
ISSN-0011-1643
CCA-2624 Original Scientific Paper

A Quantum Theoretical Basis
for Some Spectra – Structure Correlations

in Crystalline Hydrates

Ljup~o Pejov,a,* Gjorgji Ivanovski,b and Vladimir M. Petru{evski a

aInstitute of Chemistry, Arhimedova 5, P.O.B. 162, 91000 Skopje, Macedonia

bInstitute of Physics, Gazi baba bb, 91000 Skopje, Macedonia

Received June 26, 1998; revised December 7, 1998; accepted April 16, 1999

Starting with the perturbation theory and the Hellmann-Feynmann
theorem, an attempt was made to derive a fundamental theoretical
basis for some frequency – structure correlations in crystalline hy-
drates. It was found that within a few reasonable approximations,
a satisfactory theoretical background may be found for the �

�
OH(OD)

versus RO...O, as well as for the –2XOH(OD) versus �
�

OH(OD) correla-
tions (�

�
OH(OD) is the spectroscopically measured wavenumber of the

OH(OD) stretching vibration, RO...O is the hydrogen bond distance,
and X is the anharmonicity of vibration). The OH(OD) oscillators
were treated as mixed cubic – quartic anharmonic systems. The in-
fluence of hydrogen bonding on these oscillators was introduced
through the changes in the harmonic diagonal force constants (as
proposed by Sceats and Rice1), the other diagonal terms in the po-
tential energy expression being regarded as practically unchanged
in the course of the hydrogen bonding. The parameters obtained by
empirical correlations, within the proposed model, describe the de-
pendence of the intramolecular potential of the uncoupled OH(OD)
species on the hydrogen bond strength.
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INTRODUCTION

One of the well-known features of hydrogen bonding is the decrease of
the OH (OD) stretching frequency as compared to the value of the free (non-
hydrogen bonded) oscillators.2–4 It has been shown5–10 that in hydrogen-
bonded crystalline hydrates the wavenumber corresponding to the uncou-
pled fundamental OH (OD) vibration correlates very well with the proton-
donor to proton-acceptor distance, which is one of the crystallographic mea-
sures of the hydrogen bond strength. Much work has been done in establish-
ing such empirical correlations in various solid-state systems.11–13 Hydrogen
bonding itself has also been an interesting problem from a purely theoreti-
cal viewpoint, and a lot of work has been done to explain various aspects of
this specific interaction �Ref. 2 and references therein�. However, regarding
the �

�
OH(OD) versus RX...Y correlations (X being the proton-donor and Y the

proton-acceptor atom), to the best of our knowledge, there does not seem to
exist a solid theoretical background. One of the first model functions used in
these correlations was a linear one,14,15 theoretically based on the assump-
tion of predominantly Van der Waals repulsion between the non-bonding or-
bitals of the X and Y atoms, described by means of the Lennard-Jones (Eqs.
(6)–(12)) potential. However, this model function does not have the correct
asymptotic behavior, and in the later approaches it was replaced by a new
one, which describes correctly the limit of a free OH (OD) oscillator:

�
�

01,OH(OD) = �
�

01,OH(OD)
( )0

+ A � exp(–aRX...Y) (1)

where �
�

01,OH(OD)
( )0

is the value for a free oscillator (often taken as the gas-
phase value, although the correctness of this approach is discussed in Ref.
7), while A and a are constants. Obviously, this function is very suitable for
empirical correlations, since it is simple, and mimics the experimentally ob-
served trends in these systems. It is also consistent with intuitive expec-
tations. However, since no solid theoretical basis seems to exist for such an
approach, it is fully phenomenological. Further, constants A and a have no
exact physical meaning. It is worth mentioning here that the model poten-
tial of the Lippincott-Schroeder16,17 type allows derivation of the analytical
form of functional dependence of the quadratic force constants on the X...Y
distance, and within this model, an estimation of the function describing the
�
�

01,OH(OD) versus RX...Y dependence based on the harmonic oscillator expres-
sions is possible. The predicted function18 is much more complex than the
previously used one Eq. (1).

A theoretical explanation for the observed �
�

01,OH / �
�

01,OD versus �
�

01,OH

correlations in solid hydrates was given by Wójcik et al.19, by solving the
variational one-dimensional problem with a simple cubic-quartic potential.
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In their work, the influence of variations in the O–H (D) distance was also
considered.

On the other hand, it has also been shown that the anharmonicity con-
stants (–2X) of the uncoupled OH (OD) oscillators in crystalline hydrates
(either obtained experimentally or by some of the theoretical methods1,20–21)
correlate well with the �

�
01,OH(OD) values.21–24 Several purely phenomenologi-

cal model functions are currently in use for such correlations,21–24 none of
which is based on a solid theoretical background.

The main scope of this paper is to propose a possible theoretical basis for
the above problem regarding both the �

�
OH(OD) versus RX...Y and (–2X) versus

�
�

01,OH(OD) correlations, based on the stationary perturbation theory (and the
Hellmann-Feynmann theorem), as well as to establish a new semiempirical
method for determining the dependence of water intramolecular potential
on the hydrogen bond strength in a series of crystalline hydrates. Within
this model, the empirically obtained constants reveal an exact physical mea-
ning.

THEORETICAL MODEL

Many experimental data have shown that the non-hydrogen bonded X-H
oscillators are highly anharmonic systems. The Hamiltonian of such a sys-
tem can be written in the form:

�
�( ) ( ) ( ) ( )H
p

k q k q k qqq qqq qqq
0

2
0 2 0 3 0 4

2
1
2

� � � �
�

(2)

where the superscripts (0) refer to a free (not perturbed by hydrogen bond-
ing) oscillator, and � is its reduced mass. Quantity q is defined as r – r0, r

being the distance between the atoms in the X–H oscillator, while r0 is the
corresponding equilibrium distance. When the oscillator is perturbed by
atom Y, the Hamiltonian in Eq. (2) takes the following form:

�
�( ) ( ) ( )H
p

k q k q k qqq qqq qqq
0

2
2 0 3 0 4

2
1
2

� � � �
�

. (3)

Namely, it is widely accepted that the cubic and quartic force constants
do not change in the course of hydrogen bonding1 and the whole increase in
the anharmonicity of the X–H mode is due to an increased amplitude of the
hydrogen atom motion. Let us now consider the relationship between the
quadratic force constants kqq and kqq

( )0 . Obviously, when the hydrogen bond
distance (R) is large, the kqq should practically be equal to kqq

( )0 , while with
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the decrease in R, the force constant kqq should diminish. A function of the
type:

kqq = kqq
( )0 �1–exp�–a(R–R0)�� (4)

where a and R0 are constants, correctly describes the mentioned features.
Complications occur for the values of R that are fairly close to R0. However,
since this model is perturbationally based, only weak and hydrogen bonds of
intermediate strength are considered, and thus this function gives a satis-
factory description of the variation of kqq with R within the considered ran-
ge of its values.

If only linear, or practically linear hydrogen bonds are considered within
the model, the parameter R will suffice to describe the dependence of kqq on
the hydrogen bond strength for a given X and Y pair. For a different choice
of a proton donor and proton acceptor, the hydrogen bond strength will be
influenced also by other factors, such as the effective atomic charge of the
acceptor atom Y. Constant R0 may be regarded as the closest possible dis-
tance between the proton acceptor Y and the proton donor X. Combining
Eqs. (4) and (3), the Hamiltonian of the oscillator perturbed by hydrogen
bonding takes the form:

�H = � ( ) ( )H kqq
0 01

2
� � exp�–a(R–R0)� � q2 . (5)

If the second term in Eq. (5) is small enough, it may be regarded as a
(small) perturbation to the non-hydrogen-bonded oscillator. This condition is
fulfilled when exp�–a(R–R0)� << 1. This is true of weak hydrogen bonds as
well as those of intermediate strength. Substituting Q for R–R0, the Hamil-
tonian in Eq. (5) becomes:

�H = � ( ) ( )H kqq
0 01

2
� � exp�–aQ� � q2 . (6)

Considering only those cases where the condition exp�–a(R–R0)� << 1 is
fulfilled, the stationary perturbation theory is applicable to this problem,
with the perturbation operator:

�V = �
1
2

0kqq
( ) � exp�–aQ� � q2 . (7)

The energy of the n-th level of the hydrogen-bonded oscillator can be re-
presented by the perturbation series:

En = E E En n n
( ) ( ) ( )0 1 2� � � � (8)
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By calculating the matrix elements of the type:

Vmn = � �m nV	 
 	 
0 0| |� (9)

in the basis of the eigenfunctions of the non-perturbed by hydrogen bonding
anharmonic oscillator they read:

Vmn = �
1
2

0kqq
( ) � exp�–aQ� � � �m nq	 
 	 
0 2 0| |� (10)

and the corrections of various orders are easily obtained. The corresponding
expressions are:

En
( )1 = exp�–aQ� � � ��

�

�

��
1
2

0 0 2 0k qqq m n
( )

�� �
	 
 	 
| | (11)

En
( )1 = exp�–aQ� � � �

�

�








�

�

�
�
��

�1
4

0

0 2 0
2

k
q

qq

m n

nmm n

( )
�� �

	 
 	 
| |

�w
(12)

En
( )3 = exp�–3aQ� �

� 	 
� �
� �1

8
0 3

0 2 0 0 2 0 0

k
q q

qq

n m m k k( )
� � �� � � � �

	 
 	 
 	 
 	 
 	 
| | | | |q n

mn knm nk n

2 0

2

|� 	 


� w w��
��

�

�






�

	 
� �
�

1
8

0 3 0 2 0

0 2 0
2

2 2
k q

q

qq n m

n m

mnm

( )
�

�

� �
� �

	 
 	 


	 
 	 


| |
| |

� wn

�
�

�

�
�
�

. (13)

The energy expression, thus, takes the form:

En = En
( )0 + exp�–aQ� � fn

( )1 + exp�–2aQ� � fn
( )2 + exp�–3aQ� � fn

( )3 + � (14)

where:

fn
( )1 = � �

1
2

0 0 2 0k qqq n n
( )

�� �
	 
 	 
| | (15)

fn
( )2 = 	 
� �

�
�1

4
0 2

0 2 0
2

k
q

qq

m n

nmm n

( )
�� �

	 
 	 
| |

�w
(16)
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fn
( )3 = 	 
� �

� �1
8

0 3
0 2 0 0 2 0 0

k
q q

qq

n m m k k( )
� � �� � � � �

	 
 	 
 	 
 	 
 	 
| | | | |q n

mn knm nk n

2 0

2

|� 	 


� w w��
�� �

	 
� � �
1
8

0 3 0 2 0

0 2 0
2

2 2
k q

q

qq n n

n m

mnm

( )
�

�

� �
� �

	 
 	 


	 
 	 


| |
| |

� w�
�

n

. (17)

Since only small perturbation was considered (i.e., weak hydrogen bond-
ing), the terms that contain 2aQ, 3aQ etc. in Eq. (14) may be neglected, and
the energy expression reduces to:

En = En
( )0 + exp�–aQ� � fn

( )1 . (18)

The energy difference between the ground and the first excited state, on
the basis of Eq. (18) is, thus:

E1 – E0 = E1
0( ) – E0

0( ) –

–
kqq

( )0

2
� � �� � � �1

0 2
1

0
0

0 2
0

0	 
 	 
 	 
 	 
( )| | ( )| |q q q q q q� ( ) � ( )� � exp(–aQ) (19)

or, expressed in terms of the wavenumber of the corresponding fundamental
transition:

�
�

01 = �
�

01
0( )

–
k

hc

qq
( )0

2
� � �� � � �1

0 2
1

0
0

0 2
0

0	 
 	 
 	 
 	 
( )| | ( )| |q q q q q q� ( ) � ( )� �

� exp(–aR0) � exp(–aR) . (20)

By comparing the perturbation theorem–based equation (20) with the
empirically obtained correlation equations of the type:

�
�

01 = �
�

01,g – A � exp(–aR) (21)

where the quantity �
�

01,g refers to the gas phase, the physical meaning of
empirical constants becomes obvious. Thus, Eqs. (20) and (21) enable an ex-
perimental determination of constant a that describes the dependence of the
quadratic force constant kqq on the hydrogen bond strength (RX...Y). Further,
constant A is equal to the quantity:

–
k

hc

qq
( )0

2
� � �� � � �1

0 2
1

0
0

0 2
0

0	 
 	 
 	 
 	 
( )| | ( )| |q q q q q q� ( ) � ( )� � exp(–aR0) . (22)

908 LJ. PEJOV ET AL.



Since all quantities in Eq. (22) except for the expression in parentheses are
known, an experimental determination of the difference � �1

0 2
1

0	 
 	 
( )| |q q q� ( ) �

� � �0
0 2

0
0	 
 	 
( )| |q q q� ( ) is possible. On the other hand, if one calculates this dif-

ference using the eigenfunctions of the Morse-type oscillator (assuming that
the so calculated value is close to the one in this case), parameter R0 may be
estimated from experimental data.

Inclusion of higher-order perturbation terms in Eqs. (18) and (19) leads
to the following function:

�
�

01 = �
�

01,g – A � exp(–aR) + B � exp(–2aR) + C � exp(–3aR) + ... (23)

where constants B and C are given by:

B = 	 
1
4

0 2
0 2

1
0

2

2
11

0 2
0

0

k
q q

qq

m

mm

m( )
�

–
�

�
�

�
� � � �

	 
 	 
 	 
 	| | | |

� w



2

2
00 � w mm�

�
�

�








�

�

�
�
�

(24)

C = 	 
� �
� �1

8
0 3 0

0 2 0 0 2 0 0

k
q q

qq

m m k k( )
� � �� � � � �

	 
 	 
 	 
 	 
 	 
| | | | |q

m kmk

2
0

0

2
0 000

|� 	 


� w w��
��

�

�






–

– � �
� �

1
0 2

1
0 1

0 2 0
2

2
1

2
1

	 
 	 


	 
 	 


| |
| |

�

�

q
q m

mm

�
�

�
� w

–

–
� � � � � �0

0 2 0 0 2 0 0 2
0

0

2

	 
 	 
 	 
 	 
 	 
 	 
| | | | | |� � �q q qm m k k
� �

� wm kmk 0 000 w��
�� +

+ � �
� �

0
0 2

0
0 0

0 2 0
2

2
0

2
0

	 
 	 


	 
 	 


| |
| |

�

�

q
q m

mm

�

�

�

�
�
��

�
� w

. (25)

It should be mentioned once again that previous derivations are valid
for systems in which the stationary perturbation theory is applicable (i.e.,
for hydrogen bonds of low and medium strength). The experimental re-
sults6–8 have shown that �

�

OH(OD) and RX...Y values correlate very well for
weak and moderately strong hydrogen bonds, while the correlation is poorer
for strong bonds. Note that, at least partially, this poorer correlation may be
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attributed to the more complicated assignment of the n (OH, OD) modes in
the case of strong hydrogen bonds, due to the broadness and structure of the
corresponding spectral bands.6–8,10 The elaborated model, however, suggests
that there is a more fundamental reason for it. Also, all of the empirical cor-
relations of this type include not only linear hydrogen bonds, which further
complicates the situation. In the case of non-linear hydrogen bonds, the dis-
tance between the proton-donor and the proton-acceptor is not the only fac-
tor governing the hydrogen bond strength, so the observed scattering of ex-
perimental points in regression analyses is expected.

As mentioned above, quantities �
�

01,g used in empirical correlations refer
to the gas phase values of the wavenumbers for n(OH, OD) modes. It has
been discussed whether this approach is valid, mainly because the gas pha-
se values are not the same as those for non-hydrogen bonded OH (OD) oscil-
lators in solid state. Since the choice of the value of �

�

01 for a non-hydrogen
bonded oscillator present in a crystal lattice depends on the electrostatic
crystal field of a particular structure, it is not unique. By using the gas pha-
se value, the approach is significantly simplified. Within this model, this »li-
miting« value is related to the differences of the energies of the unperturbed
system in Eq. (20). The empirically obtained constant a is the value that de-
termines the dependence of the quadratic force constant on the proton donor
to proton acceptor distance in Eq. (4).

It should be mentioned that Eq. (20) may also be derived using the Hel-
lmann-Feynman theorem:

d

d

E

Q

H

Q
q Q

H

Q
q Qn

n
n� �

�
�

�
�

�

( , )
�

( , )Y Y (26)

with:

�
�

�

exp( )H

Q

a
k –aQ qqq� � �

2
0 2

[ ] . (27)

Yn(q,Q) is the wavefunction of the hydrogen bonded oscillator, represented
by the perturbation series:

Yn(q,Q) = Yn
( )0 (q) + Yn

( )1 (q,Q) + Yn
( )2 (q,Q) + ... (28)

where Yn
( )0 (q) is the eigenfunction of the (anharmonic) non-hydrogen bonded

X–Y oscillator. Corrections to the zeroth-order wavefunction are readily ob-
tained by using the matrix elements given by Eq. (10) (Appendix 1). Con-
sidering again only small perturbations and neglecting the terms proportio-
nal to higher degrees in Y Ym nq( ) ( )

�
0 2 0 , the following expression is obtained

upon the integration of the Hellmann-Feynman expression:
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En = Cn –
k

q q q
qq

n n

( )
( ) ( )( ) � ( )

0
0 2 0

2
� �Y Y exp(–aQ) (29)

where Cn is the integration constant. The energy difference corresponding
to the fundamental transition thus reduces to the form of Eq. (19), expres-
sed through wavenumbers. The integration constant in Eq. (29) thus has an
obvious physical meaning.

On the other hand, calculating the difference E2–E0 from Eq. (18) and
expressing its value through the corresponding wavenumber �

�

02,OH(OD), one
obtains, on the basis of Eq. (20), the following expression for the anharmon-
icity constant (–2X = 2�

�

01–�
�

02):

–2X = –2X(0) + 1
2

0 2
2

0
1

0 2
1

0

1
0 2

1
0

0
0

–
� – �

� – �

( ) ( ) ( ) ( )

( ) ( ) ( )

Y Y Y Y

Y Y Y

q q

q q2
0

0
01
0

01
Y

( )

( )( – )
�

�








�

�

�
�
�

� � �
� �

(30)

where the superscript (0) denotes the value corresponding to the free (non-
hydrogen bonded oscillator). Thus, a linear dependence of the anharmoni-
city constant on the wavenumber of the fundamental transitions is pre-
dicted in cases where perturbation theory is applicable. As it may be also
concluded from the experimental data,21–24 for weak hydrogen bonds, the
dependence of the anharmonicity constant on the wavenumber of the cor-
responding fundamental transition may be considered as nearly linear,
which is again in agreement with the general predictions of this model.

Further study regarding the theoretical basis of these correlations, ba-
sed on several model potentials including those of the Lippincott-Schroeder
type, is in progress.

Appendix 1

Perturbation corrections to the zeroth-order wavefunction in Eq. (28) are
readily obtained using the matrix elements represented by Eq. (10). The ex-
pressions obtained are:

Y
Y Y

wn qq

m n

nmm n

q Q aQ k
q

( ) ( )
( ) ( )

( , ) exp( )
�

1 0
0 2 0

1
2

� � � �
�

� �
Ym q( ) ( )0

�

�






�

�

�
�

(31)

i.e.:

Y jn nq Q aQ q( ) ( )( , ) exp( ) ( )1 1� � � (32)

where:

j
Y Y

w
Yn qq

m n

nmm n

mq k
q

q( ) ( )
( ) ( )

( )( )
�

( )1 0
0 2 0

01
2

� �
�

� �
. (33)
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Similarly,:

Y jn nq Q aQ q( ) ( )( , ) exp( ) ( )2 22� � � (34)

where:

j
Y Y Y Y

w
n

qq m k k n

nk

q
k q q

( )
( ) ( ) ( ) ( ) ( )

( )
( ) � �

2
0 2 0 2 0 0 2 0

24
�

� w
Y

nmk nm n

m q
��
��

�

�








( ) ( )0 –

� �
�

�
Y Y Y Y

w
Y Y

n n m k

nmm n

m n

q q
q

( ) ( ) ( ) ( )

( )
� �

( )

0 2 0 0 2 0

2 2
0 1

2�

( )

( ) ( )

( )
�

0

0 2 0
2

2 2
q

qm n

nmm n

Y Y

w��
�

�

�

�
�
�
�

(35)

and:

Y jn nq Q aQ q( ) ( )( , ) exp( ) ( )3 33� � � (36)

and so on.

By combining the Hellmann-Feynmann theorem (26) with (27), and af-
ter performing several algebraic transformations, one arrives at the follow-
ing expression:

d

d

E

Q
aQ

ak
q q qn qq

n n� � � � � �exp( ) ( ) � ( ) exp(
( )

( ) ( )
0

0 2 0

2
2Y Y aQ

akqq)
( )

� �
0

2

� �
�

�






�

�

�
�

�Y j j Yn n n nq q q q q q( ) ( ) ( ) ( )( ) � ( ) ( ) � ( ) e0 2 0 1 2 0 xp( )
( )

� � �3
2

0

aQ
akqq

� � �Y j j j jn n n n nq q q q q q q( ) ( ) ( ) ( ) ( )( ) � ( ) ( ) � ( ) ( ) �
0 2 0 1 2 1 2 q qn

2 0
Y

( ) ( )
�

�






�

�

�
�

� � � � (37)

Considering only small perturbations, the energy derivative with re-
spect to Q reduces to the following expression:

d
d
E

Q

qq
n n

n aQ
ak

q q q� � � �exp( ) ( ) � ( )
( )

( ) ( )
0

0 2 0

2
Y Y . (38)

Upon integration, Eq. (38) gives Eq. (29).
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Kvantno-teorijski temelj nekih korelacija spektar-struktura
u kristalnim hidratima

Ljup~o Pejov, Gjorgji Ivanovski i Vladimir M. Petru{evski

Uporabom perturbacijske teorije i Hellmann-Feynmannova teorema izveden je
teorijski temelj nekih korelacija izme|u frekvencije i strukture u kristalnim hidrati-
ma. Unutar prihvatljivih aproksimacija na|ena je zadovoljavaju}a teorijska podloga
za korelacije vOH(OD) i RO...O i –2XOH(OD) i vOH(OD); vOH(OD) je spektroskopski odre|en
valni broj OH(OD) vibracije istezanja, RO...O je duljina vodikove veze, a X anharmo-
ni~nost vibracije OH (OD).
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