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Benzenoid systems whose branching graphs are trees, and trees

that are branching graphs of some benzenoid system, are properly

characterized for the first time. An implication for the occurrence

of Hamiltonian circuits is pointed out.
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INTRODUCTION

For any graph G containing vertices that branch (i.e. whose degree is

greater than two) a subgraph known as the branching graph (BG) may be de-

fined. In this subgraph appears every vertex of G that is of degree >2, to-

gether with every edge that connects a pair of such vertices, and nothing

else. For a given graph, its branching graph is unique, but a given branching

graph may be shared by more than one parent graph. A branching graph

may or may not contain cycles, and it may or may not be connected (see Fig-

ure 1). In practice, most attention so far has been directed at branching

graphs where no vertices are more than 3-valent, and this is because of the

chemical importance of the many known benzenoids and other polycyclic sys-

tems that contain only trigonally hybridised (3-valent) carbon atoms and hy-

drogen.1

* Author to whom correspondence should be addressed.
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In earlier papers2,3 we noted some 31 theorems and observations about

the branching graphs of polyhexes, and this work has been extended by

Hansen and Zheng,4 and (more recently) by Chen.5

The concept of the branching graph was originally introduced6–8 as a

useful tool to assist both the transcription of structural information from a

computer keyboard, and the understanding of certain aspects of the distri-

bution of benzenoid structural types such as fully benzenoid (Clar type) sys-

tems. This arose from the fact that it can be of help in the location of

Hamiltonian paths and cycles and other subgraphs that have no branches.

Because of this it is also of some relevance to the problem of calculating

�-electron ring currents in a conjugated system.9–14

A key property in these regards is that there is a one-to-one correspon-

dence between the 2-factors of a polyhex and the 1-factors (i.e. the perfect

matchings, or Kekulé structures) of its branching graph. (See reference 2 for

a proof.) An implication of this to be noted in passing, is that the branching

graph of a fullerene is a less useful object, because it is identical to its par-

ent fullerene graph.

In this work we are concerned with the problem of characterizing ben-

zenoid systems whose branching graphs are trees, and the related one of

characterizing trees that are the branching graph of some (perhaps more

than one) benzenoid system. This was briefly mentioned in our earlier pa-

per,3 but without obtaining any generally valid result. Hansen and Zheng

tackled a distantly related problem, and characterized connected subgraphs

of the infinite hexagonal lattice which are branching graphs of benzenoid

systems.4 In a recent work5 Chen addressed the same more specific problem

as ourselves and offered a »practical method for recognizing trees ... which

can be branching graphs of benzenoids«. Chen's method, however, pertains

not to trees as graphs, with undefined geometry, but to trees that are em-

bedded in the hexagonal lattice. Such trees, obviously, conform to the geom-

etry of this lattice and therefore they are not genuine graph-theoretic ob-
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(a) (b) (d)(c)

Figure 1. Some examples of a graph G (dotted lines) and its superimposed branching

graph BG (heavy lines), where BG is (a) cyclic and connected; (b) acyclic and con-

nected; (c) cyclic and disconnected; and (d) acyclic and disconnected.



jects. In addition, Chen's characterization does seem prohibitively complica-

ted, and yet provides hardly any information about the structure of trees

which are BGs.

In this work we approach the problem from a different direction. We

first characterize benzenoid systems whose BGs are trees. Then, in a rela-

tively straightforward manner, we determine the actual structure of the as-

sociated trees.

Throughout this work a benzenoid system B, whose branching graph is a

tree will be referred to as a »BT-benzenoid system« or »BT-benzenoid« and

abbreviated to BTB. The respective branching graph will be called a »bran-

ching tree« and abbreviated to BT.

THE FIRST CHARACTERIZATION

We first characterize BT-benzenoids in a somewhat indirect manner.

Lemma 1. Let B be a benzenoid system and BG(B) its branching graph.

Then BG(B) contains a cycle if and only if there exists a hexagon H in B hav-

ing all six of its vertices in BG(B).

Proof. We have only to prove the only if part, since the if part is trivial.

If BG(B) contains a cycle, say C, then C is a simple closed curve in the plane

which (by the Jordan Theorem) divides the plane into two parts: interior

and exterior. Furthermore, each hexagon of B belongs to exactly one of two

parts. Since B is simply connected, C is contractible (over the hexagons).

Hence each hexagon in the interior of C has all of its vertices trivalent in B

and thus belongs to BG(B).

We note in passing that the hexagons in the interior of C form a simply

connected benzenoid which is a subgraph of BG(B).

Theorem 1. Let B be a benzenoid system and BG(B) its branching graph.

BG(B) is NOT a tree if and only if B possesses at least one of the structural

details I, II, III (depicted in Figure 2, where the heavy dots in diagram I in-

dicate vertices belonging to the perimeter of B). In other words, B is NOT a

BTB if and only if it contains as a subgraph an anthracene fragment whose

central hexagon possesses two bivalent vertices (I) and/or a triphenylene (II)

and/or a perylene (III) fragment.

Proof. It has been previously established (cf. property (11) in reference 3)

that a branching graph is disconnected if and only if the underlying ben-

zenoid system possesses a linearly annelated hexagon, see diagram IV in

Figure 3. Clearly, the existence of a structural feature IV is tantamount to

the existence of I.
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For BG(B) to be cyclic, the hexagon H of B (cf. Lemma 1) must have all

its vertices trivalent (diagram V in Figure 3), and this means that several

hexagons are adjacent to H.

Suppose that one such adjacent hexagon is attached to H through the

edge 1 (see diagram VI). Then the edges 2 and 6 may (but need not) belong

only to the hexagon H, i.e. these edges need not belong to hexagons adjacent

to H. If, however, they belong only to H, then two more hexagons must be

adjacent to H, attached through edges 3 and 5, see diagram VII. In the case

shown by diagram VII, three hexagons must be adjacent to H, attached to it

through edges 1, 3 and 5; more adjacent hexagons may (but need not) be at-

tached also through edges 2 and/or 4 and/or 6.

If a hexagon is attached to H also through the edge 6, then the edges 2

and 5 may (but need not) belong only to the hexagon H. If, however, they be-
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I II III

IIa IIb IIc

Figure 2. The forbidden subgraphs I, II and III occurring in Theorem 1. IIa, IIb and

IIc, which can be generated from II or III by adding hexagons, are also forbidden.

This contrasts with I, where addition of a hexagon to the central hexagon destroys

this property.
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Figure 3. Diagrams used in the proof of Theorem 1.



long only to H, then two more hexagons must be adjacent to H, attached

through edges 3 and 4, see diagram VIII. In the case shown by diagram

VIII, four hexagons must be adjacent to H, attached to it through edges 1,

3, 4, and 6; additional hexagons may (but need not) be attached also

through edges 2 and/or 5.

The situations shown by diagrams VII and VIII (tantamount to the ex-

istence of subgraphs II and III, respectively) are the only cases (disregard-

ing rotations by 60 and 120 degrees) when all the six vertices of H in B are

trivalent. Taken with the previously noted prohibition of fragment I, Theo-

rem 1 follows.

Another way to formulate Theorem 1 is as:

Corollary 1.1. B is a BT-benzenoid system if and only if neither fragment I

nor II nor III is contained in B.

From this we see that a BTB must not contain any of the three particu-

lar »forbidden subgraphs«. Results of this kind are often encountered in

graph theory; two famous ones are Beineke's forbidden-subgraph character-

ization of line graphs (see reference 15, Chapter 8), and Kuratowski’s theo-

rem (see Ref. 16, p. 225) which states that a graph is planar if it contains no

subgraph that is, or can be contracted to, either K5 or K3,3.

In the case we are considering, we notice that there is a subtle difference

between forbidden subgraph I and forbidden subgraphs II and III – they

are forbidden for different reasons; I, because it disconnects the branching

graph, and the others because they generate cyclic branching graphs. Addi-

tion of a single hexagon to I destroys its forbidden property, whereas we can

go on adding hexagons to II or III to generate other forbidden subgraphs

(IIa, IIb and IIc) although, because these contain II or III, we need not in-

clude them explicitly in the prohibition.

At this point we should remind ourselves that a benzenoid system, by

definition, is simply connected. Figure 4, for example, shows a structure de-
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Figure 4. This structure has a branching graph that contains a cycle and yet it con-

tains none of the forbidden subgraphs I-III shown in Figure 2. However, it is not

simply connected, and is therefore not a benzenoid system. (It is in fact a coronoid.)



void of any of the forbidden subgraphs I, II or III, and whose branching

graph is cyclic, but, it is not simply connected, and therefore not a benzenoid

system.

Knowing what BTBs must not contain, it is not difficult to draw some in-

ferences about their actual structure.

THE SECOND CHARACTERIZATION

Definition 1. Let B' be a benzenoid system and H' one of its hexagons pos-

sessing two adjacent divalent vertices u' and v'. Let B" be another benzenoid

system and H" one of its hexagons, possessing two adjacent divalent vertices

u" and v". Let the benzenoid system B, be obtained by identifying u' with u"

and v' with v". Then B is said to be the edge-join of B' and B", or to be edge-

decomposable into B' and B". This edge-decomposition is said to involve the

edges (u',v') and (u",v"). This definition is illustrated in Figure 5.

Definition 2. A benzenoid system is said to be prime if it is not edge-de-

composable into smaller benzenoid systems.

As a direct consequence of Corollary 1.1 we now have:

Corollary 1.2. The benzenoid systems shown in Figure 6 are the only pri-

me BTBs.

Definition 3. Let B be a benzenoid system and (u,v) its edge connecting

two divalent vertices u and v. Let B' be a benzenoid system obtained from B

by attaching a hexagon to its edge (u,v). The edge (u,v) of B is said to be

BT-fit if both B and B' are BT-benzenoid systems.

In Figure 6 are indicated all the BT-fit edges of the prime BTBs, a fact

which easily may be checked case-by-case.

The following characterization of BTBs is based on Corollary 1.2 and the

observation that by attaching hexagons to a prime BTB we obtain another

BTB only if the hexagons are joined through BT-fit edges (indicated in Fig-
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u''
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Figure 5. Illustrating Definition 1: the benzenoid system B is the edge-join of B' and

B", i.e., B is edge-decomposable into B' and B".



ure 6). Several hexagons may be attached, but only one to the edges marked

by the same letter. Extending this constructive reasoning we arrive at:

Theorem 2. Let B be a benzenoid system and G its branching graph.

Then G is a tree if and only if B is either one of the prime BTBs (depicted in

Figure 6) or is edge-decomposable into these prime BTBs, involving only

BT-fit edges (indicated in Figure 6; no more than one among edges marked

by the same letter).

In Figure 7 are given some examples illustrating Theorem 2.
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Figure 6. The compact BT-benzenoid systems and their BT-fit edges. (Structure X
can be regarded as a special case of XII, where k = 1)
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Figure 7. Examples of non-prime BT-benzenoid systems; the edges involved in their

edge-decomposition into prime BT-benzenoids are marked by lines with added

blocks; these are BT-fit edges of the respective prime components.



Corollary 2.1 (previously reported in reference 3 as property (9)). A ca-

tacondensed BTB is unbranched (i.e. it is a chain of hexagons) and does not

possess linearly annelated hexagons.

THE STRUCTURAL CHARACTERIZATION

OF BRANCHING TREES

Once the structure of BT-benzenoid systems is known (via Theorem 2),

it is straightforward to determine the structure of branching trees. The con-

siderations that follow can be understood as just a translation of Theorem 2

(expressed in terms of benzenoid systems) into terms pertaining to branch-

ing trees.

First of all notice that if a connected benzenoid system B is the edge-join

of B' and B" (cf. Figure 5), then the branching graph of B is obtained from

the branching graphs of B' and B", by connecting them via two additional

vertices in one of the two modes shown in Figure 8.

Based on this observation we define a class of so-called W-trees.

Definition 4. Let � be the graph consisting of two vertices, u and v, con-

nected by an edge. For n = 1,2,3,..., take n copies of �, denoted by �1, �2,...,

�n ; the vertices of �i are labelled by ui and vi. �1 itself is a W-tree (the

2-vertex W-tree). For n > 1 and i = 1,2,...,n–1 connect (by one edge) either ui or

vi with either u�i+1� or v�i+1�. Each graph obtained in this manner is a W-tree

(possessing 2n vertices).

The vertices u1,v1 and un,vn are the left and right terminal vertices of

the respective W-tree. Examples of W-trees are given in Figure 9. BT(XIV)

in Figure 11 is another example.

Theorem 3a. If the branching graph of a catacondensed benzenoid system

is a tree, then it is a W-tree.

The opposite is not strictly true, but does apply if helicenic species are

allowed. Hence:
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BG' BG" BG' BG"

Figure 8. The structure of the branching graph of a benzenoid system B, being the

edge-join of the systems B' and B" (see Figure 3); BG' and BG" are the branching

graphs of B' and B", respectively.



Theorem 3b. Every W-tree is the branching graph of a catacondensed

benzenoid system or helicenic benzenoid system.

Using the W-tree-concept we are now able to give a complete character-

ization of branching trees.

Theorem 4. Let the tree T be the branching graph of some benzenoid sys-

tem. Then T is either

(a) a W-tree (cf. Figure 9), or

(b) the branching tree of one of the prime BTBs (depicted in Figure 10), or

(c) is obtained by joining trees of type (b) by means of W-trees, or

(d) is obtained by attaching W-trees to trees of type (b) and (c).

In Figure 11 are given a few examples of branching trees. Trees of type

(c) and (d) are obtained by inserting edges between vertices marked in Fig-

ure 10 and left and/or right terminal vertices of W-trees.

Such edges connect one (either left or right) terminal vertex of a W-tree

and a vertex of BT(X), BT(XI), BT(XII) or BT(XIII) marked in Figure 10 by

heavy dots. To each such marked vertex at most one new edge can be at-

tached. Exceptionally, in the case of acenaphthenyl (X) two new edges may

be attached to one marked vertex (cf. diagram BT(XVIII) in Figure 12), but

not more than three edges to all the three marked vertices. For an illustra-

tion see Figure 12.

From Theorems 3 and 4 we see that branching trees are graphs with a

quite complicated structure, but they enable us to now make an observation

pertaining to the difficult problem of characterizing benzenoid systems that

are Hamiltonian.

Theorem 5. If the branching graph of a benzenoid system is a tree, then

that benzenoid system will have a Hamiltonian circuit if and only if it is ca-

tacondensed.
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Figure 9. Labelling of the vertices of W-trees (for the case where n = 5) and four ex-

amples of 10-vertex W-trees.



Proof: Catacondensed benzenoid systems have no internal vertices and

thus are well known to be Hamiltonian (see reference 17, p. 163). A Ben-

zenoid system has a 2-factor if and only if its branching graph has a perfect

matching.2,18
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BT ( )XIV

BT ( )XV

BT ( )XVI

Figure 11. The branching trees of the BT-benzenoids XIV-XVI from Figure 7; the

branching-trees (solid lines) are shown embedded in their associated benzenoid sys-

tems (dotted lines), and the edges by means of which the branching trees of the com-

pact BTBs and of W-trees are joined together are marked by heavy lines.

BT ( ) BT ( )X XI

BT ( ) BT ( )XII XIII

Figure 10. The branching trees of the compact BT-Benzenoids X-XIII shown in Fig-

ure 6; the vertices through which these trees can be joined with W-trees are marked

by heavy dots. (The branching graph of the single hexagon (IX) is not shown, be-

cause this is the null graph.)



A forest of 2-vertex trees, n in number, has a perfect matching, and con-

version to any possible 2n-vertex W-tree (Definition 4) does not affect this,

i.e. any W-tree also has a perfect matching.

It may be seen by inspection that no branching graph of any possible

BTB (Figure 6) has a perfect matching; at best (for BTB(X) for example) it

has a single defect matching. Furthermore, because a W-tree does have a

perfect matching, it can only propagate a defect when joined to the branch-

ing graph of a BTB; it cannot terminate it. The only way to do this would be

to connect the sequence head-to-tail in the final step, but then it would no

longer be a tree. It follows that the only branching trees encompassed by

Theorem 4 that have perfect matchings are the W-trees, the BTs of cata-

condensed benzenoids (Theorem 3).

CONCLUSIONS

We have obtained a full characterization of those benzenoid systems

whose branching graphs are trees, and of these trees themselves. Arising

from this work we offer a small addition to knowledge of the conditions for a

benzenoid system to have a Hamiltonian circuit. This problem is known to

be difficult, and no one has yet succeeded in defining sufficient and neces-

sary conditions for an arbitrary graph to be Hamiltonian, yet it remains one

of great practical importance and interest; in efficient utilization of trans-

port and communication systems of all kinds, for example, as well as some-

times in chemical information transmission as discussed.
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X XVII XVIII

BT ( ) BT ( ) BT( )X XVII XVIII

Figure 12. At most three new edges can be attached to the marked vertices of the

branching tree BT(X) of acenaphthenyl, either in a (1,1,1)-mode, as in BT(XVII), or

in a (2,1,0)-mode, as in BT(XVIII).



The aim of this study was to characterize benzenoid systems whose

branching graphs are trees. However, with minor modifications we could

characterize also the helicenic systems with the same property. Indeed, The-

orems 1, 2, 3a, 4, and 5 remain valid if »helicenic system« is substituted for

»benzenoid system«. The authors thank one of the anonymous referees for

pointing out this detail.
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SA@ETAK

Benzenoidi ~iji su razapinju}i grafovi stabla

Ivan Gutman i Edward C. Kirby

Po prvi put su karakterizirani benzenoidi ~iji su razapinju}i grafovi stabla, te sta-

bla koja su razapinju}i grafovi nekog benzenoida. Ukazano je na va`nost postojanja

hamiltonskog prstena u rje{avanju gornjeg problema.
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