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In this brief review a few available methods for generating various

mixed-ring-size fullerenes, especially toroidal fullerenes, and espe-

cially with a view to random processes are discussed.
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INTRODUCTION

The study of random graphs in general is an active area of research,1–18

and some of these studies have included fullerene graphs.11 Reasons for in-

terest in fullerenes generated at random include their being (i) a serendipi-

tous aid to considering arbitrary network variations without prejudice, and,

(ii) conceivably, a way of modeling the behavior of high temperature carbon

vapor as it condenses into graphitic and fullerene-like clusters by inter-ato-

mic bonding.

Truly random graph generation by computer is impossible, because a

computer algorithm can only approach, never arrive at, a genuinely random

sequence of numbers. Nevertheless, many very good algorithms exist,19 and

the output of an appropriately seeded random-function in a modern high-

level language is certainly very near to being random for all practical pur-

poses. Much more important is the problem of how to limit the field for se-

lection without excluding some desirable candidates. The set of all arbitrary

graphs is vast, and even the much smaller subset of cubic graphs (where ev-

ery vertex is of degree-3) increases in size very rapidly with the number of

vertices or atoms.20 Restricting the consideration even further, even the
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class of conventional fullerenes – topologically planar cubic graphs having

hexagons and twelve pentagons – is quite populous. With only sixty carbon

atoms, buckminsterfullerene is already one of 1812 isomers for example.21,22

Contributing to this intractability is the difficulty of recognising what is

produced. Efficient algorithms exist for determining whether a given graph

is planar or not, but beyond this, how can one determine whether a cubic

graph has genus 1, 2, or higher? We know of no methods that are both pre-

cise, and quick and simple to apply.

Here, therefore, the interest is in being able to generate graphs known

to fall within a certain class of interest by some constraining process, but

then to generate graphs within this class as randomly as possible, i.e. so

that every graph within the class has an equal chance of appearing. In this

way, instead of generating the very large set of graphs that one is interested

in (often an impossibly long task) and then from it making a random selec-

tion, one could directly generate a representative sample. The main diffi-

culty here is to ensure that the constraining mechanism of the generator,

designed to exclude non-members of the full set, is not biased in its con-

struction of examples within the set. It is therefore important to understand

and be aware of any bias that does operate (which itself may not be easy), in

case it renders the sample invalid for its intended purpose.

We consider these problems with a view to obtaining non planar and to-

roidal fullerenes in particular.

DISCUSSION

There are many theoretical sequences or bond rearrangements by which

closed 3-valent networks may be derived, which can classified as, firstly, a

stepwise synthetic approach, which is relevant in the contexts of both theo-

retical and practical chemistry. Here the desired structure is built up from

smaller graphs or molecules, in general using operations that are systemati-

cally applied. Random steps are not particularly appropriate, and we do not

consider this group further here. Secondly there are rearrangements of an

existing structure, such as, for example, the conversion of a purely polyhex

structure embedded on some surface to a network on the same surface con-

taining rings other than hexagons. Operations to effect this may leave the

number of vertices unchanged, or they may involve addition or subtraction

of vertices. These methods may be applied on either a systematic or a ran-

dom basis. A third category starts from a set of empty (degree 0) vertices,

analogous to a cloud of dissociated atoms, and builds up structures by form-

ing edges between pairs that are within some pre-specified distance apart.

This method is the one most appropriate to the random approach, but is the
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one that involves the most difficulty in defining a useful generator algo-

rithm. The various strategies for this will be discussed in a future paper. We

therefore concentrate on reviewing class 2 above. The possibilities are all, of

course, constrained by and deducible from the simple requirements of the

well known generalized Euler relationship between vertices (n), edges (m),

faces ( f ) and genus (g): n – m + f = 2 – 2g.

REARRANGEMENTS WHERE THE NUMBER

OF VERTICES REMAINS CONSTANT

A simple 'safety first' approach is to start with the form we want, say a

toroidal fullerene, and change the size of some or all the faces by uncoupling

connections and then re-coupling in a different way. This produces new iso-

mers, but maintains the same number of vertices and edges, and the same

overall topology. However, a little paper and pencil experimentation soon

shows that this is not a simple matter without a systematic approach; one

all to easily obtains an intermediate that cannot be fully recoupled without

crossing edges.

The simplest reliable operation of this type is the well known Stone-

Wales transformation21,22 illustrated in Figure 1. Although, chemically, such

a transformation is likely to be more subtle, for graph-theoretical genera-

tion purposes it is convenient to regard it as a rotation, or cyclic permuta-

tion, of the inner 2,3-dimethylbutane subgraph about the centre of its cen-

tral bond/edge. It converts a group of four rings of size p, q, r and s to have

sizes p–1, q+1, r–1 and s+1 (Figures 1 and 2). This rotation can be applied

to any edge, or to a sequence of edges in iterative fashion to generate a

graph whose overall size and topology is unchanged, but which may be a

non isomorphic variation of the network, i.e. a new isomer.11

However, this rotation process can itself be generalized,23–28 and applied

to any suitable subgraph of the network that has does not have complete ro-

tational symmetry; see Figure 3.
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Figure 1. The Stone-Wales transformation; (a) in generalized form, and (b) applied to

the pyrene graph. It can be viewed as a rotation of the inner tree.



Reverting to the simplest Stone-Wales transformation of pyrene (Figu-

res 1b and 2), in a larger system, pyrene itself can be taken as the rotation

subgraph (Figure 4), and this yields the same range of non-hexagon ring

sizes, but with a different spatial arrangement. These rotation processes,

especially of fairly small subgraphs, have the attraction that they are fairly

easy to incorporate into an algorithm. The location of the chosen subgraph

is identified, either at random or on the basis of some pattern, and the ap-

propriate set of connections is permuted. For larger subgraphs (which,

therefore, have many connections) the angle of rotation also, may be chosen

on either a random or systematic basis.
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Figure 2. (a) A 48-hexagon or 12-pyrene polyhex, and (b) the 24-pentagon, 24-hepta-

gon polycyclic system resulting from a Stone-Wales transformation applied to each

pyrene tile of (a). The numbers show a possible labelling for the graph (b) to repre-

sent a 48-face (96 vertex) toroidal fullerene having only 5- and 7-membered rings.
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Figure 3. Each pair of numbers i–i' represents a label of the periphery and of the in-

ner tree, respectively. Rotation of the inner tree of triangulene (a) converts six hexa-

gons into three 4-rings plus three 8-rings (b), whereas a rotation of the more sym-

metrical isopropyl subgraph within phenalene (c) to (d) is degenerate and causes no

such change.



REARRANGEMENTS OF A STRUCTURE WITH

ADDITION OF VERTICES

This possibility is more limited in scope. Vertices can be inserted into ex-

isting edges, but must be added to the system in pairs, each to a different

edge, because a cubic graph, and therefore any fullerene, must have an even

number of vertices. A new edge must join the two new vertices, because all

vertices must be of degree 3, and one extra face will be formed. Further-

more, in order to avoid creating crossings (and therefore changing the

graph’s topology), it is possible to insert a pair of vertices only into edges

that are part of one facial ring. It is generally more helpful to view this as

one operation, the insertion of a K2 graph. So, for a hexagonal face there are

three possibilities, and edges 1–2, 1–3 and 1–4 can be connected in this way
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Figure 4. (a) A transformation using rotation of the pyrene subgraph. (b) Rotation at

this angle gives the same two pentagon-heptagon pairs (azulenes) as does rotation of

the inner tree (Figure 1b), but separates them. (c) A wider pattern of dispersed

azulene units induced by rotation of pyrene at regular intervals.

(a) (b) (c)

Figure 5. Modes of insertion of one edge into a polyhex to give non hexagonal faces,

including one extra face: (a) 1–2 insertion to give one 3-ring plus three 7-rings; (b)

1–3 insertion to give one 4-ring plus two 7-rings, and (c) 1–4 insertion to give two

5-rings plus two 7-rings.



(Figure 5). The process can of course be iterated or, alternatively and equiv-

alently, a larger tree may be inserted (e.g. Figure 6). Any planar graph with

no degree 2 vertices, and terminal vertices that can all be accommodated

among the edges of a single face of the existing network can be inserted this

way without changing the topology, although it may change what is a plau-

sible geometry.

REARRANGEMENTS OF A STRUCTURE WITH

SUBTRACTION OF VERTICES

More care is needed here, because it is easy to create a non local petur-

bation; i.e. one where a change is not be terminated locally, but instead pro-

pagates through the network (see Figure 7). On the other hand this can so-

metimes be useful. Bor{tnik and Lukman,29 for example, used the creation

of azulenes by vertex deletion to narrow and ease the bending of toroidal

fullerene tubes in their molecular mechanics study. Even more disturbance

is caused by formation of 4- and 8-ring pairs; see Figure 8.
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Figure 6. Insertion of the isopropyl graph into a hexagonal face to give two extra

faces, and to form three incident azulene units.

(a) (b) (c)

Figure 7. The excision of vertices from a polyhex to give a polyhex with one embed-

ded azulene unit: (a) identifies (in bold) the vertices and edges to be excised; (b)

shows (dotted) the new connections to be formed, and (c) the result. Note, however,

that although we might expect that only four vertices need be removed, this opera-

tion creates a defect that continues to the bottom and necessitates, in this case, the

removal of seven, so the width at the bottom of the strip has been reduced by one

hexagon. Were this strip converted to a cylinder by gluing side to side, it would be

conical in shape; in order to glue top to bottom, another azulene must be created,

with an opposing alignment.



A TOTAL CONSTRUCTION APPROACH: ADDITION OF NEW

EDGES TO VERTICES THAT ARE LESS THAN 3-VALENT

This is the nearest approach to a fully random construction considered,

and is the subject of a current project whereby, in the main step, a suitably

bounded planar surface is populated by empty (degree 0) vertices, and the

random graph generator instals edges among pairs of neighbouring vertices

HOW CAN THESE NETWORK-CHANGING OPERATIONS

BE USED IN AN ALGORITHM?

We may express the operations already discussed in somewhat more for-

mal and mathematical language as a possible basis for a useful computer

implemented algorithm:

Let G be a cubic graph embedded in any surface, and select a closed

curve C that cuts the edges of this graph (and no vertices) and has the prop-

erty that it cuts the surface into two pieces, G1 and G2, the first of which is

planar, and both of which have pending half-edges. Let k be the number of

pending edges of either piece. Now attach G1 to the curve C (seen as a cycle

of length k) to give a cubic graph P1, embedded in the plane in such a way

that the perimeter is an induced k-gon. Similarly, if G2 is attached to a copy

of C, this gives a cubic graph P2 embedded in the same surface as G, with

one face a k-gon.
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Figure 8. Attempted creation (c.f. Figure 7) of a 4,8-ring pair (a) propagates a distur-

bance in two directions throughout a polyhex network, so that neither pair of oppo-

site sides of the resultant quadrilateral can be matched. On the other hand, forma-

tion of a 4,10,4-ring triplet (b) is simple, and the result is self contained.



Now P1 (which is planar) may be rotated or reflected, and in general

there will be 2k ways of doing this. Alternatively we may replace P1 with

some other planar graph Q1 having the same k-gon as its perimeter. Then

P1 and P2, or Q1 and P2, are glued together along the induced k-gons. Dele-

tion of the resulting k-gon generates G', which will be embedded in the same

surface as the original graph G.
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O djelomi~no slu~ajnom generiranju fullerena

Edward C. Kirby

Dan je kratki prikaz nekih metoda za generiranje fullerena s prstenovima raz-

li~itih veli~ina, s posebnim osvrtom na torusne fullerene i ulogu slu~ajnih procesa pri

njihovu nastajanju.
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