

�-fold �-fold Interleukin 2 Homo sapiens 3inkd-1-DOMAK

�-fold �-fold Phospholipase A2 Bos taurus 4bp2



native to the »common characteristic frequency« determination, since it
enables accurate recognition of �- and �-protein folding types.
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Appendix

�-protein folds:
1adeb-2-AUTO.1; 1aorb-3-AS; 1avhb-3-AS; 1avhb-4-AS; 1cc5; 1ceo-2-AUTO.1; 1clc-
2-AS.1; 1csmb-1-auto.1; 1dsbb-2-AUTO.1; 1ecl-4-AS; 1fc2c; 1gal-2-AS; 1gdj; 1gln-3-AS;
1gln-4-AS; 1grj-1-AS; 1hcra-1-DOMAK; 1hiws-1-AS; 1hup-1-AS; 1hyp-1-DOMAK;
1lik-1-as; 1lik-2-AS; 1isab-1-GJB; 1lis-1-DOMAK; 1lki-1-AS; 1lmb3; 1lpe-1-DOMAK;
1mmoh-1-AS; 1pdnc-2-AS; 1poc-1-DOMAK; 1rec-1-DOMAK; 1rec-2-DOMAK; 1rhgc-
1-DOMAK; 1rpo-1-AUTO.1; 1sra-1-AS; 1tndb-2-DOMAK; 256ba; 2abk-2-AS; 2asr-1-
DOMAK; 2bltb-2-AUTO.1; 2cyp; 2end-1-DOMAK; 2mtac-1-AS; 2pgd-2-AUTO.1; 2utga;
2wrpr; 3icb; 3inkd-1-DOMAK; 3mddb-1-AS; 3mddb-3-AS; 4bp2; 4fisb-1-DOMAK; 6cpp;
1erc; 1aca; 1vas; 1lyn; 1hsm; 1rpr; 1pou; 1phb; 1tro; 1rhg; 2tct; 1boc; 1ctz; 1fip; 1hdd;
1dpr; 1tnt.

�-protein folds:
1amg-2-AS; 1aozb-1-AS; 1aozb-2-AS; 1aozb-3-AS; 1azu; 1bbpa; 1bcx-1-DOMAK; 1bfg-
1-DOMAK; 1bmv1; 1bmv2; 1bncb-4-AS; 1bovb-1-DOMAK; 1cgu-2-GJB; 1cgu-3-GJB;
1cgu-4-GJB; 1clc-1-AS; 1cfb-1-AS; 1ctm-2-DOMAK; 1ctn-1-AS; 1eft-3-DOMAK; 1epbb-
1-DOMAK; 1fnd; 1gog-1-AS.1; 1gog-2-AS.1; 1gog-3-AS.1; 1gp2g-2-AS; 1gpc-1-AS;
1hplb-2-AS; 1hxn-1-AS; 1krcb-1-AS; 1lib-1-DOMAK; 1mdta-3-AS; 1mjc-1-DOMAK;
1mspb-1-AS; 1paz; 1pht-1-AUTO.1; 1r092; 1smpi-1-AS; 1srja-1-DOMAK; 1tssb-2-
DOMAK; 1tupc-1-AUTO; 1vcab-1-AUTO.1; 1vcab-2-AUTO.1; 1vmob-1-AS; 1vjs-3-
GJB; 1wapv-1-AUTO.1; 2aaib-2-DOMAK; 2afnc-1-AUTO.1; 2alp; 2bat-1-GJB; 2cab;
2gn5; 2hft1-AS; 2hft-2-AS; 2ltna; 2ltnb; 2mev4; 2rspa; 2sil-1-AS; 2sns; 2sodb; 2stv;
3ait; 3cd4; 3mddb-2-AS; 3hmga; 4rhv1; 4rhv3; 4rhv4; 8adh.
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Model rezonantnog prepoznavanja definira sekundarnu
strukturu bioaktivnih proteina

Nikola [tambuk, Pa{ko Konjevoda, Biserka Pokri}, Igor Bari{i},
Roko Martini}, Vladimir Mrljak i Pero Ramadan

Model rezonantnog prepoznavanja (RRM) bioaktivnosti proteina primijenjen je
za predvi|anje sekundarne proteinske strukture. Metoda se temelji na fizikalnom i
matemati~kom modelu elektronsko-ionskog interakcijskog pseudopotencijala (EIIP),
te s pomo}u analize signala interpretira linearnim nizom predo~enu informaciju do-
bivenu iz odsje~ka makromolekule. Proteinska sekvencija prvo se transformira u niz
pojedina~nih EIIP-vrijednosti aminokiselina. U drugom koraku model rabi spektral-
nu Fourier-ovu analizu signala dobivenih brojevnih nizova. ]osi} i sur.1-8 su pokazali
da signali pojedina~nih frekvencija spektra odre|uju karakteristi~ne polo`aje ami-
nokiselina, odnosno aktivna mjesta, povezana s biolo{kom ulogom proteina. U radu
su analizirani proteini definirane sekundarne strukture, uspore|uju}i sheme 20 naj-
izrazitijih signala pojedina~nih frekvencija Fourier-ova periodograma. Sheme 140
nehomolognih �- i �-proteinskih sekundarnih struktura iz baza podataka Jpred i
SCOP, analizirane su s pomo}u klasifikacijskog stabla kako bi se dobio algoritam za
razlu~ivanje �- i �-strukture. To~nost ove brze i jednostavne metode za predvi|anje
sekundarne proteinske strukture jest 98.55%. Stabilnost algoritma potvr|ena je po-
mo}u »jack-knife« testiranja dobivenog stabla (srednja pogre{ka = 2.629, SE = 12.71).
Opisana metoda za predvi|anje sekundarne strukture proteina op{irnije je prikaza-
na na uzorku 30 razli~itih citokina, hormona, enzima i virusnih proteina. Na{i rezul-
tati pokazuju da se rezonantnom spektralnom analizom proteinske sekvence mo`e
izdvojiti informacija o sekundarnoj proteinskoj strukturi.
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