Crystal Structure Investigations of Amide Sulfate Tetrahydrates with Divalent Cations*

Paul Angerer, Ekkehart Tillmanns, and Manfred Wildner**

Institut für Mineralogie und Kristallographie, Universität Wien, Geozentrum, Althanstr. 14, A-1090 Wien, Austria

Received October 1, 1998; revised January 13, 1999; accepted January 23, 1999
Single crystals of three amide sulfate tetrahydrate compounds, $\mathrm{Ca}\left(\mathrm{NH}_{2} \mathrm{SO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$, $\mathrm{Mn}\left(\mathrm{NH}_{2} \mathrm{SO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O} \quad$ and $\mathrm{Ni}\left(\mathrm{NH}_{2} \mathrm{SO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$, were synthesized by controlled evaporation of aqueous solutions. The crystal structures were investigated using single-crystal X-ray diffraction methods. $\mathrm{Ca}\left(\mathrm{NH}_{2} \mathrm{SO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$: space group $C 2 / c, \quad Z=4, \quad a=11.616(3) \AA, \quad b=7.761(2) \AA$, $c=11.638(3) \quad \AA, \quad \beta=98.93(1)^{\circ}, \quad V=1036.47 \quad \AA^{3}, \quad R 1=0.026$; $\mathrm{Mn}\left(\mathrm{NH}_{2} \mathrm{SO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$: space group $P 2_{1} / c, Z=2, a=6.143(2) \AA$, $b=5.324(2) \AA, \quad c=15.441(5) \AA, \quad \beta=91.72(1)^{\circ}, \quad V=504.78 \AA^{3}$, $R 1=0.024 ; \quad \mathrm{Ni}\left(\mathrm{NH}_{2} \mathrm{SO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}: \quad$ space group $P \overline{1}, \quad Z=1$, $a=6.331(8) \AA, \quad b=6.731(9) \AA, c=6.784(8) \AA, \quad \alpha=88.93(9)^{\circ}$, $\beta=67.87(5)^{\circ}, \gamma=67.76(6)^{\circ}, V=245.27 \AA^{3}, R 1=0.030$.
In $\mathrm{Ca}\left(\mathrm{NH}_{2} \mathrm{SO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ antiprismatic CaO_{8} polyhedra share four oxygen atoms with $\mathrm{NH}_{2} \mathrm{SO}_{3}$ tetrahedra forming sheets parallel (001). In $\mathrm{Mn}\left(\mathrm{NH}_{2} \mathrm{SO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Ni}\left(\mathrm{NH}_{2} \mathrm{SO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}, \mathrm{MnO}_{6}$ octahedra and $\mathrm{NiN}_{2} \mathrm{O}_{4}$ octahedra, respectively, are linked by common corners with two $\mathrm{NH}_{2} \mathrm{SO}_{3}$ tetrahedra forming isolated groups. These units are interconnected by hydrogen bonds only to form three-dimensional framework structures. The amide sulfate group has a distorted tetrahedral configuration with mean $\mathrm{S}-\mathrm{O}$ and $\mathrm{S}-\mathrm{N}$ bond lengths of 1.449 and $1.654 \AA$, respectively. The average cat-ion-oxygen distances are $2.456 \AA(\mathrm{Ca}-\mathrm{O}), 2.173 \AA(\mathrm{Mn}-\mathrm{O})$, and $2.049 \AA(\mathrm{Ni}-\mathrm{O})$, both $\mathrm{Ni}-\mathrm{N}$ bond lengths are $2.153 \AA$. Three different types of hydrogen bonds are observed in the title compounds, namely $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ bonds ranging from 2.680 to $2.968 \AA, \mathrm{~N}-\mathrm{H} \cdots \mathrm{O}$ bonds between 2.966 and $3.339 \AA$, and one $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ bond with

[^0]$2.905 \AA$. Generally, observed interatomic bond lengths and angles comply well with crystal chemical expectations.

Key words: crystal structure, crystal chemistry, amide sulfates, $\mathrm{Ca}\left(\mathrm{NH}_{2} \mathrm{SO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}, \mathrm{Mn}\left(\mathrm{NH}_{2} \mathrm{SO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}, \mathrm{Ni}\left(\mathrm{NH}_{2} \mathrm{SO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$.

INTRODUCTION

Sulfamic acid has been first synthesized by Berglund ${ }^{1}$ (1878). The procedure of Raschig ${ }^{2}$ (1887) made the extensive application of this substance possible. Various review articles on the chemical properties of sulfamic acid and related compounds have been published. The paper by Audrieth et al. ${ }^{3}$ (1940) gives a comprehensive survey of the older literature, more recent references can be found in Benson and Spillane ${ }^{4}$ (1980).

The tetrahedral configuration of the $\left[\mathrm{NH}_{2} \mathrm{SO}_{3}\right]^{-}$anion was first established by crystal structure investigations of potassium amide sulfate by Brown and Cox ${ }^{5}$ (1940), and Ketelaar and Heilmann ${ }^{6}$ (1941). Kanda and King 7 (1951) characterized the structure of crystalline sulfamic acid using X-ray diffraction methods. The existence of the ${ }^{+} \mathrm{NH}_{3} \cdot \mathrm{SO}_{3}{ }^{-}$zwitterion in sulfamic acid was proven by Sass^{8} (1960) from neutron diffraction data. A detailed summary and references on crystal structure investigations of sulfamic acid and amide sulfates performed so far is given by Angerer ${ }^{9}$ (1997). Furthermore, several crystalline amide sulfate compounds were investigated in respect to their interesting physical - especially piezoelectric properties (cf. e.g. Haussühl and Haussühl, ${ }^{10}$ 1995). These studies initiated experiments aiming at the synthesis and structure determination of new amide sulfate compounds. The present study reports the syntheses and single-crystal X-ray structure investigations of three new amide sulfate tetrahydrate compounds.

EXPERIMENTAL

Synthesis

Crystals of the title compounds were synthesized by slow controlled evaporation at room temperature of aqueous solutions of the respective amide sulfates. These aqueous solutions were obtained either by reaction of the particular carbonate with sulfamic acid (1)

$$
\begin{equation*}
\mathrm{M}^{2+} \mathrm{CO}_{3}+2\left(\mathrm{NH}_{2} \mathrm{SO}_{3}\right) \mathrm{H} \Rightarrow \mathrm{M}^{2+}\left(\mathrm{NH}_{2} \mathrm{SO}_{3}\right)_{2}+\mathrm{CO}_{2} \uparrow+\mathrm{H}_{2} \mathrm{O} \tag{1}
\end{equation*}
$$

or by reaction of a solution of barium amide sulfate, obtained according to (1), with the respective sulfate and subsequent precipitation of barium sulfate (2).

$$
\begin{equation*}
\mathrm{Ba}\left(\mathrm{NH}_{2} \mathrm{SO}_{3}\right)_{2}+\mathrm{M}^{2+} \mathrm{SO}_{4} \Rightarrow \mathrm{M}^{2+}\left(\mathrm{NH}_{2} \mathrm{SO}_{3}\right)_{2}+\mathrm{BaSO}_{4} \downarrow \tag{2}
\end{equation*}
$$

Using one or both of these methods single crystals of the title compounds up to 5 mm were obtained. $\mathrm{Ca}\left(\mathrm{NH}_{2} \mathrm{SO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Ni}\left(\mathrm{NH}_{2} \mathrm{SO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ form colourless (Ca) and green (Ni) platelike crystals, $\mathrm{Mn}\left(\mathrm{NH}_{2} \mathrm{SO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ elongated pink crystals.

Structure Investigations

X-ray diffraction data of selected single crystals were measured at room temperature with graphite-monochromatized $\mathrm{Mo}-\mathrm{K} \alpha$ radiation on a Stoe AED2 fourcircle diffractometer ($2 \theta-\omega$ scans, 38 steps/reflection, increased for $\alpha_{1}-\alpha_{2}$ splitting, 2×5 steps for background correction, 0.03° and $0.5-2 \mathrm{sec} /$ step; 3 standard reflections every 120 min). The intensities were corrected for Lorentz- and polarization effects as well as for absorption by ψ-scans ($\Delta \psi=10^{\circ}$). Lattice parameters were refined from a set of accurate 2θ values in the range $30<2 \theta<42^{\circ}$. The crystal structures of $\mathrm{Ca}\left(\mathrm{NH}_{2} \mathrm{SO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Mn}\left(\mathrm{NH}_{2} \mathrm{SO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ were determined by the interpretation of the respective Patterson maps and subsequent difference Fourier syntheses. The structure of $\mathrm{Ni}\left(\mathrm{NH}_{2} \mathrm{SO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ was solved by direct methods with SHELXS-86 (Sheldrick, ${ }^{11}$ 1986). All hydrogen atoms could be located in final difference Fourier maps. The least-squares refinements on F^{2} were done with the program SHELXL-93 (Sheldrick, ${ }^{12}$ 1993) including anisotropic displacement parameters for all non-hydrogen atoms and isotropic displacement parameters for the H atoms. For a compilation of crystal data and details of the data collections and structure refinements see Table I. Final atomic parameters are summarized in Tables II - IV.*

RESULTS AND DISCUSSION

The crystal structures of $\mathrm{Ca}\left(\mathrm{NH}_{2} \mathrm{SO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}, \mathrm{Mn}\left(\mathrm{NH}_{2} \mathrm{SO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Ni}\left(\mathrm{NH}_{2} \mathrm{SO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ are illustrated in Figures 1-3, selected interatomic bond lengths and angles are listed in Tables V to VII, respectively.

The characteristic common structural element in $\mathrm{Ca}\left(\mathrm{NH}_{2} \mathrm{SO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$, $\mathrm{Mn}\left(\mathrm{NH}_{2} \mathrm{SO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$, and $\mathrm{Ni}\left(\mathrm{NH}_{2} \mathrm{SO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ is the $\left[\mathrm{NH}_{2} \mathrm{SO}_{3}\right]^{-}$group, which exhibits a very similar distorted tetrahedral geometry in all three compounds. Ignoring the two hydrogen atoms, the $\left[\mathrm{NH}_{2} \mathrm{SO}_{3}\right]^{-}$group shows pseudotrigonal symmetry parallel with the $\mathrm{S}-\mathrm{N}$ bond axis. The displacement ellipsoids of the three oxygen atoms also approximately obey this threefold symmetry. Including the hydrogen atoms, a pronounced pseudomirror symmetry of the $\left[\mathrm{NH}_{2} \mathrm{SO}_{3}\right]^{-}$group is observed parallel to the $\mathrm{N}-\mathrm{S}-\mathrm{O}$ plane bisecting the NH_{2} group. A typical example is illustrated in Figure 4.

[^1]TABLE I
Compilation of crystal data and details of the X-ray measurements and structure refinements of the amide sulfate tetrahydrates $\mathrm{M}^{2+}\left(\mathrm{NH}_{2} \mathrm{SO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$

$$
\left(\mathrm{M}^{2+}=\mathrm{Ca}, \mathrm{Mn}, \mathrm{Ni}\right)
$$

$\mathrm{M}^{2+}\left(\mathrm{NH}_{2} \mathrm{SO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$	$\mathrm{M}^{2+}=\mathrm{Ca}$	$\mathrm{M}^{2+}=\mathrm{Mn}$	$\mathrm{M}^{2+}=\mathrm{Ni}$
$M_{\mathrm{r}} / \mathrm{g} \mathrm{mol}^{-1}$	304.30	319.16	322.95
space group	$C 2 / c$	$P 2_{1} / c$	$P \overline{1}$
a / \AA	$11.616(3)$	$6.143(2)$	$6.331(8)$
b / \AA	$7.761(2)$	$5.324(2)$	$6.731(9)$
c / \AA	$11.638(3)$	$15.441(5)$	$6.784(8)$
α / \circ			$88.93(9)$
β / \circ	$98.93(1)$	$91.72(1)$	$67.87(5)$
γ / \circ		$67.76(6)$	
V / \AA^{3}	1036.5	504.8	245.3
Z	4	2	1
$\rho_{\text {calc }} / \mathrm{g} \mathrm{cm}^{-3}$	1.95	2.10	2.19
$\mu(\mathrm{Mo}-\mathrm{K} \alpha) /$ cm-1	10.5	17.7	24.5
extinction coefficient	$0.015(1)$	$0.003(1)$	$0.084(6)$
$2 \theta_{\text {max }} / \circ$	60	70	75
h, k, l-range	$-16 \leq h \leq 16$	$-9 \leq h \leq 9$	$-10 \leq h \leq 10$
	$-10 \leq k \leq 10$	$-8 \leq k \leq 8$	$-11 \leq k \leq 11$
	$0 \leq l \leq 10$	$0 \leq l \leq 24$	$-11 \leq l \leq 11$
number of ψ-scans	2	4	4
transmission factors	$0.85-0.99$	$0.64-0.75$	$0.58-0.69$
measured reflections	3243	4793	5179
R_{i}	0.035	0.031	0.047
unique data set	1524	2237	2610
data with $F_{\mathrm{o}}>4 \sigma\left(F_{\mathrm{o}}\right)$	1101	1622	1948
variables	93	95	95
$R 1$ [for $F_{\mathrm{o}}>4 \sigma\left(F_{\mathrm{o}}\right)$]	0.026	0.024	0.030
$R 1$ [for all reflections]	0.048	0.043	0.044
$w R 2$	0.065	0.059	0.081
$R 1$			

$$
\begin{aligned}
& R 1=\Sigma| | F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}}\right|\right| / \Sigma\left|F_{\mathrm{o}}\right|, \\
& w R 2=\left[\sigma^{2}\left(F_{0}{ }^{2}-F_{\mathrm{c}}{ }^{2}\right)^{2} / \Sigma w F_{0}{ }^{4}\right]^{1 / 2}, \\
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+0.045 P^{2}\right], \\
& P=\left(\left[\max \text { of }\left(F_{0}{ }^{2}, 0\right)\right]+2 F_{\mathrm{c}}{ }^{2}\right) / 3 .
\end{aligned}
$$

The mean $\mathrm{S}-\mathrm{O}$ distances in the title compounds vary between $1.446 \AA$ in $\mathrm{Ni}\left(\mathrm{NH}_{2} \mathrm{SO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ and $1.453 \AA$ in $\mathrm{Ca}\left(\mathrm{NH}_{2} \mathrm{SO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$. As is to be expected for $\left[\mathrm{NH}_{2} \mathrm{SO}_{3}\right]^{-}$groups, these values are significantly below the statistical S-O mean value for $\left[\mathrm{SO}_{4}\right]^{2-}$ tetrahedra of $1.473 \AA$, given by Baur ${ }^{13}$ (1981). The $\mathrm{S}-\mathrm{N}$ bond lengths range from $1.624(2) \AA$ in the Ca to 1.690(1) \AA in the Ni compound, the average $\mathrm{S}-\mathrm{N}$ distance is $1.654 \AA$. This is between

TABLE II
Structure parameters for $\mathrm{Ca}\left(\mathrm{NH}_{2} \mathrm{SO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}^{\text {a }}$

Atom	x / a	y / b	z / c	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}	$U_{\text {eq }} / U_{\text {iso }}$
Ca	0	$0.07572(5)$	0.25	$0.0175(2)$	$0.0235(2)$	$0.0265(2)$	0	$0.0034(2)$	0	$0.0225(1)$
S	$0.81712(3)$	$0.70341(5)$	$0.31400(4)$	$0.0172(2)$	$0.0236(2)$	$0.0336(2)$	$0.0026(2)$	$0.0005(1)$	$-0.0023(1)$	$0.0252(1)$
O1	$0.6921(1)$	$0.7269(2)$	$0.2851(1)$	$0.0180(5)$	$0.0348(7)$	$0.0461(7)$	$0.0053(6)$	$-0.0008(5)$	$-0.0006(4)$	$0.0336(3)$
O2	$0.8783(1)$	$0.8664(2)$	$0.3289(1)$	$0.0308(6)$	$0.0287(6)$	$0.0439(8)$	$-0.0004(6)$	$0.0034(5)$	$-0.0106(5)$	$0.0347(3)$
O3	$0.8461(1)$	$0.5903(2)$	$0.4148(1)$	$0.0311(6)$	$0.0343(6)$	$0.0401(7)$	$0.0105(6)$	$-0.0035(5)$	$-0.0003(5)$	$0.0361(3)$
O4	$0.0200(1)$	$0.2755(2)$	$0.0935(1)$	$0.0297(7)$	$0.0396(7)$	$0.0380(7)$	$0.0086(6)$	$-0.0052(5)$	$-0.0088(6)$	$0.0369(3)$
O5	$0.8840(1)$	$0.9497(2)$	$0.0743(1)$	$0.0356(8)$	$0.0570(9)$	$0.0346(8)$	$-0.0094(7)$	$0.0013(6)$	$0.0120(6)$	$0.0429(4)$
N	$0.8646(2)$	$0.6096(2)$	$0.2057(2)$	$0.0502(9)$	$0.0297(8)$	$0.0523(12)$	$-0.0020(8)$	$0.0196(9)$	$-0.0017(7)$	$0.0428(4)$
H1	$0.060(2)$	$0.352(4)$	$0.094(2)$					$0.055(8)$		
H2	$-0.037(3)$	$0.314(4)$	$0.044(3)$					$0.077(9)$		
H3	$0.822(3)$	$0.978(4)$	$0.059(2)$						$0.066(9)$	
H4	$0.903(3)$	$0.909(4)$	$0.025(2)$					$0.070(9)$		
H5	$0.832(2)$	$0.508(4)$	$0.190(2)$					$0.068(8)$		
H6	$0.859(3)$	$0.668(4)$	$0.158(2)$					$0.07^{\text {b }}$		

[^2]TABLE III
Structure parameters for $\mathrm{Mn}\left(\mathrm{NH}_{2} \mathrm{SO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}^{\text {a }}$

Atom	x / a	y / b	z / c	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}	$U_{\text {eq }} / U_{\text {iso }}$
Mn	0	0	0	$0.0209(1)$	$0.0171(1)$	$0.0166(1)$	$0.0016(1)$	$0.0024(1)$	$-0.0001(1)$	$0.0182(1)$
S	$0.25471(4)$	$0.23724(5)$	$0.82578(2)$	$0.0213(1)$	$0.0211(1)$	$0.0148(1)$	$0.0013(1)$	$0.0025(1)$	$-0.0011(1)$	$0.0191(1)$
O1	$0.0712(2)$	$0.1957(2)$	$0.8814(1)$	$0.0277(4)$	$0.0381(5)$	$0.0244(4)$	$0.0119(4)$	$0.0081(3)$	$-0.0020(4)$	$0.0299(2)$
O2	$0.2159(2)$	$0.1261(2)$	$0.7411(1)$	$0.0660(7)$	$0.0342(5)$	$0.0171(4)$	$-0.0045(4)$	$0.0024(4)$	$-0.0053(5)$	$0.0390(3)$
O3	$0.4603(2)$	$0.1593(3)$	$0.8640(1)$	$0.0258(5)$	$0.0474(7)$	$0.0487(6)$	$0.0077(5)$	$-0.0049(4)$	$0.0074(4)$	$0.0408(3)$
O4	$0.7228(2)$	$0.2396(2)$	$0.5071(1)$	$0.0265(4)$	$0.0259(4)$	$0.0337(5)$	$-0.0017(4)$	$0.0037(4)$	$-0.0034(4)$	$0.0286(2)$
O5	$0.2069(2)$	$0.2670(2)$	$0.0676(1)$	$0.0408(5)$	$0.0245(4)$	$0.0202(4)$	$0.0009(3)$	$-0.0043(4)$	$-0.0060(4)$	$0.0286(2)$
N	$0.2696(2)$	$0.5453(2)$	$0.8170(1)$	$0.0369(6)$	$0.0219(5)$	$0.0337(6)$	$0.0008(4)$	$0.0105(5)$	$-0.0034(4)$	$0.0306(2)$
H1	$0.626(3)$	$0.275(4)$	$0.484(1)$					$0.036(5)$		
H2	$0.682(4)$	$0.218(5)$	$0.558(2)$					$0.069(8)$		
H3	$0.218(4)$	$0.425(5)$	$0.047(1)$					$0.058(6)$		
H4	$0.181(5)$	$0.271(5)$	$0.109(2)$					$0.084(5)$		
H5	$0.372(4)$	$0.567(5)$	$0.789(2)$					$0.068(7)$		
H6	$0.164(5)$	$0.601(7)$	$0.789(2)$					$0.098(9)$		

${ }^{\mathrm{a}} U_{i j}$ in \AA^{2}.
$\mathrm{ADP}=\exp \left(-2 \pi^{2} \Sigma_{i} \Sigma_{j} U_{i j} h_{i} h_{j} \mathbf{a}_{i}{ }_{i} \mathbf{a}^{*}{ }_{j}\right) ;$
$U_{\text {eq }}=1 / 3 \Sigma_{i} \Sigma_{j} U_{i j} \mathbf{a}^{*}{ }_{i} \mathbf{a}_{j}{ }_{j} \mathbf{a}_{i} \mathbf{a}_{j}$ (Fischer and Tillmanns, 1988). ${ }^{17}$

TABLE IV
Structure parameters for $\mathrm{Ni}\left(\mathrm{NH}_{2} \mathrm{SO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}^{\text {a }}$

Atom	x / a	y / b	z / c	U_{11}	U_{22}	U_{33}	U_{23}	$U_{13} \quad U_{12}$	$U_{\text {eq }} / U_{\text {iso }}$
Ni	0	0	0	0.0263(1)	0.0176(1)	0.0173(1)	0.0023(1)	$-0.0091(1)-0.0086(1)$	0.0204(1)
S	0.60404(6)	0.63761(5)	0.71666(4)	0.0278(2)	0.0206(2)	0.0201(1)	$0.0042(1)$	$-0.0103(1)-0.0085(1)$	0.0230(1)
O1	0.7269(2)	0.4217(2)	0.5950(2)	0.0341(5)	0.0245(5)	0.0319(5)	-0.0016(4)	$-0.0156(4)-0.0028(4)$	0.0322(2)
O2	0.6549(2)	0.6454(2)	0.9069(2)	0.0450(6)	0.0369(5)	0.0318(5)	0.0070 (4)	$-0.0233(5)-0.0209(5)$	0.0339(2)
O3	0.6404(2)	0.8045(2)	0.5891(2)	0.0405(6)	0.0317(5)	0.0306(5)	$0.0127(4)$	$-0.0085(5)-0.0140(5)$	0.0364(2)
O4	$0.1754(2)$	0.1940(2)	0.8551(2)	0.0381(6)	0.0310(5)	0.0233(4)	$0.0045(4)$	$-0.0114(4)-0.0198(5)$	0.0292(2)
O5	0.1245(2)	-0.0291(2)	0.2445(2)	0.0473(6)	0.0245(5)	0.0299(5)	0.0063(4)	$-0.0240(5)-0.0138(4)$	0.0314(2)
N	0.2950(2)	0.6993(2)	0.8142(2)	0.0291(5)	0.0218(5)	0.0207(4)	0.0020(4)	$-0.0112(4)-0.0088(4)$	0.0239(2)
H1	0.237(4)	0.183(3)	0.731(3)						0.036(5)
H2	0.268(4)	0.207(3)	0.896(3)						0.047(6)
H3	0.171(4)	-0.140(4)	0.272(4)						0.053(6)
H4	0.202(5)	0.021(5)	0.273(5)						0.078(8)
H5	0.261(3)	0.680(3)	0.713(3)						0.029(4)
H6	0.267(4)	0.599(3)	0.888(3)						0.039(5)

Figure 1. Projection of the crystal structure of $\mathrm{Ca}\left(\mathrm{NH}_{2} \mathrm{SO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ along [001].

Figure 2. Projection of the crystal structure of $\mathrm{Mn}\left(\mathrm{NH}_{2} \mathrm{SO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ along [100].

Figure 3. Projection of the crystal structure of $\mathrm{Ni}\left(\mathrm{NH}_{2} \mathrm{SO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ along [001].

Figure 4. Typical geometry and displacement behaviour of the $\left[\mathrm{NH}_{2} \mathrm{SO}_{3}\right]^{-}$groups in the $\mathrm{M}^{2+}\left(\mathrm{NH}_{2} \mathrm{SO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ compounds, showing the pronounced pseudo-mirror symmetry (ellipsoids represent 50% probability, isotropic H -atoms are scaled down).
$1.74 \AA$, the value of a single $\mathrm{S}-\mathrm{N}$ bond and $1.54 \AA$, the respective value for a double $\mathrm{S}-\mathrm{N}$ bond according to Pauling ${ }^{14}$ (1960). The tetrahedral O-S-X bond angles deviate from the ideal tetrahedral value on an average by about 3° : mean $\mathrm{O}-\mathrm{S}-\mathrm{O}$ angles are expanded to 112.4°, mean $\mathrm{O}-\mathrm{S}-\mathrm{N}$ angles are
reduced to 106.2°. The average geometrical data observed for the three $\left[\mathrm{NH}_{2} \mathrm{SO}_{3}\right]^{-}$tetrahedra in the present structure investigations are practically identical with mean values calculated from $15\left[\mathrm{NH}_{2} \mathrm{SO}_{3}\right]^{-}$groups found in 13 well refined structures of amido sulfate compounds, i.e. $\mathrm{S}-\mathrm{O}=1.456 \AA$, $\mathrm{S}-\mathrm{N}=1.651 \AA, \mathrm{O}-\mathrm{S}-\mathrm{O}=112.4^{\circ}$, and $\mathrm{O}-\mathrm{S}-\mathrm{N}=106.3^{\circ}$ (Angerer, ${ }^{9} 1997$).
$\mathrm{Ca}\left(\mathrm{NH}_{2} \mathrm{SO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}, \mathrm{Mn}\left(\mathrm{NH}_{2} \mathrm{SO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$, and $\mathrm{Ni}\left(\mathrm{NH}_{2} \mathrm{SO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ belong to three different structure types. The structure of $\mathrm{Ca}\left(\mathrm{NH}_{2} \mathrm{SO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$

TABLE V
Interatomic bond lengths $/ \AA$ and bond angles $/{ }^{\circ}$ in $\mathrm{Ca}\left(\mathrm{NH}_{2} \mathrm{SO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}^{\text {a }}$

CaO_{8} polyhedron							
Ca-02	$2 x$	2.426(1)	O2-Ca-O4	$2 x$	90.83(4)	[3.458(2)]	
Ca-04	$2 x$	2.430(1)	O2-Ca-O5	$2 x$	72.31(4)	[2.888(2)]	
Ca-05	$2 x$	2.469(2)	O2-Ca-O5	$2 x$	76.90(5)	[3.044(2)]	
Ca-O1	$2 x$	2.499(1)	O2-Ca-O1	$2 x$	79.54(4)	[3.150(2)]	
<Ca-O>		2.456	O4-Ca-O5	$2 x$	74.64(5)	[2.971(2)]	
			O4-Ca-O1	$2 x$	76.38(4)	[3.048(2)]	
			O4-Ca-O1	$2 x$	68.67(4)	[2.781(2)]	
			O5-Ca-O1	$2 x$	72.05(5)	[2.922(2)]	
$\mathrm{NH}_{2} \mathrm{SO}_{3}$ group							
S-O2		1.448(1)	O2-S-O1		111.91(7)	[2.401(1)]	
S-O1		1.450(1)	O2-S-O3		112.36(7)	[2.418(2)]	
S-O3		1.462(1)	O1-S-O3		111.06(7)	[2.401(2)]	
<S-O>		1.453	O2-S-N		105.38(8)	[2.446(2)]	
		O1-S-N	108.94(9)	[2.504(2)]			
			1.624(2)	O3-S-N		106.84(8)	[2.480(2)]
<S-X>		1.496	<O-S-O>		111.78	[2.407]	
			<O-S-N>		107.05	[2.477]	
$\begin{aligned} & \mathrm{N}-\mathrm{H} 5 \\ & \mathrm{~N}-\mathrm{H} 6 \end{aligned}$		0.88(3)	H5-N-H6		115(3)	[1.35(4)]	
		0.71(3)	N-H5 ..-O1		155(2)	[3.047(2)]	
			N-H6 \ldots O5		152(3)	[3.076(2)]	

Water molecules				
O4-H1	$0.75(3)$	H1-O4-H2	$98(3)$	$[1.22(4)]$
O4-H2	$0.86(3)$	H3-O5-H4	$110(3)$	$[1.12(4)]$
O5-H3	$0.75(3)$	O4-H1 \cdots O3	$172(2)$	$[2.906(2)]$
O5-H4	$0.72(3)$	O4-H2 \cdots O3	$172(3)$	$[2.861(2)]$
		O5-H3 \cdots O3	$158(3)$	$[2.908(2)]$
		O5-H4 \cdots O4	$164(3)$	$[2.964(2)]$

[^3]is illustrated in Figure 1 in a projection along [001]. It is built up from distorted CaO_{8} antiprisms (point symmetry 2) which are linked by four common oxygen corners with four $\mathrm{NH}_{2} \mathrm{SO}_{3}$ groups forming sheets parallel to (001). These sheets are interconnected by hydrogen bonds only which are donated by water molecules occupying the remaining four oxygen corners of the CaO_{8} antiprism. The mean $\mathrm{Ca}-\mathrm{O}$ distance of $2.456 \AA$ agrees well with the value predicted from the ionic radii (Shannon, ${ }^{15}$ 1976). O-Ca-O bond angles range from $68.7(1)^{\circ}(\mathrm{O} 4-\mathrm{Ca}-\mathrm{O} 1)$ to $90.8(1)^{\circ}(\mathrm{O} 2-\mathrm{Ca}-\mathrm{O} 4)$ with corresponding shortest and longest edge lengths of 2.781(2) \AA and 3.458(2) \AA.

TABLE VI
Interatomic bond lengths $/ \AA$ and bond angles $/{ }^{\circ}$ in $\mathrm{Mn}\left(\mathrm{NH}_{2} \mathrm{SO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}^{\mathrm{a}}$

MnO_{6} polyhedron								
Mn-O5	$2 x$	2.155(1)	O5-Mn-O1	$2 x$	87.77(4)	[2.993(1)]		
Mn-O1	$2 x$	2.163(1)	O5-Mn-01	$2 x$	92.23(4)	[3.112(1)]		
Mn-04	$2 x$	2.201(1)	O5-Mn-04	$2 x$	90.35(4)	[3.090(1)]		
<Mn-O>	2.173		O5-Mn-04	$2 x$	89.65(4)	[3.071(1)]		
			O1-Mn-04	$2 x$	85.15(4)	[2.953(1)]		
			O1-Mn-04	$2 x$	94.85(4)	[3.214(1)]		
$\mathrm{NH}_{2} \mathrm{SO}_{3}$ group								
S-O3		1.439(1)	O3-S-O2		111.78(7)	[2.390(2)]		
S-02		1.448(1)	O3-S-01		113.61(6)	[2.421(1)]		
S-01		1.454(1)	O2-S-01		111.17(6)	[2.395(1)]		
<S-O>		1.447	O3-S-N		105.69(7)	[2.464(2)]		
	S-N		O2-S-N		109.91(6)	[2.538(2)]		
				1.648(1)	O1-S-N		104.22(6)	[2.451(2)]
<S-X>		1.497	<O-S-O>		112.19	[2.402]		
			<O-S-N>		106.61	[2.484]		
N-H5		0.79(3)	H5-N-H6		107(3)	[1.30(4)]		
N-H6		0.82(3)	N-H5 ..O2		157(3)	[3.339(2)]		
			N-H6..O2		152(3)	[3.118(2)]		
			Water molecu					
O4-H1		0.71(2)	H1-O4-H2		104(2)	[1.23(3)]		
O4-H2		0.84(3)	H4-O4-H3		109(3)	[1.28(4)]		
O5-H3		0.90(3)	O4-H1..O3		150(2)	[2.750(2)]		
O5-H4		0.66(3)	O4-H2 $\cdots \mathrm{N}$		150(2)	[2.905(2)]		
			O5-H3 ..-04		171(2)	[2.807(1)]		
			O5-H4..O2		156(3)	[2.738(1)]		

[^4]The structure of $\mathrm{Mn}\left(\mathrm{NH}_{2} \mathrm{SO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ projected along [100] is shown in Figure 2. It is composed of isolated units which are interconnected to a three-dimensional framework structure by hydrogen bonds only. Such structural units consist of one MnO_{6} octahedron (symmetry $\overline{1}$) sharing common oxygen corners with two amide sulfate groups. Four octahedral corners are occupied by water molecules. The bond length and angle distortion of the $\mathrm{MnO}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}$ octahedra are comparatively small. The $\mathrm{O}-\mathrm{Mn}-\mathrm{O}$ angles differ by at most 4.8° from 90°, the octahedral $\mathrm{O}-\mathrm{O}$ edge lengths are observed between $2.953(1) \AA$ and $3.214(1) \AA$. The average $\mathrm{Mn}-\mathrm{O}$ distance is $2.173 \AA$. This is somewhat short compared to $2.205 \AA$ given by Baur ${ }^{13}$ (1981) for

TABLE VII
Interatomic bond lengths / \AA and bond angles $/{ }^{\circ}$ in $\mathrm{Ni}\left(\mathrm{NH}_{2} \mathrm{SO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}^{\mathrm{a}}$

$\mathrm{NiN}_{2} \mathrm{O}_{4}$ polyhedron						
Ni-O4	$2 x$	2.033(2)	$\mathrm{O} 4-\mathrm{Ni}-\mathrm{O} 5$	$2 x$	86.48(7)	[2.807(3)]
Ni -05	$2 x$	2.065(2)	O4-Ni-05	$2 x$	93.52(7)	[2.985(1)]
Ni-N	$2 x$	2.153(1)	$\mathrm{O} 4-\mathrm{Ni}-\mathrm{N}$	$2 x$	83.84(5)	[2.797(2)]
<Ni-X>		2.083	$\mathrm{O} 4-\mathrm{Ni}-\mathrm{N}$	$2 x$	96.16(5)	[3.115(1)]
			$\mathrm{O} 5-\mathrm{Ni}-\mathrm{N}$	$2 x$	92.94(5)	[3.059(1)]
			O5-Ni-N	$2 x$	87.06(5)	[2.906(2)]
$\mathrm{NH}_{2} \mathrm{SO}_{3}$ group						
S-O3		1.440(1)	O3-S-O2		112.81(10)	[2.406(2)]
S-02		1.449(2)	O3-S-01		114.15(6)	[2.426(1)]
S-01		1.450(1)	O2-S-01		112.68(8)	[2.413(2)]
<S-O>		1.446	O3-S-N		105.48(9)	[2.496(3)]
			O2-S-N		104.22(9)	[2.482(3)]
S-N		1.690(1)	O1-S-N		106.48(10)	[2.520(2)]
<S-X>		1.507	<O-S-O>		113.21	[2.414]
			<O-S-N>		105.39	[2.490]
N-H5		0.82(3)	H5-N-H6		102(3)	[1.31(3)]
N-H6		0.87(2)	$\mathrm{N}-\mathrm{H} 5 \cdots \mathrm{O} 1$		165(3)	[2.975(2)]
			N-H6...O2		153(4)	[2.966(1)]
Water molecules						
O4-H1		0.77(2)	H2-O4-H1		106(4)	[1.23(4)]
O4-H2		0.77(4)	H3-O5-H4		102(4)	[1.17(5)]
O5-H3		0.74(2)	O4-H1..O3		172(2)	[2.793(1)]
O5-H4		0.77(5)	O4-H2 \ldots O2		151(3)	[2.680(3)]
			O5-H3 ..O1		170(2)	[2.799(1)]
			O5-H4 \cdots O3		169(3)	[2.968(3)]

[^5]$\mathrm{Mn}^{[6]}$-O bonds or compared with the sum of the respective ionic radii (Shannon, ${ }^{15}$ 1976).

Figure 3 illustrates the polyhedral arrangement in $\mathrm{Ni}\left(\mathrm{NH}_{2} \mathrm{SO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ in a projection along [001]. Similar to the manganese compound, this structure is also composed of separate units - consisting of one cation octahedron and two amide sulfate tetrahedra - which are connected among themselves by hydrogen bonds only. But contrary to the situation in $\mathrm{Mn}\left(\mathrm{NH}_{2} \mathrm{SO}_{3}\right)_{2}$. $4 \mathrm{H}_{2} \mathrm{O}$, the Ni atoms (point symmetry $\overline{1}$) are coordinated to two nitrogen atoms shared with amide sulfate groups and four $\mathrm{H}_{2} \mathrm{O}$ molecules. The mean

TABLE VIII

Compilation of donor-hydrogen distances, D-H...A hydrogen bond lengths, and D-H...A bond angles of all hydrogen bonds occuring in the title compounds

Compound		$\mathrm{D}-\mathrm{H} / \AA$	$\mathrm{D}-\mathrm{H} \cdots \mathrm{A} / \AA$	$\mathrm{D}-\mathrm{H} \cdots \mathrm{A} /{ }^{\circ}$
Ca	$\mathrm{O} 4-\mathrm{H} 1 \cdots \mathrm{O} 3$	$0.75(3)$	$2.906(2)$	$172(2)$
Ca	$\mathrm{O} 4-\mathrm{H} 2 \cdots \mathrm{O} 3$	$0.86(3)$	$2.861(2)$	$172(3)$
Ca	$\mathrm{O} 5-\mathrm{H} 3 \cdots \mathrm{O} 3$	$0.75(3)$	$2.908(2)$	$158(3)$
Ca	$\mathrm{O}-\mathrm{H} 4 \cdots \mathrm{O} 4$	$0.72(3)$	$2.964(2)$	$164(3)$
Mn	$\mathrm{O} 4-\mathrm{H} 1 \cdots \mathrm{O} 3$	$0.71(2)$	$2.750(2)$	$150(2)$
Mn	$\mathrm{O}-\mathrm{H} 3 \cdots \mathrm{O} 4$	$0.90(3)$	$2.807(1)$	$171(2)$
Mn	$\mathrm{O} 5-\mathrm{H} 4 \cdots \mathrm{O} 2$	$0.66(3)$	$2.738(1)$	$156(3)$
Ni	$\mathrm{O} 4-\mathrm{H} 1 \cdots \mathrm{O} 3$	$0.77(2)$	$2.793(1)$	$172(2)$
Ni	$\mathrm{O} 4-\mathrm{H} 2 \cdots \mathrm{O} 2$	$0.77(2)$	$2.680(3)$	$151(3)$
Ni	$\mathrm{O} 5-\mathrm{H} 3 \cdots \mathrm{O} 1$	$0.74(2)$	$2.799(1)$	$170(2)$
Ni	$\mathrm{O} 5-\mathrm{H} 4 \cdots \mathrm{O} 3$	$0.77(5)$	$2.968(3)$	$169(3)$
$\mathrm{Ca}, \mathrm{Mn}, \mathrm{Ni}$	$<\mathrm{O}-\mathrm{H} \cdots \mathrm{O}>$	0.76	2.834	164
Ca	$\mathrm{N}-\mathrm{H} 5 \cdots \mathrm{O} 1$	$0.88(3)$	$3.047(2)$	$155(2)$
Ca	$\mathrm{N}-\mathrm{H} 6 \cdots \mathrm{O} 5$	$0.71(3)$	$3.076(2)$	$152(3)$
Mn	$\mathrm{N}-\mathrm{H} 5 \cdots \mathrm{O} 2$	$0.79(3)$	$3.339(2)$	$157(3)$
Mn	$\mathrm{N}-\mathrm{H} 6 \cdots \mathrm{O} 2$	$0.82(3)$	$3.118(2)$	$152(3)$
Ni	$\mathrm{N}-\mathrm{H} 5 \cdots \mathrm{O} 1$	$0.82(3)$	$2.975(2)$	$165(3)$
Ni	$\mathrm{N}-\mathrm{H} 6 \cdots \mathrm{O} 2$	$0.87(2)$	$2.966(1)$	$153(4)$
$\mathrm{Ca}, \mathrm{Mn}, \mathrm{Ni}$	$<\mathrm{N}-\mathrm{H} \cdots \mathrm{O}>$	0.82	3.087	156
Mn	$\mathrm{O} 4-\mathrm{H} 2 \cdots \mathrm{~N}$	$0.84(3)$	$2.905(2)$	$150(2)$
Mn	$<\mathrm{O}-\mathrm{H} \cdots \mathrm{N}>$	0.84	2.905	150
$\mathrm{Ca}, \mathrm{Mn}, \mathrm{Ni}$	$<\mathrm{D}-\mathrm{H} \cdots \mathrm{A}>$	0.79	2.922	161

$\mathrm{Ni}-\mathrm{O}$ bond length in the $\mathrm{NiN}_{2} \mathrm{O}_{4}$ octahedron is $2.049 \AA$, the $\mathrm{Ni}-\mathrm{N}$ distance $2.153(1) \AA$. The bond angle distortion is moderate with a maximal deviation of 6.2° from the ideal octahedral angle.

From the above discussion it follows that hydrogen bonding plays an important role in the structures of all three compounds. Three different types of hydrogen bonds occur in the title compounds, most commonly $\mathrm{O}-\mathrm{H} \ldots \mathrm{O}$ bonds, furthermore some $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ type bonds, as well as one $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond found in the structure of the manganese compound. A possible $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ bond is not realized. Relevant interatomic distances and angles for all hydrogen bonds are summarized in Table VIII. The mean donor-acceptor distances are $2.843 \AA$ for the $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ type, $2.905 \AA$ for the $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ type, and $3.087 \AA$ for the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ type, the respective average $\mathrm{D}-\mathrm{H} \cdots \mathrm{A}$ angles of these hydrogen bonds are $164^{\circ}, 150^{\circ}$, and 156°.

TABLE IX

Bond valence calculations in v.u. (valence units) for the amide sulfate tetrahydrates $\mathrm{M}^{2+}\left(\mathrm{NH}_{2} \mathrm{SO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}\left(\mathrm{M}^{2+}=\mathrm{Ca}, \mathrm{Mn}, \mathrm{Ni}\right)$ according to

Brese and O'Keeffe (1991)

Cation polyhedra								
$\mathrm{M}^{2+}=\mathrm{Ca}$	v	$v x$	$\mathrm{M}^{2+}=\mathrm{Mn}$	v	$v x$	$\mathrm{M}^{2+}=\mathrm{Ni}$	v	$v x$
Ca-O2 2x	0.289	0.578	Mn-05 $2 x$	0.373	0.746	$\mathrm{Ni}-\mathrm{O} 42 x$	0.359	0.718
Ca-O4 $2 x$	0.286	0.572	Mn-01 $2 x$	0.365	0.730	Ni-O5 $2 x$	0.329	0.659
Ca-05 2x	0.257	0.515	Mn-04 $2 x$	0.329	0.659	$\mathrm{Ni}-\mathrm{N} \quad 2 x$	0.336	0.673
Ca-O1 $2 x$	0.237	0.475						
$\mathrm{Ca}-\mathrm{O} \quad \Sigma v$		2.141	Mn-O $\quad \Sigma v$		2.134	Ni-X Σv		2.050

	Amide sulfate groups					
$\mathrm{M}^{2+}=\mathrm{Ca}$	v	$\mathrm{M}^{2+}=\mathrm{Mn}$	v	$\mathrm{M}^{2+}=\mathrm{Ni}$	v	
$\mathrm{~S}-\mathrm{O} 2$	1.609	$\mathrm{~S}-\mathrm{O} 3$	1.649	$\mathrm{~S}-\mathrm{O} 3$	1.644	
S-O1	1.600	$\mathrm{~S}-\mathrm{O} 2$	1.609	$\mathrm{~S}-\mathrm{O} 2$	1.605	
S-O3	1.549	$\mathrm{~S}-\mathrm{O} 1$	1.583	$\mathrm{~S}-\mathrm{O} 1$	1.600	
S-N	1.368	$\mathrm{~S}-\mathrm{N}$	1.282	$\mathrm{~S}-\mathrm{N}$	1.145	
$\mathrm{~S}-\mathrm{X}$	Σv	6.127	$\mathrm{~S}-\mathrm{X} \quad \Sigma v$	6.123	$\mathrm{~S}-\mathrm{X} \quad \Sigma v$	

Ligand atoms

$\mathrm{M}^{2+}=\mathrm{Ca}$	Σv	$\mathrm{M}^{2+}=\mathrm{Mn}$	Σv	$\mathrm{M}^{2+}=\mathrm{Ni}$	Σv
O1	1.837	O1	1.948	O1	1.600
O2	1.898	O2	1.609	O2	1.605
O3	1.549	O3	1.583	O3	1.644
O4	0.286	O4	0.329	O4	0.359
O5	0.257	O5	0.373	O5	0.329
N	1.368	N	1.282	N	1.481

Table IX lists the results of bond valence calculations (according to Brese and O'Keeffe, ${ }^{16}$ 1991) for the cation polyhedra, the amide sulfate groups, and for the oxygen and nitrogen ligands (neglecting the contributions of the hydrogen atoms) in the title compounds. The bond valence sums for the cations are in good agreement with the expected values of 2 v.u. (valence units) for Ca, Mn, and Ni , and of $6 \mathrm{v} . \mathrm{u}$. for the sulfur atom of the $\left[\mathrm{NH}_{2} \mathrm{SO}_{3}\right]^{-}$tetrahedra. As a consequence of the hydrogen bonding system, the results for the anions are more complex. The oxygen atoms can be divided on one hand into hydrogen donors and on the other hand into acceptors or oxygen atoms not involved in the hydrogen bonding system. In the first group the bond valence sums range from 0.26 to 0.37 v.u., in the second group from 1.55 to 1.95 v.u. For the trivalent nitrogen donor of the NH_{2} group values between 1.28 and 1.48 v.u. are calculated. The lowest of these values occurs in $\mathrm{Mn}\left(\mathrm{NH}_{2} \mathrm{SO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$, where the nitrogen atom in addition acts as an acceptor of a hydrogen bond. In $\mathrm{Ca}\left(\mathrm{NH}_{2} \mathrm{SO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ the oxygen O 3 accepts three hydrogen bonds, in agreement with its significantly lower bond valence sum (1.55 v.u.) compared to O 1 and O 2 (> 1.83 v.u.). In both compounds the respective highest values are observed for those oxygen atoms which are not involved in hydrogen bonding, i.e. O 2 with 1.90 v.u. in the Ca and O 1 with 1.95 v.u. in the Mn compound. In $\mathrm{Ni}\left(\mathrm{NH}_{2} \mathrm{SO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ the bond valence sums of $\mathrm{O} 1, \mathrm{O} 2$, and O 3 are practically equal (≈ 1.6 v.u.). This complies with the fact that these atoms act as acceptors in two hydrogen bonds each.

Acknowledgements - The authors thank Prof. L. Bohaty, Köln, for fruitful suggestions and discussions. This work was financially supported by the JCPDS/ICDD under Grant-in-Aid 90-03 to E. T.

REFERENCES

1. M. E. Berglund, Bull. Soc. Chim. 29 (1878) 422-426.
2. F. Raschig, Ann. 241 (1887) 161-252.
3. L. F. Audrieth, M. Sveda, H. H. Sisler, and M. J. Butler, Chem. Rev. 26 (1940) 49-94.
4. G. A. Benson and W. J. Spillane, Chem. Rev. 80 (1980) 151-186.
5. C. J. Brown and E. G. Cox, J. Chem. Soc. (1940) 1-10.
6. J. A. A. Ketelaar and E. L. Heilmann, Z. Kristallogr. 103 (1941) 41-53.
7. F. A. Kanda and A. J. King, J. Am. Chem. Soc. 73 (1951) 2315-2319.
8. R. L. Sass, Acta Crystallogr. 13 (1960) 320-324.
9. P. Angerer, M. Sc. Thesis, University of Vienna, 1997.
10. E. Haussühl and S. Haussühl, Z. Kristallogr. 210 (1995) 269-275.
11. G. M. Sheldrick, SHELXS-86, program for crystal structure solution, University of Göttingen, Germany, 1986.
12. G. M. Sheldrick, SHELXL-93, program for crystal structure refinement, University of Göttingen, Germany, 1993.
13. W. H. Baur, Interatomic distance predictions for computer simulation of crystal structures. in: M. O'Keeffe and A. Navrotsky (Eds.), Structure and bonding in crystals, Vol. II, Academic Press, New York, 1981, pp. 31-52.
14. L. Pauling, The nature of the chemical bond. $3^{\text {rd }}$ ed., Cornell University Press, Ithaca, New York, 1960.
15. R. D. Shannon, Acta Crystallogr., Sect. A 32 (1976) 751-767.
16. N. E. Brese and M. O’Keeffe, Acta Crystallogr., Sect. B 47 (1991) 192-197.
17. R. X. Fischer and E. Tillmanns, Acta Crystallogr., Sect. C 44 (1988) 775-776.

SAŽETAK

Istraživanje kristalne strukture amidosulfatnih tetrahidrata s dvovalentnim kationima

Paul Angerer, Ekkehart Tillmanns i Manfred Wildner

Jedinični kristali triju amidosulfatnih tetrahidrata, s općim formulama $\mathrm{Ca}\left(\mathrm{NH}_{2} \mathrm{SO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}, \mathrm{Mn}\left(\mathrm{NH}_{2} \mathrm{SO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ i $\mathrm{Ni}\left(\mathrm{NH}_{2} \mathrm{SO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ priređeni su opreznim uparavanjem odgovarajućih vodenih otopina. Kristalne su im strukture određene postupkom difrakcije rentgenskih zraka na monokristalima. Rentgenografskim istraživanjem određeni su sljedeći kristalografski parametri: $\mathrm{Ca}\left(\mathrm{NH}_{2} \mathrm{SO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$, prostorna grupa $C 2 / c, Z=4, a=11,616(3) \AA, b=7,761(2) \AA, c=11,638(3) \AA$, $\beta=98,93(1)^{\circ}, V=1036,47 \AA^{3}, R 1=0,026 ; \mathrm{Mn}\left(\mathrm{NH}_{2} \mathrm{SO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$, prostorna grupa $P 2_{1} / c, \mathrm{Z}=2, a=6,143(2) \AA, b=5,324(2) \AA, c=15,441(5) \AA, \beta=91,72(1)^{\circ}, V=504,78$ $\AA^{3}, R 1=0,024 ; \mathrm{Ni}\left(\mathrm{NH}_{2} \mathrm{SO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$, prostorna grupa $P \overline{1}, Z=1, a=6,331(8) \AA$, $b=6,731(9) \AA, c=6,784(8) \AA, \alpha=88,93(9)^{\circ}, \beta=67,87(5)^{\circ}, \gamma=67,76(6)^{\circ}, V=245,27$ $\AA^{3}, R 1=0,030$.
$\mathrm{U} \mathrm{Ca}\left(\mathrm{NH}_{2} \mathrm{SO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ antiprizmatski poliedri CaO_{8} dijele četiri kisikova atoma s tetraedrima $\mathrm{NH}_{2} \mathrm{SO}_{3}$, stvarajući na taj način slojeve usporedne s (001). U $\mathrm{Mn}\left(\mathrm{NH}_{2} \mathrm{SO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ i $\mathrm{Ni}\left(\mathrm{NH}_{2} \mathrm{SO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$, oktaedri MnO_{6}, odnosno $\mathrm{NiN}_{2} \mathrm{O}_{4}$, povezani su zajedničkim uglovima s dva $\mathrm{NH}_{2} \mathrm{SO}_{3}$ tetraedra stvarajući na taj način izdvojene skupine. Te jedinke, povezane međusobno samo vodikovim vezama, stvaraju trodimenzijsku mrežastu strukturu. Amidosulfatna skupina posjeduje nepravilnu tetraedarsku konfiguraciju s prosječnim veznim udaljenostima $\mathrm{S}-\mathrm{O}$, odnosno $\mathrm{S}-\mathrm{N}$ od 1,449 i $1,654 \AA$ Å. Srednje vrijednosti veznih udaljenosti kationa do kisika su $2,456 \AA$ (Ca-O), $2,173 \AA(\mathrm{Mn}-\mathrm{O})$ i $2,049 \AA(\mathrm{Ni}-\mathrm{O})$, dok obadvije duljine veza $\mathrm{Ni}-\mathrm{N}$ iznose $2,153 \AA$. U istraživanim spojevima opažene su tri različite vrste vodikovih veza i to redom: O-H $\ldots \mathrm{O}$ u rasponu od 2,680 do $2,968 \AA, \mathrm{~N}-\mathrm{H} \cdots \mathrm{O}$ koje se kreću od 2,966 do 3,339 Å i O-H \cdots N koja iznosi 2,905 Å. Općenito, opažene međuatomske udaljenosti i vezni kutovi dobro se slažu s kristalokemijskim očekivanjima.

[^0]: * Dedicated to Professor Boris Kamenar on the occasion of his $70^{\text {th }}$ birthday.
 ** Author to whom correspondence should be addressed. (E-mail: manfred.wildner@univie.ac.at)

[^1]: * Additional material to this paper can be ordered referring to the no. CSD 410198 (Ni), CSD $410199(\mathrm{Ca})$, CSD $410200(\mathrm{Mn})$, names of the authors and citation of the paper at the Fachinformationszentrum Karlsruhe, Gesellschaft fuer wissenschaftlich-technische Information mbH, D-76344 Eggenstein-Leopoldshafen, Germany. Lists of F_{0} / F_{c}-data are available from the authors up to one year after the publication has appeared.

[^2]: ${ }^{\text {a }} U_{i j}$ in \AA^{2}.
 $\mathrm{ADP}=\exp \left(-2 \pi^{2} \Sigma_{i} \Sigma_{j} U_{i j} h_{i} h_{j} \mathbf{a}_{i}{ }_{i} \mathbf{a}^{*}{ }_{j}\right)$;
 $U_{\text {eq }}=1 / 3 \Sigma_{i} \Sigma_{j} U_{i j} \mathbf{a}_{i}{ }_{i} \mathbf{a}^{*}{ }_{j} \mathbf{a}_{\boldsymbol{i}} \mathbf{a}_{\boldsymbol{j}}$ (Fischer and Tillmanns, 1988). ${ }^{17}$
 ${ }^{\mathrm{b}}$ Fixed during refinement.

[^3]: ${ }^{\text {a }}$ Polyhedral edge lengths $/ \AA$, hydrogen bond lengths $/ \AA$, and $H-H$ distances $/ \AA$ are given in squared brackets.

[^4]: a Polyhedral edge lengths / \AA, hydrogen bond lengths / \AA, and H-H distances / \AA are given in squared brackets.

[^5]: ${ }^{\text {a }}$ Polyhedral edge lengths $/ \AA$, hydrogen bond lengths $/ \AA$, and H-H distances $/ \AA$ are given in squared brackets.

