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Two digraphs both of whose nodes consist of the set of unlabeled

graphs of order n having bounded vertex degree equal to f are stud-

ied. Adjacency in these digraphs is defined via one-edge transfor-

mations of the node graphs. Probabilities on the arcs are intro-

duced so that one digraph is a strictly evolving absorbing Markov

chain and the other an ergodic Markov chain. Probabilistic and de-

terministic results and problems concerning these Markov chains

are presented. An example of physical interest in these chains is in

models where the nodes of the digraphs are identified with chemi-

cal species.
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1. INTRODUCTION

A graph on n vertices that has no vertex of degree greater than a given

positive integer f is called an f-graph. The Random f-Graph Process (RfGP)1

is a probability model for f-graphs that generalizes the classical random

graph process ( f = n – 1) introduced by P. Erdods and A. Rényi. The RfGP is

defined as follows.
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Starting with the empty graph G1 on n labeled vertices obtain a se-

quence of f-graphs G1, G2,... by uniformly selecting an edge in the comple-

ment of Gt for each t � 1 such that its insertion in Gt results in an f-graph

Gt+1. The process stops when the complement of Gt contains no edges whose

insertion in Gt will produce an f-graph.

If the RfGP is modified to a process which starts with an f-graph G1 on n

labeled vertices which is not necessarily the empty graph and a sequence

G1, G2,... of f-graphs is generated such that at each step t � 1 an edge is uni-

formly either inserted in Gt or deleted from Gt to obtain Gt+1 in the se-

quence, then a model called the Reversible Random f-Graph Process

(RRfGP) is obtained.2 The edges that can be inserted or deleted from Gt are

called admissible edges.

In Ref. 3 a survey is given of results on random walks on graphs with

the transition probability at each vertex n to each neighbor of n uniformly

equal to 1/deg(�). We note that our models can be studied as random walks

on graphs each of whose vertices is a labeled f-graph. In this case, the de-

gree of a vertex depends on the structure of its associated f-graph, namely, it

is equal to the number of admissible edges.

Although the RfGP and the RRfGP are defined in terms of labeled

graphs, our interest is in the transition digraphs D(n, f ) and R(n, f ) both of

which have as their node set the isomorphism classes of f-graphs on n verti-

ces and each state of the RfGP and RRfGP is represented by an unlabeled

f-graph of order n. Let this common node set be denoted G (n, f ) and where

no ambiguity is possible, simply as G. The number of elements in G is de-

noted N(n, f ). There exists an arc (G, H) in the transition digraph R(n, f ) if

and only if an edge when either inserted in or deleted from a labeled copy of

G results in a labeled f-graph isomorphic to H. The arc (G, H) is labeled with

the transition probability of G going to H. For D(n, f ) only insertions are

considered. It is easily seen that both D(n, f ) and R(n, f ) are bipartite.

We shall consider probabilistic and deterministic properties and prob-

lems in these two models. In earlier work on the RfGP we obtained results

concerning state probabilities, namely, the probability of arriving at a par-

ticular state after starting at the empty graph, the structure of terminal

graphs, the cycle structure of graphs with f = 2, the asymptotic degree dis-

tribution of evolving f-graphs, node degrees and distance properties.1,4–6

Algorithmic methods that were used in the study of the RfGP can be ap-

plied to the RRfGP. Since the transition probabilities in the two models are

different the results for analogous random variables, in general, are differ-

ent. However, the distance properties of the digraph R(n, f ) are precisely

those of the underlying graph of D(n, f ). Determining the properties of the

node degrees of D(n, f ) and R(n, f ) is a study in itself.4
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If the nodes of D(n, f ) and R(n, f ) are thought of as chemical species, for

example, as molecular graphs, then the arcs can be thought of as one-bond

transformations between these species. Furthermore, a shortest sequence of

arcs between species determines a distance between these which in turn can

be used as a measure of similarity.

2. THE MARKOV CHAIN VIEW

From the definitions it is clear that the RfGP and the RRfGP are, re-

spectively, absorbing and ergodic Markov chains7 and the sequences G1,

G2,... are random walks in D(n, f ) and R(n, f ).

Let D denote the transition matrix for D(n, f ). The ij-th entry of Dk =

[ ]Dij

k( ) , with 1 � i, j � N(n, f ), is the probability that a random walk starting at

state Si, that is, at a particular node of D(n, f ), will be at state Sj after k

steps.

In general, for an absorbing chain two basic things to determine are:

(1) The expected number of steps si for which a random walk starting at

nonabsorbing state Si will be absorbed, and

(2) The probability Bij that a random walk starting at a nonabsorbing

state Si will end at the absorbing state Sj.

To do this, using linear algebra, we order the states of a Markov chain so

that the nonabsorbing states come first and absorbing states (these are the

terminal nodes of D(n, f )) come last. Then, if n and u denote the number of

nonabsorbing and absorbing states, respectively, then the transition matrix

has the form

D =
Q P

0 I

n

u

�

�
�
�

�

�
	
	

where Iu is the identity matrix of order u and 0 is the zero matrix of size

u 
 �, with � = N(n, f ) � u.

The matrix M = (I
n

– Q
n
)–1 is called the fundamental matrix for the Mar-

kov chain. The entries Mij of M are interpreted as the expected number of

times that a random walk starting at a nonabsorbing state Si will be at non-

absorbing state Sj before absorption.

Let s = �si
, where si is the sum of the entries in the i-th row of M. Then,

si is interpreted as the expected number of steps before absorption for a

random walk that starts at state Si (see (1) above). The absorption proba-

bilities Bij, by definition, the probability that a random walk starting at
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nonabsorbing state Si will terminate at absorbing state Sj, are the entries of

B = MP (see (2) above).

For the RfGP the initial state S1 is unique and corresponds to the empty

graph. Thus, we focus our attention on s1 and B1j.

For example, the transition matrix for D(4, 2) (cf. Figure 1) is

D =

0 1 0 0 0 0 0

0 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0

0 0 0 0 0 0 1

0 0 0 0 0 1 0

0 0 0 0

1

5

4

5

2

3

1

3

0 0 1

�

�

�
�
�
�
�
�
�
�
�
�
�

�

�

	
	
	
	
	
	
	
	
	
	
	

.
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Figure 1. The transition digraph D(4, 2).



From this we obtain

M =

1 1

0 1

0 0 1 0 1

0 0 0 1

0 0 0 0 1

1

5

4

5

11

15

1

5

4

5

11

15

2

3

�

�

�
�
�
�
�
�
�

�

�

	
	
	
	
	
	
	

, s =

56

15

41

15

5

3

2

1

�

�

�
�
�
�
�
�
�

�

�

	
	
	
	
	
	
	

, and B =

4

15

11

15

4

15

11

15

1

3

2

3

0 1

0 1

�

�

�
�
�
�
�
�
�

�

�

	
	
	
	
	
	
	

.

Therefore, s1 = 56

15
is the expected number of steps for the R2GP of order 4

to reach a terminal state and B1,6 = 4

15
, B1,7 = 11

15
respectively, are the state

probabilities of the terminal states S6 and S7.

The transition digraph D(4, 3) is shown in Figure 2.

Observe that for D(n, n � 1) there is always exactly one absorbing state

and in this case, since every random walk will end up in it with probability

1, the matrix B is always the (N(n, n – 1) – 1) 
 1 matrix with all 1’s. Conse-

quently, the interest in the RfGP in this context is in D(n, f ) with f < n � 1,

where there is always more than one absorbing state. In Ref. 1 we presented

a survey of the results concerning the RfGP known up to 1993 and a list of

open problems, some of which are still unsolved. In particular, we asserted

that problems concerning the RfGP for both finite n and n going to infinity

are of interest. In Ref. 5 algorithms were specifically developed or extended

for the study of the RfGP. Some details concerning the content of1,5 are

given here in Section 3.

For the RRfGP let R denote the transition matrix for R(n, f ). Note that

in D(n, f ) all arcs that have nonzero probability Dij go from an f-graph Gi to

a supergraph Gj of Gi. The transition probabilities Dij are related to the

transition probabilities Rij of R(n, f ) by

Dij = Rij / Rik

k

�

where the summation is taken over all k such that Gk is a one-edge ex-

tended supergraph of Gi. For an ergodic chain two basic things to determine

are the equilibrium vector w and whether the chain is reversible.

Given any ergodic Markov chain, there is a unique probability vector w

= �wi
 (sum of the entries wi is 1) that is fixed by the transition matrix R of

the chain. Namely, wR = w, or equivalently, R'w' = w', where the super-

script ' denotes the transpose of a matrix. w is called the equilibrium vector

for the chain. For R(n, f ) the i-th component wi of w = �w1 w2 ... wN(n,f)
 is the

proportion of time in the long run that a random walk will be at state Si (see
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Ref. 7). If a walk has just visited state Si, then the expected number of steps

before it returns to Si is 1/wi (e.g., see Ref. 3).

An ergodic chain is said to be reversible, wiRij = wj Rji for all i, j. If we

start a reversible Markov chain with initial probabilities wi (that is, in equi-

librium) and traverse a sequence of states, for example, Sa, Sb, Sc, Sd, then

the probability that this sequence of states occurs in this order is

wa Rab Rbc Rcd. The probability that the sequence Sd, Sc, Sb, Sa occurs is

wd Rdc Rcb Rba. For a reversible Markov chain, these two probabilities are

equal. This means that when a reversible Markov chain is started in equi-
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librium, probabilities for sequences of states in one order are the same as

those with the order reversed. Thus, the RRfGP is reversible, if WR is sym-

metric, where W = �Wij
, the N(n, f ) 
 N(n, f ) matrix, with Wij = wi when i = j

and 0 otherwise.

For example, the transition matrix for R(4, 2) (cf. Figure 3) is

0 1 0 0 0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

1

6

1

6

2

3

1

3

2

3

2

5

2

5

1

5

1

4

1

2

1

4

0 0 0

0 0 0 0 1 0 0

�

�

�
�
�
�
�
�
�
�
�
�
�

�

�

	
	
	
	
	
	
	
	
	
	
	

.
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The solution to wR = w is �a 6a 3a 10a 8a 2a 2a
.

We set a = 1 and then normalize to get the desired unique probability

vector w. That is, since 1 + 6 + 3 + 10 + 8 + 2 + 2 = 32, we have

w =
1

32
�1 6 3 10 8 2 2
 = � 1

32

6

32

3

32

10

32

8

32

2

32

2

32
 .

If R is the transition matrix for R(4, 3) (cf. Figure 4), then

w = � 1

64

6

64

3

64

12

64

12

64

4

64

4

64

3

64

12

64

6

64

1

64
 .

It is straightfoward to check that both of the above processes are revers-

ible as ergodic chains.

A combinatorial approach to the study of the RRfGP using the transition

digraph with labeled f-graphs as its nodes yields the following.

THEOREM 2.1. If wG is the component of w corresponding to the

unlabeled f-graph G in the RRfGP of order n, then

wG =
F

F

( )

( )

G

H
H�� G

where F(G) = cG�G, with cG the number of labeled copies of G, �G the number

of admissible edges for G, and G the set of all unlabeled f-graphs of order n.

PROOF. A random walk in the RRfGP can be thought of as a random walk

in R
v
(n, f ), the digraph whose node set is the set of labeled f-graphs of order

n with adjacency defined as in R(n, f ). In R
v
(n, f ) let a random walk start at

node Gj (the j-th labeled copy of an unlabeled f-graph G) and then let an ad-

missible edge �a, b� of Gj be uniformly chosen and either inserted or deleted

from Gj to obtain the next labeled f-graph Hk in the random walk. Thus, the

walk evolves as follows:

Gj � (Gj, �a, b�) = Hk � (Hk, �c, d�) = ...

Let

X = �(Li, �a, b�): Li is a labeled f-graph of order n and �a, b� is an admis-

sible edge of Li�.

Then, X =
H�� G

cH�H, with cH = n!/ Aut( )H the number of labeled copies

of H, �H the number of admissible edges for H, and G the set of all

unlabeled f-graphs of order n.

If a random walk starting at a uniformly chosen labeled graph Gj pro-

ceeds through R
v
(n, f ) as described above for a sufficiently large number of
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steps tending to infinity, then the proportion of time in the long run that the

walk passes through a graph isomorphic to a given graph G will be P(G) =

cG�G /
H�� G

cH�H. But, P(G) is precisely the definition of wG. �

COROLLARY 2.2. If f = n – 1, then wG =
c

n

G

2
2

�

�
��

�

�
��

.

PROOF. �H =
n

2

�

�
�
�

�

�
�
� for all H and

H�� G
cH = 2

2

n�

�
��

�

�
��
. �
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COROLLARY 2.3. If f = n – 1, then wG = w cG
, where Gc is the complement

of G.

PROOF. Since, for any G, cG = n!/ Aut( )G , we have cG = n!/ Aut( )G = n!/

Aut( )G c = c cG
, so that wG = w cG

. �

A graph G such that Aut( )G = 1, is called an identity graph.

COROLLARY 2.4. If f = n – 1 and n � 6, the maximum value of a component

of w is n!/2
2

n�

�
��

�

�
��

and this is realized for each identity graph G. �

COROLLARY 2.5. If f = n – 1, the minimum value of a component of w is

1 2
2

/

n�

�
��

�

�
��

and this value is uniquely realized by K n

c and Kn. �

THEOREM 2.6. The RRfGP of order n is reversible as an ergodic Markov

chain for all n and f with 2 � f � n – 1.

PROOF. We shall show that wGRGH = wHRHG for all graphs G and H in the

RRfGP of order n. Let G and H be fixed and G
v

and H
v

be the subsets of X

(defined in proof of Theorem 2.1) where G
v

is the Cartesian product of the set

of labeled copies of G and the set of admissible edges for G and H
v

is defined

analogously. Then, G
v

= cG�G and H
v

= cH�H.

The proportion of elements of G
v

that correspond to elements of H
v

is

(�GH/�G)cG�G, where �GH is the number of admissible edges for G each of

which when combined with a labeled graph isomorphic with G yield a graph

isomorphic to H. This proportion is equal to the proportion of elements of H
v

that correspond in the reverse manner to elements of G
v
, namely, (�HG/�H)

cH�H. If we now divide both sides of (�GH/�G)cG�G = (�HG/�H)cH�H, we ob-

tain

a

a

a

a

GH

G

G G

H H H

c

c
�� G

=
a

a

GH

G

Gw =

a

a

a

a

HG

H

H H

H H H

c

c
�� G

=
a

a

HG

H

Hw .

Noting that
a

a

GH

G

GH= R and
a

a

HG

H

HG= R concludes the proof. �

Among the parameters of interest in Markov chains is that of cover time,

this being the expected number of steps that it will take a random walk start-

ing from a given distribution to reach every node in the chain.We shall use

the following two theorems of U. Feige as lemmas for the proofs of Theorem

2.7 and Corollary 2.8.
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LEMMA F1 (Theorem 2.1b in Ref. 3) The cover time for any starting node

in a graph with n nodes is at least (1 – o(1)) n log n and at most (4/27 +

o(1))n3. �

LEMMA F2 (Theorem 2.1c in Ref. 3) The cover time for a regular graph on

n nodes is at most 2n2
�

THEOREM 2.7. Let R
v
(n, f ) be the labeled graph transition digraph for the

RRfGP, then R
v
(n, f ) has

(1) order
G�� G

cG = N
v

(n, f ), where G is the set of unlabeled f-graphs of

order n,

(2) outdegree sequence (...�i...) i = 1,2,...,N
v

(n, f ) and this also can be

written (...a
G

Gc ...) G �G, where a
G

Gc means �G appears cG times in the degree

sequence,

(3) size
i

N n f
i�� 1

v

( , )
a =

G�� G
cG�G, and

(4) the cover time from any starting node is at most ( 4
27

+ o(1)) (N
v

(n, f ))3.

PROOF. (1) The order is the number of labeled copies of f-graphs of order

n, namely,
G�� G

cG.

(2) The outdegree of each node Gj (the j-th labeled copy of an unlabeled

f-graph G) in R
v
(n, f ) is equal to the number of admissible edges �G at Gj.

Since there are cj copies of G, the number �G appears cj times in the degree

sequence. Let the index i range over all states of R
v
(n, f ) to obtain the degree

sequence to be (...�i...) i = 1,2,...N
v

(n, f ). Since each graph isomorphic to a

given G appears cG times, �G will appear cG times in the outdegree se-

quence. Thus, the outdegree sequence also can be written (...a
G

Gc ...) G �G.

(3) The size of R
v
(n, f ) is the sum of the outdegrees. Thus, the size is

i

N n f
i�� 1

v

( , )
a =

G�� G
cG�G.

(4) The outdegree at each node G of R
v
(n, f ) is the number of admissible

edges �G. The underlying digraph of R
v
(n, f ) is a symmetric digraph and the

underlying simple graph of R
v
(n, f ) is obtained by replacing each 2-cycle be-

tween adjacent nodes with an undirected edge. A random walk on R
v
(n, f ) is

equivalent to a random walk on its underlying graph where a walk at vertex

G moves to a neighbor of G uniformly with probability 1/�G. Thus, applying

Lemma F1 yields the assertion. �

COROLLARY 2.8. If f = n – 1, the cover time for R
v
(n, n – 1) is at most

2n(n–1)+2.
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PROOF. Each node of R
v
(n, n – 1) has outdegree �i =

n

2

�

�
�
�

�

�
�
� , that is, the under-

lying graph of R
v
(n, n – 1) is an

n

2

�

�
�
�

�

�
�
�-regular graph of order N

v
(n, n – 1) = 2

2

n�

�
��

�

�
��
.

Thus, from Lemma F2 we obtain the cover time to be 2 2
2

2
n�

�
��

�

�
��

�

�

�
��

�

�

�
��

= 2n(n–1)+2. �

Still to be resolved is the following problem.

PROBLEM 1. What is the cover time for R(n, f )?

3. ALGORITHMS

An algorithmic approach has been applied to obtain results in D(n, f )

and R(n, f ). Essentially, two types of algorithms have been used.

These are exact algorithms that generate all nodes of D(n, f ) (and R(n,

f )) and calculate transition and state probabilities. For those values of n for

which these algorithms can be implemented, the (numerical) distribution of

any random variable on f-graphs in the RfGP can be obtained and enumera-

tive/structural problems for f-graphs in this process can be solved.

The main algorithm, IMAGEf, uses the Breadth First Search method for

generating and visiting nodes. Its time complexity depends on the number

of nodes and on the complexity of the algorithm used for testing the iso-

morphism of two graphs. Using the IMAGEf algorithm we have computed

the transition digraphs for the RRfGP for up to n = 7. The exponential

growth of the number of f-graphs limits the application of this algorithm.

IMAGEf has been extended for constructing the underlying (undirected)

graph U(n, f ) of D(n, f ). This extension has been applied to studying purely

graph theoretical properties of U(n, f ) such as its order (see Table I), size,

degrees of its vertices and diameter.5

Sampling based algorithms are used for generating and identifying

f-graphs with large order to study probabilistic problems in RfGP and RRfGP.

This type of algorithm has also been used for f-graphs having specific prop-

erties, such as graphs with integral spectra. Searching in the RRfGP has

been found to be more effective than using a strictly evolutionary search. Al-

gorithms in this class are polynomial in n. In general, this method is used to

generate samples of processes and collect data on chosen properties. This in-

formation has been combined with approximation functions for studying the

properties of the RfGP as functions of n and f (see Ref. 5).
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3.1. Some Comments on the RfGP

The common order of D(n, f ) and R(n, f ) is denoted N(n, f ). Using the al-

gorithm IMAGEf values of N(n, f ) have been computed for n � 10 and are

given in Table I.

For the RfGP we have studied the structure of the terminal states and

the probability of the process terminating at an f-graph with a given struc-

ture.1,5 Since the number of unlabeled f-graphs together with the number of

terminal f-graphs both increase quite rapidly with n, it is natural to partition

the terminal graphs into equivalence classes according to some structural

property. For example, let NT(n, f) denote the number of terminal nodes (ab-

sorbing states) in D(n, f ). As noted above, for some values of n and f, values

of N(n, f ) (see Table I) and NT(n, f ) have been determined using algorithms

specifically designed for the study of the RfGP (see Ref. 5). For f = 2, formu-

las for N(n, 2) and NT(n, 2) have been derived.1,5 Namely,

THEOREM 3.1. Let N(t, n, 2) denote the number of nodes of R(n, 2) associ-

ated with 2-graphs of size t, 1 � t � n – 1. Then,

N(t, n, 2) = N(t, n–1, 2) + N(2t–n, t, 2)

where N(x, y, 2) = 0, if x < 0 or x > y, N(0, n, 2) = 1, if n � 1, and N(n, n, 2) =

r(n, 3), the number of partitions of n having no part less than 3,

N(n, 2) = N t n
t

n

( , , )2
0�

�
and

NT(n, 2) = p(n) – p(n–2) – p(n–3) + p(n–5)

where p(k) is the number of unrestricted partitions of k. �
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TABLE I

The number of nodes N(n, f)

N f = 2 3 4 5 6 7 8 9

4 7 11

5 11 23 34

6 19 62 122 156

7 29 150 510 888 1044

8 46 424 2590 7459 11302 12346

9 70 1165 15471 84245 197867 262322 274668

10 106 3547 108376 1249973 5203135 9808968 11730500 12005168



A graph that is a terminal node in D(n, f ) is an f-graph to which no edge

can be added without introducing a vertex of degree greater than f. If m

is the number of vertices of degree less than f in a terminal node, then

m � min �n(n–f–1) / (2(n–f)–1), f� (see Theorem 2.3 in Ref. 5).

Let the terminal nodes of D(n, f ) be classified in accordance with their

number m of vertices of degree less than f. A problem in random graph the-

ory, verbally posed by Paul Erdods in 1985, and formally stated on p. 359 of

Ref. 8 (see also Refs. 1,5,9), is that of determining the probability distribution

of these classes of terminal nodes. Algorithmic methods5 have been applied

to study the Erdods problem. Let P(m; n; f) denote the probability that the

RfGP will terminate in a graph with m vertices of degree less than f. Using

an exact algorithm DOV, P(m; n; 2) has been calculated for n from 4 to 1532.

It is known that as n goes to infinity, the probability of RfGP terminating at

an f-regular graph tends to 1, when nf is even, and to a terminal graph with

exactly one vertex of degree f � 1, when nf is odd. From the exact calculation

noted above for f = 2 we have P(0; n; 2) = 0.8948 when n = 1532. In general,

it is of interest to determine the probability P(0; n; f) that the RfGP will ter-

minate at an f-regular graph, when nf is even and n is fixed (a similar ques-

tion can be considered when nf is odd and n is fixed). The distribution P(m;

n; f) has been studied using both exact (IMAGEf) and simulation algo-

rithms. We have obtained an approximation of this distribution as a func-

tion of both n and f within the interval for n and f up to 240 (see Ref. 5).

These methods have been applied to determine distributions of a num-

ber of other random variables and properties of the RfGP. For example, the

probability of a big cycle P(M > n/2; 2) in R2GP has been determined using

an exact algorithm PBC for n from 4 to 63 (see Ref. 5).

3.2. Some Comments on the RRfGP

The distance between two graphs G and H in R(n, f) is defined as the

least number of deletions and insertions of edges in G needed to obtain H

and is denoted d(G, H). This is also the distance between the nodes in R(n, f ).

The diameter of the digraph R(n, f ) is defined as max�d(G, H): G, H nodes of

R(n, f )� and is denoted diamR(n, f ). Since R(n, f ) is a symmetric digraph, its

diameter is the same as that of the underlying graph of D(n, f ). The diame-

ters of R(4, 2) and R(4, 3) are obviously equal to 4 and 6, respectively. We

have proven the following result (see Theorems 1.1 and 2.9 in Ref. 6).

THEOREM 3.2. If f = 2 or f � (n – 1) / 2 then diamR(n, f ) = � �nf / 2 . �

PROBLEM 2. What is the diameter of R(n, f ) when 3 � f � (n – 1) / 2?
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PROBLEM 3. Obtain eccentricity results in general such as radius, center,

and periphery properties of R(n, f ).

In the theory of ergodic Markov chains it is of interest to know limk�� R( )

ij

k .

Since R(n, f ) is bipartite, it follows that limk�� R( )

ij

k does not exist. However,

limk�� R(2

ij

k) and limk�� R(2 )

ij

k�1 exist and are disjoint on their nonzero entries.

Thus limk�� (R(2 )

ij

k + R(2 )

ij

k�1 ) / 2 exists. In particular, limk�� (R(2 )

ij

k + R(2 )

ij

k�1 ) / 2 =

wj and limk�� (R (2 )k + R (2 )k�1 ) / 2 is the N(n, f ) 
 N(n, f ) matrix with each row

equal to w, the unique probability vector of R.

If n and f are such that the transition matrix R for the RRfGP of order n

is not available, an approximation for w can be obtained from the following

computational experiment.

If a sufficiently large number of random walks of lengths L0 = 2k and

L1 = 2k + 1, respectively, that start at K n

c are generated, the relative frequency

distribution of the ending states of these random walks will yield an approx-

imation to the probability distributions R1
0

j

L( )
and R1

1

j

L( )
and consequently w

can be approximated. Note that for large n it is not expected that the set of

generated ending states of these random walks will coincide with the entire

node set of R(n, f ). First, those states with low probability may not appear as

outcomes of this experiment and second, if n is large it may be computa-

tionally unfeasible to generate enough random walks of length sufficiently

greater than diamR(n, f ) to make the results statistically meaningful.

For R(n, f) and x = N(n, f), we have compared outcomes z = �z1 z2 ... zx
 of

the above experiment with the theoretical results w = �w1 w2 ... wx
 that we

have obtained. This was done using y = ( / )( ( ) )1 1

2x w zi

x

i i� �� as a measure

of comparison. The experimental data was obtained using samples of 10,000

random walks with k = c� �nf / 2 , c = 1,2,...,100. The approximations for n =

4 and 5 yielded average values of y between 0.001 and 0.002.

Sampling algorithms have an important place in these studies, however

more theoretical results are still needed. For example, of particular interest

for search problems it is useful to know the answer to Problem 1 and to

have solutions to hitting time questions such as the following.

PROBLEM 4. In the RRfGP, what is the expected number of steps for a

random walk that starts at K n

c to reach its first f-graph having a specified

property?

A variety of other random variables in the RRfGP are being studied us-

ing an algorithm that generates f-graphs with specified properties.

In addition to the exact and sampling algorithmic approaches we have

presented, it might be productive in the study of the RRfGP to apply the as-
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ymptotic method that was used in Refs. 10–12. Here the order of the node

graphs of the RRfGP would go to infinity. Although what questions might be

answered is not clear at this time, the questions posed would relate to as-

ymptotic structural properties of the node graphs.
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SA@ETAK

Dva modela za slu~ajne grafove s ograni~enim stupnjem ~vorova

Krystyna T. Balinbska, Michael L. Gargano i Louis V. Quintas

Izu~avan je par usmjerenih grafova ~iji su ~vorovi ��� neozna~eni grafovi reda n

koji sadr`e vrhove ograni~enog stupnja jednakog f. Bliskost u ovim usmjerenim gra-

fovima definirana je preko jednobridnih transformacija nad ���. Vjerojatnosti nad

oba grafa su definirane tako, da je jedan usmjereni graf apsorbiraju}i a drugi ergo-

di~ki Markovljev lanac. Razmotreni su probabilisti~ki i deterministi~ki rezultati koji

vrijede za te Markovljeve lance. Jedan od primjera fizikalnog interesa za takve lance

jesu modeli u kojima se ~vorovi ��� identificiraju s razli~itim kemijskim spojevima.
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