Ferrocene Compounds. XXVIII.* Synthesis of 2-(Ferrocenylalkyl)- and 2-[Ferrocenyl(phenyl)alkyl]-1,3-propanediols and Their Acetates

Jasmina Lapić and Vladimir Rapić**
Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia

Received November 17, 1999; revised February 8, 2000; accepted February 23, 2000
Reaction of the appropriate reagent $\mathrm{Fc}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{CHRX}(1-3,6$, and 9$)$ with sodium salt of diethyl malonate in dry xylene gave $81-91 \%$ of the corresponding diethyl (ferrocenylalkyl)malonate or diethyl ferrocenyl(phenyl)alkylmalonate (11). Using $\mathrm{Fc}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{CHRX}$ (4, 7, 8 and 10) under similar reaction conditions, transesterification products - ethyl ferrocenylalkyl malonates or ethyl ferrocenyl(phenyl)alkyl malonates (12) were obtained. Reduction of condensation products $\mathbf{1 1}$ with lithium aluminium hydride in diethyl ether gave the corresponding diols 13 (45-66\%), which will be in further studies subjected to lipase-mediated transformations with vinyl acetate to chiral monoacetates. By the action of acetic anhydride on diols 13 in a benzene solution, the corresponding mono- 14 (25-52\%) and diacetates $15(36-51 \%)$ were obtained.

Key words: ferrocene compounds; diethyl (ferrocenylalkyl)malonates; ethyl ferrocenylalkyl malonates; 2-ferrocenylalkyl-1,3-propanediols and their acetates.

INTRODUCTION

Selective catalysis by hydrolytic enzimes can be exploited most efficiently for transformation of enantiotopic groups. In contrast to enantiomer selectivity, in a completely enantiotope selective transformation the total

[^0]amount of the achiral substrate can be transformed to an enantiomerically pure chiral product. In this process, enantiotopic groups are converted to constitutionally different groups. Enantiotopic groups can be found either in achiral compounds containing a single prochiral centre or in meso-compounds. ${ }^{2,3}$

Lipase-catalyzed asymmetric transformations of 2 -substituted 1,3-propanediols to chiral 1,3-propanediol monoacetates can be performed in an inert solvent (toluene, diisopropyl ether, etc.) by the action of acetic acid esters as acetyl donors. The best results were obtained with vinyl acetate as solvent, which at the same time served as irreversible donor of acetyl group. In these reactions, catalyzed by lipases isolated from Pseudomonas fluorescens, Pseudomans fragi or porcine pancreas, several 2 -alkyl-, 2 -alkenyl-, 2-alkoxy-methyl-, 2-arylmethoxy-, 2-arylthio- and 2-arylmethyl-1,3-propanediols were converted to $13-97 \%$ of the corresponding monoacetates with optical yields e.e. $60-90 \%$. 4,5,6

On the other hand, some meso-diacetates can be desymmetrized by partial hydrolyzis in the presence of Pseudomonas fluorescens lipase, porcine liver esteraze or acetylcholin esteraze to the corresponding chiral monoacetates (e.e. 33-86\%).. ${ }^{6,7}$

Scheme 1.

In the field of ferrocene diols, acetylation of meso, dl-1,1'-bis(α-hydroxyethyl)ferrocenes in dry acetone, using vinyl acetate as acetyl donor and Pseudomonas cepacia lipase as catalyst, allowed for the diacetate of the (R, R)-enantiomer and the free (S, S)-diol to be obtained. ${ }^{8}$ Another example of lipase-mediated acetylation is the desymmetrization of the prochiral 1,2 bis(hydroxymethyl)ferrocene by production of both enantiomers of 2 -ace-toxymethyl-1-hydroxymethylferrocene. ${ }^{9}$

The aim of this work was to synthesize several 2-(ferrocenylalkyl)- and 2-[ferrocenyl(phenyl)alkyl]-1,3-propanediols as substrates for investigation of their lipase-catalyzed stereoselective acetylation. These diols were designed with ferrocenyl group in α-, β-, and γ-position of the alkane chain
relative to the propanediol methine group. Some of them contain a chiral centre in various positions of the alkane chain. We have planned to prepare their mono- and diacetates for comparison with the products of biocatalyzed acetylations.

RESULTS AND DISCUSSION

As the starting materials for preparation of the desired derivatives of 2-ferrocenylalkyl-1,3-propenediols we have used Fc $\left(\mathrm{CH}_{2}\right)_{n} \mathrm{CHRX}(n=0-2$; $\mathrm{R}=$ $\mathrm{H}, \mathrm{Me}, \mathrm{Ph} ; \mathrm{X}=\mathrm{OH}, \mathrm{OAc}, \mathrm{NMe}_{3} \mathrm{I}, \mathrm{Br}$), most of which has have been described previously. We have already published condensation reactions of the mentioned reagents ($n=0 ; \mathrm{R}=\mathrm{H}, p-\mathrm{ClC}_{6} \mathrm{H}_{4}, p-\mathrm{MeC}_{6} \mathrm{H}_{4}, p-\mathrm{MeOC}_{6} \mathrm{H}_{4} ; \mathrm{R}=\mathrm{OH}$) with diethyl malonate. ${ }^{10}$ They were performed under similar conditions to those described in Ref. 11 for malonic ester synthesis with 2 -ferrocenylethanol and ferrocenyl(phenyl)methanol, i.e. by refluxing the xylene solutions of ferrocene reagents with 3.5 molar excess of sodium salt of diethyl malonate.

Starting from carbinols $\mathrm{Fc}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{CHROH}(\mathbf{1 - 3})$ in condensations with diethyl malonate, we have prepared $81-93 \%$ of the previously described malonates 11a-c. ${ }^{10}$ However under the same circumstances in the case of the alcohols $\mathbf{4}, \mathbf{7}, \mathbf{8}$ and $\mathbf{1 0}$, we have isolated $79-97 \%$ of the transesterification products - ethyl ferrocenylalkyl (or ferrocenyl(phenyl)alkyl) malonates (12a-d). To perform the desired malonic ester syntheses with the mentioned carbinols, we converted them into the corresponding acetates; however under the same reaction conditions they gave the mentioned transesterification products again. By the action of phosphorus tribromide in benzene, compounds 4 and 8 were transformed into bromides $\mathbf{6}$ and 9 , which underwent the »classical« malonic ester condensation, giving the desired esters 11d and 11e (91 and 81%). Malonates 11a-e were reduced with lithium aluminium hydride in diethyl ether, giving 45-66\% of 2-(ferrocenylalkyl)- or 2 -[ferrocenyl(phenyl)alkyl]-1,3-propanediols (13). Refluxing the benzene solutions of these diols with a little molar excess of acetic anhydride gave $25-52 \%$ of the corresponding monoacetates 14 and $36-50 \%$ of diacetates 15.

The preliminary results indicated that diols $\mathbf{1 3 a}$ and 13d were stereoselectively acylated by vinyl acetate in the presence of Mucor miehei lipase as catalyst.

The French paper ${ }^{11}$ dealing with condesations of α-ferrocenylethanol and α-phenylferrocenylmethanol with sodium salt of diethyl malonate is one of the rare publications dealing with malonic ester syntheses in which carbinols have been used, instead of the usually applied halogenides or tosylates. For these reactions, the authors assumed the $\mathrm{S}_{\mathrm{N}} 1$ mechanism (with
hydroxylic groups leaving the carbinols) because of the high stability of α-ferrocenylcarbonium ions, but they stressed that this explanation is not satisfactory. It is well-known that the hydroxyl group does not leave from

$\mathrm{Fc}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{CHR}-\mathrm{X}$

1: $\mathrm{R}=\mathrm{H}, n=0, \mathrm{X}=\mathrm{NMe}_{3} \mathrm{I}$ or OH
2: $\mathrm{R}=\mathrm{Me}, n=0, \mathrm{X}=\mathrm{OH}$
3: $\mathrm{R}=\mathrm{Ph}, n=0, \mathrm{X}=\mathrm{OH}$
4: $\mathrm{R}=\mathrm{H}, n=1, \mathrm{X}=\mathrm{OH}$
5: $\mathrm{R}=\mathrm{H}, n=1, \mathrm{X}=\mathrm{OAc}$
6: $\mathrm{R}=\mathrm{H}, n=1, \mathrm{X}=\mathrm{Br}$
7: $\mathrm{R}=\mathrm{Ph}, n=1, \mathrm{X}=\mathrm{OH}$
8: $\mathrm{R}=\mathrm{H}, n=2, \mathrm{X}=\mathrm{OH}$
9: $\mathrm{R}=\mathrm{H}, n=2, \mathrm{X}=\mathrm{Br}$
10: $\mathrm{R}=\mathrm{Me}, n=2, \mathrm{X}=\mathrm{OH}$

$\mathrm{Fc}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{CHRCH}(\mathrm{COOEt})_{2} \quad \mathrm{Fc}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{CHRCH}\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{2}$

11
13

14

15
a: $\mathrm{R}=\mathrm{H}, n=0 \quad$ d: $\mathrm{R}=\mathrm{H}, n=1$
b: $\mathrm{R}=\mathrm{Me}, n=0$
e: $\mathrm{R}=\mathrm{H}, n=2$
c: $\mathrm{R}=\mathrm{Ph}, n=0$

$\mathrm{Fc}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{CHROOC}-\mathrm{CH}_{2}-\mathrm{COOEt}$

12
a: $\mathrm{R}=\mathrm{H}, n=1$
b: $\mathrm{R}=\mathrm{Ph}, n=1$
c: $\mathrm{R}=\mathrm{H}, n=2$
$\mathbf{d}: \mathrm{R}=\mathrm{Me}, n=2$
$\mathrm{Fc} \equiv$

Scheme 2.
ordinary alcohols and its substitution can be performed when it is protonated or converted to a (reactive) ester, because water and acylates are good leaving groups. ${ }^{12}$ In this connection, we assumed conversion of carbinols to malonates as intermediates in the reactions performed.

In Ref. 13, base-catalyzed transesterification of lower malonates (dimethyl, diethyl) with higher alcohols (hexyl, heptyl, benzyl) have been described (e.g. transesterification of diethyl malonate with benzyl alkohol in the presence of sodium hydroxide was completed in 2 hours of refluxing with 83% yield). For these conversions, the authors suggested an $\mathrm{S}_{\mathrm{N}} 2$ process facilitated by enolization of malonic ester (i.e., conversion $\mathbf{B} \rightarrow \mathbf{C}$ in Scheme 3). The relative ease of transesterification of diethyl malonate is also notable from its conversion to dimethyl ester by shaking it in a methanolic solution of potassium methoxide under anhydrous conditions. ${ }^{14}$ Keeping in mind these facts, we supposed conversion of carbinols \mathbf{A} and sodiomalonic ester (enolate) to the corresponding ethyl ferrocenylalkyl malonates \mathbf{C} in the first and second reaction steps. The alkoxide \mathbf{B} needed for this reaction is formed
$\mathrm{Fc}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{CHROH}+\mathrm{NaCH}\left(\mathrm{COOC}_{2} \mathrm{H}_{5}\right)_{2} \rightleftharpoons$
A $(n=0-2)$
$\mathrm{Fc}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{CHRONa}+\mathrm{CH}_{2}\left(\mathrm{COOC}_{2} \mathrm{H}_{5}\right)_{2}$
B

B

C $\underset{(n=0)}{\mathrm{S}_{\mathrm{N}} 1} \mathrm{Fc} \stackrel{+}{\mathrm{C}} \mathrm{HR} \quad+\quad{ }^{-} \mathrm{OOCR}$
D

D $+{ }^{-} \mathrm{CH}\left(\mathrm{COOC}_{2} \mathrm{H}_{5}\right)_{2} \longrightarrow \mathrm{FcCHRCH}\left(\mathrm{COOC}_{2} \mathrm{H}_{5}\right)_{2}$
F
Scheme 3.
in an (unfavourable) equilibrium between carbinols $\mathbf{A}\left(\mathrm{p} K_{\mathrm{a}} \approx 16\right)$ and sodiomalonic ester ($\mathrm{p} K_{\mathrm{a}}=13.5$). In the case of alcohols $\mathbf{4 , 7 , 8} \mathbf{~ a n d ~ 1 0 , ~ t h e ~ c o r r e - ~}$ sponding \mathbf{C} (i.e. esters $\mathbf{1 2 a} \mathbf{- d}$) is the final reaction product. However, in the reactions of ferrocyl carbinols* $(\mathbf{1}-\mathbf{3})$, one could suppose the $\mathrm{S}_{\mathrm{N}} 1$ transformation of esters \mathbf{C} into malonates $\mathbf{F}(\mathbf{1 1 a - c})$ because of the extraordinary stability of the intermediate carbocations \mathbf{D} and the relatively good leaving group \mathbf{E}.

One could propose an alternative pathway for transesterification of diethyl malonate by $\mathrm{Fc}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{CHROH}$ involving cyclic enolic form \mathbf{G}^{15} (Scheme 4) which may contribute to the »internal catalysis«.

Scheme 4.

It is interesting to mention that similar problems have been encountered in our investigations of the reactions of $\mathrm{Fc}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{X}\left(n=1,2 ; \mathrm{X}=\mathrm{AcO}, \mathrm{NMe}_{3} \mathrm{I}\right.$, Br) with alkoxide derived from methyl glycolate (or methyl lactate). Instead of the desired oxaaliphatic esters $\mathrm{Fc}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{OCH}_{2} \mathrm{COOMe}^{2} \mathrm{FcCH}_{2} \mathrm{OMe}$ (for n $=1)^{16}$ and $\mathrm{HOCH}_{2} \mathrm{COOCH}_{2} \mathrm{CH}_{2} \mathrm{Fc}$ (for $n=2$) ${ }^{17}$ were obtained as the main products. We have supposed that these transformations occurred via oxonium species $\mathrm{HOCH}_{2} \mathrm{CO} \stackrel{+}{(}(\mathrm{Me})\left(\mathrm{CH}_{2}\right)_{n} \mathrm{Fc}$: in the case of $n=1$ this intermediate cleaved by BAC1 mechanism giving ferrocyl methyl ether, and for $n=2$ BAL2, the cleavage occurred during the formation of the equilibrium controled transesterification product. The similar ester $\mathrm{HOCH}_{2} \mathrm{COOCH}_{2} \mathrm{Fc}$ is obviously unstable under the reaction conditions and it dissociates to $\mathrm{FcCH}_{2}{ }^{+}$giving $\mathrm{FcCH}_{2} \mathrm{OMe}$, according to the above discussion.

EXPERIMENTAL

Melting points were determined with a Buechi apparatus. The IR spectra were recorded for KBr pellets or CCl_{4} solutions with a Bomem MB100 Mid FT IR spectrophotometer. The ${ }^{1} \mathrm{H}$ NMR spectra of CDCl_{3} solutions were recorded on a Varian EM 360 or Varian Gemini 300 spectrometer with tetramethylsilane as internal standard.

[^1]Products were purified by preparative thin layer chromatography on silica gel (Merck, Kieselgel $60 \mathrm{HF}_{254}$) and by recrystallization from benzene.
$\mathrm{N}, \mathrm{N}, \mathrm{N}$-trimethylferrocylammonium iodide (1) was prepared by quaternization of N, N-dimethylferrocylamine with methyl iodide in acetone. ${ }^{16}$ Carbinols 2 and $\mathbf{3}$ were prepared by reduction of the corresponding acylferrocenes with sodium boron hydride in isopropyl alcohol. ${ }^{18}$ Reduction of ferroceneacetic acid ${ }^{19}$ with lithium aluminium hydride in diethyl ether gave 94% of 2 -ferrocenylethanol (4). ${ }^{20}$ Reaction of carbinol 4 with acetic anhydride in benzene abs. gave acetate $5^{1}(85 \%)$ and bromination of 4 with phosphorus tribromide gave 76% of 2 -ferrocenylethyl bromide (6). ${ }^{21}$ Carbinol 7 was prepared by hydroboration-oxidation of styrylferrocene. ${ }^{22}$ Reduction of ferrocenepropanoic acid with lithium aluminium hydride in diethyl ether gave 83% of 3 -ferrocenyl-1-propanol (8).

IR spectrum $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) v_{\max } / \mathrm{cm}^{-1}: 3617 \mathrm{~s}(\mathrm{OH}), 3092 \mathrm{w}(\mathrm{C}-\mathrm{H})$ arom., $2935 \mathrm{~m}, 2872$ $\mathrm{m}(\mathrm{C}-\mathrm{H})$ aliph.; ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm}: 4.09 \mathrm{~s}$ and $4.05 \mathrm{~m}(9 \mathrm{H}, \mathrm{Fc}), 3.62$ (t , 2H, $\mathrm{CH}_{2} \mathrm{O}$), $2.39\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{FcCH}_{2}\right), 1.75\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.03(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$.

3-Ferrocenylpropyl Bromide (9)

Phosphorus tibromide ($333 \mathrm{mg}, 1.23 \mathrm{mmol}$) was added dropwise to a solution of 3 -ferrocenyl-3-propanol ($900 \mathrm{mg}, 3.68 \mathrm{mmol}$) in dry benzene (5 mL). The solution was stirred at room temperature overnight. The reaction mixture was washed with a saturated aqueous solution of NaHCO_{3} and again with water and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The benzene was evaporated in vacuo and purifed by TLC.

IR spectrum $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) v_{\max } / \mathrm{cm}^{-1}: 3097 \mathrm{w}(\mathrm{C}-\mathrm{H})$ arom., $2932 \mathrm{~m}, 2851 \mathrm{~m}(\mathrm{C}-\mathrm{H})$ aliph., $559 \mathrm{~s}(\mathrm{C}-\mathrm{Br}) ;{ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm}: 4.11 \mathrm{~s}$ and $4.06 \mathrm{~m}(9 \mathrm{H}, \mathrm{Fc})$, 2.47 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{FcCH}_{2}$), 2.01 (t, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 3.39 ($\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Br}$).

4-Ferrocenylbutan-2-ol (10)

$\mathrm{N}, \mathrm{N}, \mathrm{N}$-trimethylferrocenylammonium iodide ($\mathbf{1}, 1 \mathrm{~g}, 2.6 \mathrm{mmol}$) and monosodium salt of butane-2,4-dione ($500 \mathrm{mg}, 4 \mathrm{mmol}$) were dissolved in dry acetonitrile, and the solution was heated under reflux for 15 hours. After addition of water $(10 \mathrm{~mL})$ to the reaction mixture, it was extracted with dichloromethane. The organic layer was washed with saturated aqueous solution of sodium chloride, dried over sodium magnesium sulphate and evaporated to dryness. The residue was purified by thin layer chromatography giving $724 \mathrm{mg}(80 \%)$ of 4 -ferrocenylbutane-2-one. The physical properties of the compound obtained and of the previonsly prepared authentic specimen are identical. ${ }^{23}$

To the ethereal solution of the ketone obtained ($433 \mathrm{mg}, 1.69 \mathrm{mmol}$), 1 M solution of LiAlH_{4} in the same solvent (5 mL) was added. After refluxing for 2 hours, water $(10 \mathrm{~mL})$ and a few drops of aqueous hydrochloric acid (1:1) were added. After extraction of the aqueous layer with several portions of diethyl ether, the combined organic phases were washed with saturated aqueous solution of sodium chloride, dried over sodium sulphate, and evaporated to dryness; 386 mg (88.5%) of carbinol 10 was obtained. The physical properties of the compound obtained are identical with the properties of the carbinol prepared by Bouveault-Blanc reduction of 2ferrocenylethyl acetate. ${ }^{24}$

IR spectrum $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) v_{\text {max }} / \mathrm{cm}^{-1}: 3367 \mathrm{~b}(\mathrm{OH}), 3096 \mathrm{w}(\mathrm{C}-\mathrm{H})$ arom., $2966 \mathrm{~m}, 2927$ $\mathrm{m}(\mathrm{C}-\mathrm{H})$ aliph.; ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm}: 4.09 \mathrm{~s}$ and $4.05 \mathrm{~m}(9 \mathrm{H}, \mathrm{Fc}), 3.79$ (m, 1H, methine), $2.4\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{FcCH}_{2}\right), 1.69\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\right), 1.64(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 1.19$ (d, $3 \mathrm{H}, \mathrm{CH}_{3}$).

> Diethyl (Ferrocenylalkyl)malonates, Diethyl [Ferrocenyl(phenyl)alkyl]malonates (11), Ethyl Ferrocenylalkyl Malonates and Ethyl Ferrocenyl(phenyl)alkyl Malonates (12)

General Procedure

$82 \mathrm{mg}(4 \mathrm{mmol})$ of molten sodium in dry xylene (10 mL) was converted by shaking into fine dispersion and diethyl malonate ($1.06 \mathrm{~g}, 6.6 \mathrm{mmol}$) was added dropwise. The mixture was stirred for $1 / 2$ hour at $140^{\circ} \mathrm{C}$ until sodium disappeared. A solution of the appropiate $\mathrm{Fc}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{CHRX}$ in the same solvent (5 mL) was added. After reflux for 3 hours, the reaction mixture was poured into crushed ice and water, extracted with diethyl ether, washed with saturated aqueous solution of sodium chloride, dried over sodium sulphate, and evaporated to dryness giving resinous yellow, orange, or brown products, which partially crystallized after standing in refrigerator. Esters 11a-11c have been prepared previously starting from reagents $1-3 .{ }^{10}$ Condensation reactions of bromides 6 and 9 gave malonates 11d and 11e. By reactions of carbinols $4,7,8$, and 10 with dietyl malonate, transesterification products 12 were obtained (Tables I-IV).

> 2-(Ferrocenylalkyl)-1,3-propanediols and 2-[Ferrocenyl(phenyl)alkyl]-1,3-propanediols (13)

General Procedure

To a solution of malonate $\mathbf{1 1}(3 \mathrm{mmol})$ in diethyl ether abs. (5 mL), 1 M solution of lithium aluminium hydride in the same solvent (3 mL) was added. The reaction mixture was refluxed for 3 hours and worked up in the usual manner (Tables I, II and IV).

Ferrocene 1,3-Propanediol Monoacetates 14 and Diacetates 15

General Procedure

Acetic anhydride ($43.4 \mathrm{mg}, 0.40 \mathrm{mmol}$) was added to a solution of diol $\mathbf{1 3}$ (0.36 mmol) in benzene abs. (3 mL). After refluxing for 3 hours and standing overnight, the reaction mixture was evaporated to dryness and separated by means of preparative thin layer chromatography to the corresponding mono- (14) and diacetates $\mathbf{1 5}$ (Tables V-VII).

[^2]| ${ }^{1} \mathrm{H} \mathrm{NMR}$ spectra of $\mathrm{Fc}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{CHRCH}(\mathrm{COOEt})_{2}(\mathbf{1 1})$ and $\mathrm{Fc}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{CHRCH}\left(\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{OH}\right)_{2}(\mathbf{1 3})$ | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Compd. | Ferrocene protons | | Methine protons ${ }^{\text {a }}$ | | Methylene protons ${ }^{\text {a }}$ | | | | | | CH_{3} | $\mathrm{OH}^{\text {b }}$ |
| no. | | | α | ω | $\mathrm{CH}_{2} \mathrm{CH}_{3}$ | H_{a} | H_{b} | α | β | γ | | |
| 11d | $4.11 \mathrm{~s}$
 (9) | $4.06 \mathrm{~m}$ | - | $\begin{gathered} 3.36 \\ (1, \mathrm{t}) \end{gathered}$ | $\begin{gathered} 4.21 \\ (4, q) \end{gathered}$ | - | | $\begin{aligned} & 2.37 \\ & (2, \mathrm{t}) \end{aligned}$ | $\begin{gathered} 2.11 \\ (2, \mathrm{~m}) \end{gathered}$ | - | $\begin{aligned} & 1.28 \\ & (6, \mathrm{t}) \end{aligned}$ | - |
| 11e | $4.08 \mathrm{~s}$
 (9) | $4.04 \mathrm{~m}$ | - | $\begin{gathered} 3.33 \\ (1, \mathrm{~m}) \end{gathered}$ | $\begin{gathered} 4.18 \\ (4, \mathrm{~m}) \end{gathered}$ | - | | $\begin{gathered} 2.36 \\ (2, \mathrm{t}) \end{gathered}$ | $\begin{gathered} 1.54 \\ (2, \mathrm{~m}) \end{gathered}$ | $\begin{gathered} 1.92 \\ (2, \mathrm{~m}) \end{gathered}$ | $\begin{aligned} & 1.26 \\ & (6, \mathrm{t}) \end{aligned}$ | - |
| 13b | $4.14 \mathrm{~s}$
 (9) | $4.04 \mathrm{~s}$ | $\begin{aligned} & 2.67 \mathrm{~s} \\ & (1, \mathrm{~m}) \end{aligned}$ | $\begin{gathered} 1.65 \\ (1, \mathrm{~m}) \end{gathered}$ | - | $\begin{array}{r} 3.70 \\ (2, \mathrm{dd}) \end{array}$ | $\begin{aligned} & 3.57 \\ & (2, \mathrm{dd}) \end{aligned}$ | - | - | - | $\begin{gathered} 1.31 \\ (3, \mathrm{~d}) \end{gathered}$ | $\begin{gathered} 2.57 \\ (2, \mathrm{~b}) \end{gathered}$ |
| $13 \mathrm{c}^{\mathrm{c}}$ | $4.19 \mathrm{~m}$ | $\frac{3.85 \mathrm{~s}}{(10)}$ | $4.03 \mathrm{~s}$ | | - | $\begin{array}{r} 3.74 \\ (2, \mathrm{~m}) \end{array}$ | $\begin{aligned} & 3.58 \\ & (2, \mathrm{~m}) \end{aligned}$ | - | - | - | - | $\begin{gathered} 2.55 \\ (2, \mathrm{~b}) \end{gathered}$ |
| 13d | $4.10 \mathrm{~s}$
 (9) | $4.05 \mathrm{~s}$ | - | $\begin{gathered} 1.78 \\ (1, \mathrm{~m}) \end{gathered}$ | - | $\begin{array}{r} 3.82 \\ (2, \mathrm{dd}) \end{array}$ | $\begin{aligned} & 3.66 \\ & (2, \mathrm{dd}) \end{aligned}$ | $\begin{gathered} 2.37 \\ (2, \mathrm{t}) \end{gathered}$ | $\begin{gathered} 1.46 \\ (2, \mathrm{~m}) \end{gathered}$ | - | - | $\begin{gathered} 2.62 \\ (2, \mathrm{~b}) \end{gathered}$ |
| 13e | $4.15 \mathrm{~s}$
 (9) | $4.12 \mathrm{~s}$ | - | $\begin{gathered} 1.74 \\ (1, \mathrm{~m}) \end{gathered}$ | - | $\begin{array}{r} 3.81 \\ (2, \mathrm{dd}) \end{array}$ | $\begin{aligned} & 3.64 \\ & (2, \mathrm{dd}) \end{aligned}$ | $\begin{aligned} & 2.32 \\ & (2, \mathrm{t}) \end{aligned}$ | $\begin{gathered} 1.26 \\ (2, \mathrm{~m}) \end{gathered}$ | $\begin{gathered} 1.51 \\ (2, \mathrm{~m}) \end{gathered}$ | - | $\begin{gathered} 2.82 \\ (2, \mathrm{~b}) \end{gathered}$ |

[^3]TABLE III
${ }^{1} \mathrm{H}$ NMR spectra of $\mathrm{Fc}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{CHROOC}-\mathrm{CH}_{2}-\mathrm{COOCH}_{2} \mathrm{CH}_{3}$ (12)

[^4]TABLe
${ }^{13} \mathrm{C}$ NMR spectra of $\mathrm{Fc}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{CHRCH}(\mathrm{COOEt})_{2}$ (11) and $\mathrm{Fc}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{CHRCH}\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{2}$ (13)

Compd. no.	Ferrocene C-atoms			Methine C-atoms		Methylene C-atoms					$\begin{gathered} \begin{array}{c} \text { Methyl } \\ \text { C-atoms } \end{array} \\ \hline \mathrm{CH}_{2} \mathrm{CH}_{3} \end{gathered}$	Benzene C-atoms		COO
	unsubst. ring	subst. ring												
		CH	C	α	ω	α	β	γ	$\mathrm{CH}_{2} \mathrm{OH}$	$\mathrm{CH}_{2} \mathrm{CH}_{3}$		C	CH	
11d	67.14	$\begin{aligned} & 67.89 \\ & 68.35 \end{aligned}$	87.22	-	51.31	29.57	26.86	-	-	61.17	13.84	-	-	169.43
11e	66.95	$\begin{aligned} & 67.09 \\ & 67.81 \\ & 68.28 \end{aligned}$	88.30	-	51.68	28.91	28.38	28.48	-	61.12	13.82	-	-	169.47
13b	65.72	$\begin{aligned} & 67.06 \\ & 67.09 \\ & 68.24 \\ & 68.53 \end{aligned}$	92.92	31.81	48.59	-	-	-	$\begin{aligned} & 64.24 \\ & 64.41 \end{aligned}$	-	-	-	-	-
13c	66.47	$\begin{aligned} & 68.15 \\ & 68.50 \\ & 69.52 \end{aligned}$	91.45	43.91	48.23	-	-	-	$\begin{aligned} & 64.51 \\ & 64.69 \end{aligned}$	-	-	143.83	$\begin{aligned} & 126.53 \\ & 128.25 \\ & 128.37 \end{aligned}$	
13d	66.99	$\begin{aligned} & 67.73 \\ & 68.32 \end{aligned}$	88.58	-	41.42	26.86	26.86	-	65.54	-	-	-		-
13e	67.30	$\begin{aligned} & 68.27 \\ & 68.75 \end{aligned}$	89.33	-	41.68	27.32	27.32	28.58	66.21	-	-	-		-

TABLE V
Physical constants and IR spectral data for $\mathrm{Fc}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{CHRCH}\left(\mathrm{CH}_{2} \mathrm{OH}\right) \mathrm{CH}_{2} \mathrm{OAc}(\mathbf{1 4})$ and $\mathrm{Fc}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{CHRCH}\left(\mathrm{CH}_{2} \mathrm{OAc}\right)_{2}$ (15)

Compd.		Formula	Yield	Anal. calcd. (found) / \%		$\mathrm{IR} / \mathrm{cm}^{-1}$	
no.	n	$\left(M_{\mathrm{r}}\right)$	\%	C	H	$v(\mathrm{OH})$	$v(\mathrm{C}=\mathrm{O})$
14a	$\begin{gathered} \mathrm{H} \\ 0 \end{gathered}$	$\begin{gathered} \mathrm{C}_{16} \mathrm{H}_{20} \mathrm{FeO}_{3} \\ (315.8) \end{gathered}$	52	$\begin{gathered} 60.80 \\ (61.02) \end{gathered}$	$\begin{gathered} 6.33 \\ (6.50) \end{gathered}$	3440 b	1740 s
14b	$\begin{gathered} \mathrm{Me} \\ 0 \end{gathered}$	$\begin{gathered} \mathrm{C}_{17} \mathrm{H}_{22} \mathrm{FeO}_{3} \\ (329.8) \end{gathered}$	44	$\begin{gathered} 61.86 \\ (61.76) \end{gathered}$	$\begin{gathered} 6.67 \\ (6.71) \end{gathered}$	3460 b	1741 s
14c	$\begin{gathered} \mathrm{Ph} \\ 0 \end{gathered}$	$\begin{gathered} \mathrm{C}_{22} \mathrm{H}_{24} \mathrm{FeO}_{3} \\ (391.8) \end{gathered}$	36	$\begin{gathered} 67.38 \\ (67.49) \end{gathered}$	$\begin{gathered} 6.31 \\ (6.32) \end{gathered}$	3470 b	1730 s
14d	$\begin{gathered} \mathrm{H} \\ 1 \end{gathered}$	$\begin{gathered} \mathrm{C}_{17} \mathrm{H}_{22} \mathrm{FeO}_{3} \\ (329.8) \end{gathered}$	46	$\begin{gathered} 61.86 \\ (62.00) \end{gathered}$	$\begin{gathered} 6.67 \\ (6.69) \end{gathered}$	3536 b	1741 s
14e	$\begin{gathered} \mathrm{H} \\ 2 \end{gathered}$	$\begin{gathered} \mathrm{C}_{18} \mathrm{H}_{24} \mathrm{FeO}_{3} \\ (343.8) \end{gathered}$	25	$\begin{gathered} 62.83 \\ (62.71) \end{gathered}$	$\begin{gathered} 6.98 \\ (7.17) \end{gathered}$	3522 b	1732 s
15a	$\begin{gathered} \mathrm{H} \\ 0 \end{gathered}$	$\begin{gathered} \mathrm{C}_{18} \mathrm{H}_{22} \mathrm{FeO}_{4} \\ (356.8) \end{gathered}$	51	$\begin{gathered} 60.37 \\ (61.44) \end{gathered}$	$\begin{gathered} 6.15 \\ (6.30) \end{gathered}$	-	1742 s
15b	$\begin{gathered} \mathrm{Me} \\ 0 \end{gathered}$	$\begin{gathered} \mathrm{C}_{19} \mathrm{H}_{24} \mathrm{FeO}_{4} \\ (371.8) \end{gathered}$	46	$\begin{gathered} 61.32 \\ (61.61) \end{gathered}$	$\begin{gathered} 6.46 \\ (6.52) \end{gathered}$	-	1738 s
15c	$\begin{gathered} \mathrm{Ph} \\ 0 \end{gathered}$	$\begin{gathered} \mathrm{C}_{24} \mathrm{H}_{26} \mathrm{FeO}_{4} \\ (433.8) \end{gathered}$	44	$\begin{gathered} 66.39 \\ (66.02) \end{gathered}$	$\begin{gathered} 5.99 \\ (6.17) \end{gathered}$	-	1744 s
15d	$\begin{gathered} \mathrm{H} \\ 1 \end{gathered}$	$\begin{gathered} \mathrm{C}_{19} \mathrm{H}_{24} \mathrm{FeO}_{4} \\ (371.8) \end{gathered}$	50	$\begin{gathered} 61.32 \\ (60.88) \end{gathered}$	$\begin{gathered} 6.46 \\ (6.18) \end{gathered}$	-	1744 s
15e	$\begin{gathered} \mathrm{H} \\ 2 \end{gathered}$	$\begin{gathered} \mathrm{C}_{20} \mathrm{H}_{26} \mathrm{FeO}_{4} \\ (385.8) \end{gathered}$	36	$\begin{gathered} 62.21 \\ (62.43) \end{gathered}$	$\begin{gathered} 6.74 \\ (6.75) \end{gathered}$	-	1734 s

[^5]${ }^{1} \mathrm{H}$ NMR spectra of $\mathrm{Fc}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{CHRCH}\left(\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{OH}\right) \mathrm{CH}_{\mathrm{c}} \mathrm{H}_{\mathrm{d}} \mathrm{OAc}(\mathbf{1 4})$ and $\mathrm{Fc}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{CHRCH}\left(\mathrm{CH}_{\mathrm{c}} \mathrm{H}_{\mathrm{d}} \mathrm{OAc}\right)_{2}$ (15)

Compd. no.	Ferrocene protons			Methine protons ${ }^{\text {a }}$		Methylene protons ${ }^{\text {a }}$					Methyl protons		OH
				α	ω	$\mathrm{H}_{\mathrm{c}} \mathrm{H}_{\text {d }}$	$\mathrm{H}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}$	α	β	γ	$\mathrm{CH}_{3} \mathrm{COO}$	$\mathrm{CH}_{3} \mathrm{CH}$	
14a	4.10 s	(9)	4.07 m	-	$\begin{gathered} 1.88 \\ (1, \mathrm{~m}) \end{gathered}$	$\begin{gathered} 4.17 \\ (2, \mathrm{~m}) \end{gathered}$	$\begin{gathered} 3.53 \\ (2, \mathrm{~m}) \end{gathered}$	$\begin{gathered} 2.44 \\ (2, \mathrm{~d}) \end{gathered}$			$\begin{aligned} & 2.08 \\ & (3, \mathrm{~s}) \end{aligned}$	-	$\begin{gathered} 2.05 \\ (1, b) \end{gathered}$
14b	4.14 m			2.73 m	$\begin{gathered} 1.77 \\ (1, \mathrm{~m}) \end{gathered}$	4.08 m 3.93 dd (2)	$\begin{gathered} 3.53 \\ (2, \mathrm{~m}) \end{gathered}$	-	-	-	$\begin{gathered} 2.04 \\ (3, \mathrm{~s}) \end{gathered}$	$\begin{gathered} 1.36 \\ (3, \mathrm{~d}) \end{gathered}$	$\begin{gathered} 2.73 \\ (1, \mathrm{~b}) \end{gathered}$
$14 c^{\text {b }}$	4.12 m	(10)		4.21 m	$\begin{gathered} 1.92 \\ (1, \mathrm{~m}) \end{gathered}$	$\begin{gathered} 3.97 \\ (2, \mathrm{~m}) \end{gathered}$	3.57 m 3.46 m (2)	-	-	-	$\begin{gathered} 2.09 \mathrm{~s} \\ 2.01 \mathrm{~s} \\ (3) \end{gathered}$	-	$\begin{gathered} 2.05 \\ (1, \mathrm{~b}) \end{gathered}$
14d	4.12 s	(9)	4.08 s	-	$\begin{gathered} 1.85 \\ (1, \mathrm{~m}) \end{gathered}$	$\begin{gathered} 4.21 \\ (2, \mathrm{dd}) \end{gathered}$	3.62 m 3.54 m (2)	$\begin{gathered} 2.39 \\ (2, \mathrm{t}) \end{gathered}$	$\begin{gathered} 1.54 \\ (2, \mathrm{~m}) \end{gathered}$	-	$\begin{gathered} 2.08 \\ (3, \mathrm{~s}) \end{gathered}$	-	$\begin{gathered} 2.01 \\ (1, b) \end{gathered}$
14e	4.12 s	(9)	4.06 s	-	$\begin{gathered} 1.80 \\ (1, \mathrm{~m}) \end{gathered}$	$\begin{gathered} 4.18 \\ (2, \mathrm{dd}) \end{gathered}$	3.59 dd 3.49 dd (2)	$\begin{gathered} 2.31 \\ (2, \mathrm{t}) \end{gathered}$	$\begin{gathered} 1.35 \\ (2, \mathrm{~m}) \end{gathered}$	$\begin{gathered} 1.54 \\ (2, \mathrm{~m}) \end{gathered}$	$\begin{gathered} 2.07 \\ (3, \mathrm{~s}) \end{gathered}$	-	$\begin{gathered} 2.12 \\ (1, \mathrm{~b}) \end{gathered}$
15a	4.10 s	(9)	4.05 m	-	$\begin{gathered} 1.96 \\ (1, \mathrm{~m}) \end{gathered}$	4.21 m 3.96 m (4)	-	$\begin{gathered} 2.46 \\ (2, \mathrm{~d}) \end{gathered}$	-	-	$\begin{gathered} 2.06 \\ (6, \mathrm{~s}) \end{gathered}$	-	-
15b	4.12 m	(10)		$2.77 \mathrm{~m}$	$\begin{gathered} 1.90 \\ (1, \mathrm{~m}) \end{gathered}$	4.06 m 3.85 dd (4)	-	-	-	-	$\begin{gathered} 2.03 \\ (6, \mathrm{~s}) \end{gathered}$	$\begin{gathered} 1.36 \\ (3, \mathrm{~d}) \end{gathered}$	-
$15 \mathrm{c}^{\text {b }}$	4.08 m			4.10 m	$\begin{gathered} 2.43 \\ (1, \mathrm{~m}) \end{gathered}$	3.95 m 3.65 m (4)	-	-	-	-	$\begin{gathered} 2.06 \mathrm{~s} \\ 1.98 \mathrm{~s} \\ (6) \end{gathered}$	-	-
15d	4.08 m	(9)	4.06 m	-	$\begin{gathered} 2.01 \\ (1, \mathrm{~m}) \end{gathered}$	$\begin{gathered} 4.15 \\ (4, \mathrm{~m}) \end{gathered}$	-	$\begin{aligned} & 2.35 \\ & (2, \mathrm{t}) \end{aligned}$	$\begin{gathered} 1.59 \\ (2, \mathrm{~m}) \end{gathered}$	-	$\begin{gathered} 2.06 \\ (6, \mathrm{~s}) \end{gathered}$	-	-
15e	4.12 s	(9) 4.06 m		-	$\begin{gathered} 2.01 \\ (1, \mathrm{~m}) \end{gathered}$	$\begin{gathered} 4.01 \\ (4, \mathrm{~m}) \end{gathered}$	-	$\begin{aligned} & 2.30 \\ & (2, \mathrm{t}) \end{aligned}$	$\begin{gathered} 1.38 \\ (2, \mathrm{~m}) \end{gathered}$	$\begin{gathered} 1.52 \\ (2, \mathrm{~m}) \end{gathered}$	$\begin{gathered} 2.05 \\ (6, \mathrm{~s}) \end{gathered}$	-	-

[^6]TABLE VII
${ }^{13} \mathrm{C}$ HNM spectra of $\mathrm{Fc}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{CHRCH}\left(\mathrm{CH}_{2} \mathrm{OH}\right) \mathrm{CH}_{2} \mathrm{OOCCH}_{3}$ (14) and $\mathrm{Fc}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{CHRCH}\left(\mathrm{CH}_{2} \mathrm{OOCCH}_{3}\right)_{2}$ (15)

Compd. no.	Ferrocene C-atoms			Methine C-atoms		Methylene C-atoms					Methyl C-atoms		Benzene C-atoms		COO
	unsubst. ring	substit. ring													
		CH	C	α	ω	α	β	γ	$\mathrm{CH}_{2} \mathrm{OH}$	$\mathrm{CH}_{2} \mathrm{OAc}$	CHCH_{3}	OCCH_{3}	C	CH	
14a	67.78	$\begin{aligned} & 68.84 \\ & 69.07 \end{aligned}$	85.83	-	42.57	28.51		-	64.08	62.23	-	20.76	-	-	171.74
14b	65.66	$\begin{aligned} & 67.12 \\ & 68.18 \\ & 68.43 \end{aligned}$	92.38	31.85	46.91	-	-	-	63.54	61.53	17.13	20.74	-	-	170.26
14e	66.82	$\begin{aligned} & 68.63 \\ & 68.89 \\ & 69.16 \\ & 69.89 \end{aligned}$	91.40	44.35	46.76	-	-	-	63.43	60.92	-	20.74	143.32	$\begin{aligned} & 126.67 \\ & 126.72 \\ & 128.31 \end{aligned}$	171.59
14d	67.14	$\begin{aligned} & 67.81 \\ & 68.42 \end{aligned}$	88.54	-	40.01	26.67	28.86	-	64.27	62.45	-	20.71	-	-	171.72
14e	67.19	$\begin{aligned} & 68.15 \\ & 68.61 \end{aligned}$	89.02	-	40.07	29.52	27.39	28.29	64.41	62.39	-	20.69	-	-	171.68
15a	67.58	$\begin{aligned} & 68.51 \\ & 68.81 \end{aligned}$	84.78	-	39.09	28.68	-	-	-	63.73	-	20.65	-	-	171.01
15b	66.09	$\begin{aligned} & 67.30 \\ & 68.21 \\ & 68.61 \end{aligned}$	91.92	31.97	43.27	-	-	-	-	$\begin{aligned} & 62.96 \\ & 62.78 \end{aligned}$	16.91	$\begin{aligned} & 20.75 \\ & 20.60 \end{aligned}$	-	-	171.01
15c	66.75	$\begin{aligned} & 68.52 \\ & 68.74 \\ & 69.46 \end{aligned}$	90.80	43.18	44.59	-	-	-	-	$\begin{aligned} & 62.87 \\ & 62.67 \end{aligned}$	-	$\begin{aligned} & 20.74 \\ & 20.60 \end{aligned}$	142.73	-	170.94
15d	67.97	$\begin{aligned} & 68.63 \\ & 69.37 \end{aligned}$	89.01	-	36.78	26.48	29.15	-	-	63.95	-	20.71	-	-	171.12
15e	67.32	$\begin{aligned} & 68.24 \\ & 68.72 \end{aligned}$	88.96	-	36.83	29.44	27.72	28.29	-	64.04	-	20.66	-	-	171.09

Acknowledgements. - We are indebted to Ph. D Senka Đaković for helpful technical advice. We thank the Ministry of Science, Technology and Information of the Republic of Croatia for partial support through a grant.

REFERENCES

1. G. Pavlović, J. Lapić, and V. Rapić, Struct. Chem., in press.
2. L. Poppe and L. Novák, Stereoselective Biocatalysis, VCH, Weinheim, 1992, p. 134.
3. K. Faber, Biotransformations in Organic Chemistry, Springer, Berlin, 1997, p. 59.
4. K. Tsuji, Y. Terao, and K. Achiwa, Tetrahedron Lett. 45 (1989) 6189-6192.
5. Ref. 3, p. 317.
6. F.-R. Alexandre and F. Huet, Tetrahedron: Asymmetry 9 (1998) 2301-2310.
7. Ref. 3, p. 69, 83.
8. D. Lambusta, G. Nicolosi, A. Patti, and M. Piattelli, Tetrahedron: Asymmetry 4 (1993) 912-924.
9. G. Nicolosi, R. Morrone, A. Patti, and M. Piattelli, Tetrahedron: Asymmetry 3 (1992) 753-758.
10. S. Lisac, V. Rapić, and S. Kovač, Croat. Chem. Acta 67 (1994) 531-541.
11. C. Moise and J. Tirouflet, Bull. Soc. Chim. Fr. (1970) 2656-2665.
12. J. March, Advanced Organic Chemistry, Wiley, New York, 1992, p. 352.
13. L. S. Bondar. P. P. Rodionov, and R. A. Okunev, Izv. Akad. Nauk SSSSR, Ser. Khim. (1968) 892-895.
14. Beilsteins Handbuch der Organischen Chemie, F. Richter (Ed.), Vol.2/II, Springer, Berlin, 1942, p. 525.
15. L. C. Pearcy, S. P. Rowland, C. H. Mack, and E. E. Coll, J. Gas Chromatogr. 6 (1968) 173-176.
16. V. Kovač, V. Rapić, I. Sušnik, and M. Šuprina, J. Organomet. Chem. 530 (1997) 149-158.
17. V. Rapić, J. Alagić, and V. Kovač, Proceedings of the XVIII ${ }^{\text {th }}$ International Conference on Organometallic Chemistry (XVIII ${ }^{\text {th }}$ ICOMC), München, August 1998, p. A-191.
18. S. Kovač and V. Rapić, J. Organomet. Chem. 384 (1990) 147-153 and references cited therein.
19. D. Lednicer, J. K. Lindsay, and Ch. R. Hauser, J. Org. Chem. 23 (1958) 653-655.
20. K. L. Rinehart, Jr., R. J. Curby, Jr., and P. E. Sokol, J. Am. Chem. Soc. 79 (1957) 3420-3424.
21. C.-F. Shu and F. C. Anson, J. Phys. Chem. 94 (1990) 8345-8350.
22. C. L. Sterzo and G. Ortaggi, J. Chem. Soc., Perkin Trans. II (1984) 345-348.
23. C. M. Zakaria, C. A. Morrison, D. McAndrew, W. Bell, and C. Glidwell J. Organomet. Chem. 485 (1995) 201-207.
24. J. Decombe, J. P. Ravoux, and A. Dormond, C. R. Seances Acad. Sci., Paris 258 (1964) 2348-2349.

SAŽETAK

Priprava 2-(ferocenilalkil)- i 2-[fenil(ferocenil)alkil]-1,3-propandiola i njihovih acetata

Jasmina Lapić i Vladimir Rapić

Reakcijom pogodno odabranih reagensâ $\mathrm{Fc}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{CHRX}(1-3,6$ i 9) s natrijevim dietil-malonatom u suhom ksilenu pripravljeni su odgovarajući dietil-(ferocenilalkil)malonati i dietil-[fenil(ferocenil)alkil)malonati (11) u 81-91\%-tnom iskorištenju. Uporabom $\mathrm{Fc}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{CHRX}(4,7,8$ i 10) pri sličnim okolnostima nastaju transesterifikacijski produkti - etil-ferocenilalkil-malonati, odnosno etil-fenil(ferocenil)alkil-malonati (12). Redukcijom kondenzacijskih produkata 11 s litijevim aluminijevim hidridom u dietil-eteru dobiveni su odgovarajući dioli 13 (45-66\%), koji će se u daljnim istraživanjima upotrijebiti kao supstrati za lipazama katalizirane pretvorbe s vi-nil-acetatom u kiralne monoacetate. Djelovanjem acetanhidrida na benzenske otopine diolâ 13 pripravljeni su odgovarajući mono- 14 (25-52\%) i diacetati 15 (36-51\%).

[^0]: * For Part XXVII, see Ref. 1.
 ** Author to whom correspondence should be addressed. (E-mail: vrapic@pbf.hr)

[^1]: * ferrocyl $=$ ferrocenylmethyl.

[^2]: The structure of the compound 13a ($\mathrm{R}=\mathrm{H}, n=0$) is described in Ref. 1: spectral analysis and a single crystal X-ray study showed the hydroxyl groups of this compound are involved in the intermolecular $\mathrm{OH} \cdots \mathrm{O}$ hydrogen bond; the crystal structure is additionally stabilized

[^3]: ${ }^{\text {a }} \alpha, \beta, \ldots \omega$ denote position of $\mathrm{CH}_{2} / \mathrm{CH}$ of the aliphatic chain relative to the ferrocene nucleus.
 The signals corresponding to the hydroxylic protons dissapeared after addition of $\mathrm{D}_{2} \mathrm{O}$ to the solutions.
 ${ }^{\mathrm{c}}$ Benzene protons were registered at $\delta 7.32 \mathrm{~m}$ and $7.27 \mathrm{~m} \mathrm{ppm}(5 \mathrm{H})$.

[^4]: ${ }^{\text {a }}$ See footnote (a) of Table II.
 ${ }^{\mathrm{b}}$ Benzene protons were registered at $\delta 7.27 \mathrm{~m} \mathrm{ppm}(5 \mathrm{H})$.

[^5]: ${ }^{\text {a }}$ All the compounds prepared are yellow-orange resins.

[^6]: ${ }^{\text {a }}$ See footnote at Table $I I . H_{c}$ and H_{d} were registered under the same integral line as ferrocene protons (e.g., in the case of $14 a$, signals of 9 Fc protons and $2 \mathrm{H}_{\mathrm{c}} \mathrm{H}_{\mathrm{d}}$ were not well resolved and were registered together as 11 protons).
 ${ }^{\mathrm{b}}$ Benzene protons were registered as folows: $\mathbf{1 4 c}, \delta 7.27 \mathrm{~m}$ and $7.34 \mathrm{~m} ; \mathbf{1 5 c} 7.30 \mathrm{~m}$ and $7.36 \mathrm{~m} \mathrm{ppm}(5 \mathrm{H})$. Two singlets corresponding to the acetate protons indicate the presence of two diastereomeric pairs of enantiomers.

