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Such a strange world is luckily not our world,
but it is a conceivable world. It is a frightful
world, and the theories describing it have a
frightfully techical name;

non-renormalizable

Q. HO-Kim, N. Kumar and C. S. Lam

Previously defined equivalence relation, /, on Kekulé counts, K(B)’s
of catacondensed benzenoids, classifies Kekulé structures accord-
ing to the number of their terminal conjugated circuits. The func-
tion/ is an enumeration method which uncovers the less transpar-
ent combinatorial properties of K(B)’s, such as their numerical self-
similarity!, graph generation,?¢ modeling quasicrystals® and
modeling of Feigenbaum’s theory of chaos®. Here, we consider two
benzenoid system; By, an all-kinked unbranched benzenoid, and
Bs, an all-kinked benzenoid which has one branched hexagon and
for which all branches are equal which are characterized by the pe-
culiar property that the statistical distribution of the hypercubes
(vertices, edges, squares, ...) which constitute their Kekulé spaces
remains invariant under the effect of the / function. For these two
systems,/is analogous to a percolation process. This property leads
to a diagonal equality of conjugated circuit counts of members of
the By series, which is scaled down by the powers of the golden-
mean in the case of the Bg series. K(By)’s and/or K(B)3)’s are shown
to model a one-dimensional quasicrystal.
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INTRODUCTION

In previous papers,’~6 an equivalence relation, 7, has been defined on the
Kekulé space, x(B), of a catacondensed benzenoid, B, where;

K{B) = {kly kza seny kK]s (1)

k; is an i*" Kekulé structure € B and K is the Kekulé count = K(B) = | «(B)

The relation, #, simply partitions «(B) into a set of equivalent classes,
each class containing those Kekulé structures which possess the same num-
ber of terminal conjugated circuits’ of type R,. This surprisingly simple op-
eration uncovered several important combinatorial properties of Kekulé
counts of catacondensed systems, viz.,

a) For any catacondensed benzenoid hydrocarbon, its K(B) can be ex-
pressed as a sum of j-cubes,>* namely

K(B) = £ K@) | @
J=0
where K(2) is the number of Kekulé structures of the resonating part of B
after fixation of some of its terminal R, circuits, viz.,

K(2) = sK(B(2) 3)

where B(2) is the resonating part of B in which j terminal R, circuits are
fixed so that it generates a j-cube, and s is a symmetry factor (see e.g. (9-11)
or (15-18) below where the corresponding B(2/) parts are shaded). The value
of j determines the size of the hypercube.2* For example, j = 0 leads to a 0
- cube (or simply a vertex) while j = 1 corresponds to a 1 — cube (an edge),
J = 2 generates a 2-cube (i.e. a square), j = 3 is the (traditional 3-) cube, j
= 4 gives a 4-cube (tessaract), and so on. In Eq. (2), ¢ is the maximum pos-
sible number of terminal R; circuits in a Kekulé structure € B. Then, this
/ relation showed how to use Kekulé structures as graph generators, a topic
of both graph and chemical interest.® Indeed, the resulting hypercubes have
both biochemical and stereochemical implications.?

b) Operation/enables one to study (and demonstrate) the numerical self-
similarity of homologous series of benzenoid hydrocarbons!® and thus show
fractal properties® in cases of non-deterministic fractals.1°

¢) The 7 relation demonstrated that all-kinked benzenoids! (branched
and/or unbranched) can be made to generate sequences like the one shown
below;3 ' -

1011010110110... @
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which are neither random nor truly aperiodic and whence it models a new
state of matter called quasicrystal which shares the properties of both crys-
talline and amorphous substances, such as the AlgMn alloy discovered by
Shechtman et al.'? This point will be further elaborated in this paper. In-
deed, because of this property, ¢), the name quasicrystalline benzenoids has
been suggested for the class of branched and/or unbranched all-kinked ben-
zenoid hydrocarbons. '

The general results make the study of / relation a worthy task.

Here, we demonstrate that # is indeed similar to a percolation process!3
and we present two rare cases of a special form of what might be called sta-
tistical self-similarity.

Percolation Process3

When a structure changes from a collection of many disconnected parts
into basically one big cluster, it is said that percolation has occured. This
process can be analyzed using renormalization methods in physics; Imagine
a triangular lattice the sites of which are to be colored black or white and
let the original sites be labelled as 1,2,3,4,5,6,... Then, during renormaliza-
tion process, these sites become supersites {1,2,3}, {2,3,4}, {3,4,5}, {4,5,6},..s0
that the »origins« of supersites »overlap«. If 2 or 3 of original sites are black,
then the supersite will be black, otherwise it will be white. More details may
be found elsewhere.!3!* When the probability p = 0, one gets nothing, when
p =1, one obtains a solid (black) triangle. Then, only intermediate density
values are of interest. Now, renormalize the lattice by replacing each three
neighboring sites by a supersite. There are three possible outcomes accord-
ing to the starting value of p;

i. If p is low, then there are only a few isolated occupied sites and the re-
sulting density p” will be < p.

ii. when p is large, many more supersites will be generated, and in this
case p’ > p. :

iii. At the percolation threshold, at critical density, p, (calculated to be
0.5),4 one has the interesting situation; p = p’, in which case one is deal-
ing with a nontrivial configuration which, after renormalization, re-
mains statistically the same!.

How is this related to our /# equivalence relation? First, one recalls that
renormalization is a procedure to re-express a fundamental physical law
in an effective form appropriate to a certain scale in terms of some pa-
rameters. Analogously, 7 is an operation where K(B) is re-expressed as a
sum of hypercubes. Indeed, 7 is a combination of vertex-, edge-, square-,
vroy B8
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/=720 urs@2H U ... ur2h (5)

(see e.g. Eqs. 9-11), where A2) is that part of # which fixes j terminal R,’s
in B and hence generates a j-cube.

Then, one might say the /»percolates« k(B). Formally, # may be envisaged
as an operator, /7, in the following way;

A29B, - (B2Y),,

A2Y B, — (B@L),,

A2 B, — (B2Y), ©6)

where L indicates the position of a given B in its homologous series and
(B(2)),, is a subset of B (cf. Eq. 3). Then, we define B to be statistically self-
similar if the combination of Kekulé spaces of the set of resonating ben-
zenoids, U J‘ K(B(2));, corresponds to the Kekulé spaces of an earlier member
of the B series. This is detailed in Theorem 2 and exemplified by Table IIL
In such a (rare) case, B defines a threshold connectivity which remains sta-
tistically invariant under the # operation.

THE MAIN RESULT

Considering catacondensed benzenoids containing no more than one
branched hexagon, only the B, and B; homologous series (shown in Figure
1) are statistically self-similar and obey;

Theorem 1

(In Ref. 1 K, is equivalent to our K(2*) notation, ¢f. Eq.,8), Ref. 1).

A. For the L* member of a homologous series of the B, type (Figure 1),
the number of Kekulé structures, K(By);, is given by;

K(By);, = (K2%), + 2 (K@2Y),, + 4 (K@) ; (7a)

K(By),_p = (K(29), + (K(2V), + (K(29)y, . (7b)
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Figure 1. Bp and B3 systems considered here. The systems also involve all possible
isoarithmic benzenoids, cf. Ref. 11.

B. For the L™ member of the B; type (Figure 1), the corresponding re-
lations are;

K(By)y, = (K(QO))L +2 (K(zl))l, +4 (K(zz))z, +8 (K(zs))z, (8a)

K(Bg)p 1 = (K(2%), + (K2, + (K@), + (K(2%)y, . (8b)

~ In words: the number of Kekulé structures of the resonating parts of a
benzenoid system (B, and/or B,) generated during the operations of / (Eq.
18)) equals the Kekulé count of an earlier member. Then, the distribution of
d-cubes (vertices, edges, squares, ...) in the total Kekulé spaces of the corre-
sponding resonating benzenoids is the same as the Kekulé space of an ear-
lier homologous of the series.

. ;;Thgn, the structure of the Kekulé spaces in the B, and/or B, types is self-

imilar with respect to the counts of terminal R, circuits. Because of this
particular property, we suggest the name statistical self-similarity in these
Awo cases.

_ Before we prove Theorem 1, we give some numerical examples to illus-
%rate this property in Tables I and II.
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TABLE 1

Partitioning of K(Bg)y. Numbers under the j-cubes are their multiplicities, i.e.,
the corresponding (K(2))’s, Eq. (7a). The last column corresponds to Eq. (7b).

2 .
L o 0—0 D K 3 K@)
J=0

6 1 4 3 21 8 = K((Bp)y)
7 2 6 5 34 \_13 = K(Bo)s)
8 3 10 8 55 \21 = K((By)g)
9 5 16 13 89\ 34 = K(Bo))
0 8 26 21 144 ™55 = K(Byg)

TABLE 1I

Partitioning of x(B3)z. Numbers under the j-cubes are thair multiplicities, i.e.
(K())’s, Eq. (8a). The last column is the sum given by Eq. (8b).

2 .
L o 0—-0 Ij @ K 5 K@)y,
J=0
3 1 3 3 2 35\ 9 = K((B3)p)
4 2 9 15 9 152~ 35 = K((Bs)s)
5 9 42 66 35 6371152 = K((B3)y)
6 35

171 279 152 2709 637 = K((By)s)

Proof of Theorem 1

A, (BoL type;

~ Here, 7 is explicitly stated as A2%) U A2Y) UA2?), i.e., «(B;) may be clus-
tered out (percolated)’® into a set of vertices, edges and squares only. No
other hypercubes are possible. These generations are demonstrated below in
Egs. (9-11) where in all cases the shaded parts of the benzenoid are the cor-
responding resonating fragments, B(2/)’s, cf. Eq. (3) obtained during the for-
mation of a given j-cube.
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L2 °)
A~
~ 2!
@, (10)
-5
L -
o
29 (11)
@~
Eqgs. (9-11) lead, respectively, to;
(K@), = (KB @)
(K2, = 2 (KBg))p5 (10)
(K(2%), = (K(By))y4 (11)

where the factor of 2 in (10°) is a symmetry factor.

To prove Eq. (7b), we recall’® for type B, the following identity;

(K(By)), = Fp.,.1 (12)

where Fy is the L'" Fibonacci number (Fy = Fy = 1;F, =2, F,,, =F,,;
+ F). Substituting Eq. (12) into Egs. (9’~11’), we have;

(K(BO))L=FL-—5+2X2FL~4+4FI-.3-

Then, we would like to prove that;
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Fos+2F; 4+ F, 3=(KBy)o=F, ;+2x2F, ¢+4F, 5. (13)

But

Frs=F ¢+Fq;
2FL—4=2FL—5+2FL—6; (14)
FL—3 = FL—4 +FL—5 .
Adding Eqgs. (14) leads to the right — hand side of Eq. (13).
B. (B3)L type:
Eq. (8a) is demonstrated by Eqs. (15)—(18) where #is in this case a com-
bination of four operations, viz., A2°%) U A2Y) U A22) UA2%). Le., the Kekulé

space, x(B3) clusters into a set of vertices, edges, squares as well as cubes,
cf. Table II.

(15)

(16)

(17)
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—~
4 (18)
Egs. (15-18) are pictorial illustrations of the following equalities;
(K@2)p1p, = (KB3))yp, 31313 (15°)
(K@Y, 1 = 3(KBy))y o1 313 (16%)
(K2%) 1,1 = 3(KBg))y 51 973 a7
(K21, = (KBa))p o7 979 - (18°)

And now we recall'® the following identity for a member of type (By);, 5/ v
(K(BS))L,M,N = FLFMFN + FL—IFM—IFN—l . (19)
Substituting Eq. (19) into (15)~«(18’), we write:

(KBg))pr = (Frg® + Fr_®) + 2x3(F5°F; o + F;_?F; )
+4x3 (Fp %F; g+ + F 3°F; ) + 8(F, ,° + F %) . (20)

Now to prove (8b) is equivalent to proving that;

(Frs® + Fi %) + 8(F 3°Fy o + F1_*F)_3) + 3(F,_°F 5 + F;_%F, )
+ (F L-23 +Fp %) = (KBg)p 11111+ (21)

We start with the traditional equalities:

Fr,=F 5+Fp g
Fi»=Fpo® + F 5% + 2 F ,F; g (22)

F L—l3 =F L—23 +F ‘rfs3 +3F L—32F L2+ 3F L—ZZF L-3 -
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When Eqs. (22) are substituted into the left—-hand side of Eq. (21), one
obtains (after straghtforward but somewhat tedious algebra);

FL 3 +F, 3+ 2x3 (F2F, 4 + Fy 2F, )
+4X3(FL—32FL-—4+FL—42FL—5)+S(FL—33+FL—43)' (23)

But (23) is nothing else but (K(Bg)),_; 1 173 (cf. Eq. 20).

Numerical Self-Similarity of Bz Series

This concept was introduced in Ref. 1 and demonstrated for some dozen
types of benzenoid hydrocarbons. Eq. (6) of Ref. 1 defines the conditions re-
quired for a series of compounds to possess numerical self-similarity. In
terms of Egs. (7a) and (8a) of this paper, the members of the B3 (or By) series
are numerically self- similar if;

lim K(Bg)r — lim K@), 4
L KBy 1. K@)

(24)

for j = 0,1,2,3
Indeed, this is almost trivial to show; we start with Eq. (19).
Then, at an infinitely large member, we have the approximate formula;

K(B3)L,M,N = 2FL3 (25)

and therefore the required limit in Eq. (24) is given by 7 = (0.618033)% =
0.236. This can be verified using even the (early) L values of Table II.

(9/35) = 0.257 = (42/171) = 0.245 = (66/279) = 0.236
= (35/152) = 0.230 = (637/2709) = 0.235 (26)

Theorem 2

Members of the Bj series possess statistical self-similarity.

Of course, the Bj series represents the prototype whose limit is the gold-
en-mean itself. But, what distinguishes members of the B; (and B) series
from the series considered in Ref. 1 is that the former, in addition, possess
that might be called statistical self-similarity, which is a special form of nu-
merical self- similarity that exists when the overall (or average) effect of the
/ function is to regress a given member of the series into an earlier homo-
logue (as in Eqgs. (7a) and (8b)). In such a case, the statistical distribution
of the hypercubes in the Kekulé space of B remains invariant to the equiva-
lence relation. This propeerty might be casted as;
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Corollary of Theorem 1
Egs. (7b) and (8b) lead, respectively, to;

KU 2j=o(B0(2j))L = K(Bo)f_,_.z ’ (27a)

K U3 (By(2)) = x(By)p_; - (27b)

This corollary is best illustrated by a numerical example: In Table III,
we show the set of resonating benzenoids of (B3)ggs = (By)g and the distri-
bution of clusters of various sizes in their Kekulé spaces. From the table we
see that the resulting distribution is identical to x(Bs);, which corresponds
to the third row of Table II. A pictorial illustration of Eqgs. (27a), (28b) which
illustrates the concept of statistical self- similarity is given below:

(Bg) - (Bo)r—2
(28)

Ve
(BS)L,L,L T (BS)L——I,L—I.L—l .

As an illustration, we consider the number of squares generated from
(B(2%))s (which is 3x4 + 3x 3 + 3 x 3: the third entry in the third row of
Table III).

(29)

(where the first number is multiplicity, s, of the fragment).

We observe that for both vertex- and cube- generation, the reonating
fragment is indeed an earlier homologue of the B series. However, for edge-
and square-generations, their overall effect leads to a Kekulé space of an
earlier homologue.

Conjugated — Circuit Count”

The equivalence relation # is an »auxiliary« combinatorial technique
which helps uncover the less trransparent properties of Kekulé counts of
benzenoid systems. The technique depends on the classification of Kekulé
structures of a benzenoid hydrocarbon according to the number of terminal



12 S. EL-BASIL

TABLE III

The set of resonating benzenoids generated* when (Bg)g is subject to the equiva-
lence relation. The resulting population of hypercubes (last row) is identical to
the distribution of x(Bj3)s, as shown in Table II (inanifestation of statistical self-si-
milarity of (Bg);, series).

OHB@

o

i1x1 1x3 1x3 2
BQ2%)s
3x2+ 3x2+
3 3x1 3xX1+ 3x2+ 3x3
3Ix1 3x2
B2Y)s
3x2+ 3x4+
3 3x1 3Ix2+ 3x3+ 3x5
3x2 3x%x3
B(22)s
1 % 2x1 3x3 3x5 9
B(2%)s
Sum 9 42 66 35 c.f. third row

in Table II

* ¢f., the shaded fragments in Eqgs. (15)~(18)
** Multiplicity of resonating fragment (symmetry factor, s).

conjugated circuits. This classification, then, assumes »fixation« of some of
the double bonds in terminal hexagons and their immediate neighbors. For
example, in cube-generation, three terminal R,’s are fixed while in vertex-
generation three terminal R,’s are fixed (cf. Egs. (18) and (15), respectively)
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in the (all-kinked) B4 system. This fixation, so-to-speak, of some of the ter-
minal circuits is reminiscent of the technique of counting the total number
of conjugated circuits of a benzenoid system. Let R(BO)L be the number of
R; — type circuits (which contain 4j+2 pi- electrons) in a system of B, of Lt
position in the homologous series. Then, a »diagonal equality«!7 exists in the

form:

R,By)y, = Ry(Bolpsy = RyBolriz = - (30)

For the B; system, the counts of the circuits are scaled down by powers
of the golden mean, viz.,

Ry(By)y, = PRy(By)py = PRa(Ba)p.z = ... (31)

Lemma 1

' We define two parameters, namely;

dy=1=F,y +F, iy (32)

dy=yt=F 7yl +F, (33)

where y = 27({5+1) =~ 1.618033989 ; y = y'-1 ; Fo=F; = 1, F, = F,,, +
F,. The ratio y is called the golden mean and F, is an n*® Fibonacci number.
Th;xs Lemma is proved by induction in the Appendlx

Modeling Quasicrystals

.. Kekulé counts of By and B; series can be made to model a typical 1-di-
’mensmnal quasicrystal. In Figure 2, we demonstrate the idea using K(By)’s

by placing the individual Kekulé structured (represented as vertices) on a
stralght line such that each 1 (m the sequence given by Eq. (4)) corresponds
to an inter atomic distance of y! = 1.618... A and each 0 to a distance of 1
A. These two values correspond, respectively, to parameters dy and d,. We
call this line, with the vertices (i.e. Kekulé structures) thus spaced on it, the
original lattice. Now, we scale down this lattice by a factor of y, then the
resulting (compressed) lattice will be more dense but all interatomic dis-
tances will be scaled down by y. This process may be repeated and we ob-
serve that every vertex in the original lattice coincides precisely with a ver-
tex in the compressed lattice (which demonstrates position — invariance to
scaling). The compressed lattice, however, will have some extrapositions
with no partners in the original lattice but will match with positions in crys-
tal generated at higher stages. Thus, the one-dimensional lattices thus con-
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structed are position (scale) invariant and are self-similar. In Figure 3, a
magnified portion of Figure 2 is shown to demonstrate the scaling invari-
ance of positions of the vertices resulting from d, and d, defined in Lemma
1(d, =1;dy =1 + y). In stage 1, d, is subdivided into two intervals, in stage
2, d; becomes the sum of three intervals, in stage 3, d, corresponds to five
intervals and so on: in the n't stage d; is a sum of F,,, intervals. Analo-
gously, d, is subdivided into F, intervals at the nth stage of compression of
the original lattice. In Table IV, we illustrate the initial stages of partitions
of d; and d, which lead to position-invariance to scaling and whence to self-
similarity.

° . . . .
b ¢ ] * x ® x . .
PR ¢ N o e o X . o M . o e
o o0 W o e o o & o0 0o X o e o o X o ® ©c o @

oo © o 00 @ oo 0o o8 00 O oM 00 @ o0 0 o} OO ® 00 O O6
00 0 00 00 M 00 O O® OO O OO OO ® OO 0 00 00 X 0O O O® 00 O 00 00 X 00 O 08 00 0 00 0O @

©0 06000 000000 00D GO € 00000 0O 000 OB 60000 00000 0 GO O 0O CO e 00 © (0 000 00 0 GI{00 © 0O 0D @ 00 0 0000 060 0O

Figure 2. Modeling a one-dimensional quasicrystal using K(Bg)’s. The top row is the
original lattice. Crossed vertices indicate those vertices whose positions remain in-
variant under scaling. The same applies to solid vertices. Each row represents a one
dimensional quasiperiodic »crystal« compresssed successively from top to bottom) by
a self-similarity factor = the golden mean, y.

TABLE IV

Position-invariance to scaling illustrating the self-similarity of a 1-dimensional
quasicrystal modeled by the Kekulé counts of By (or Bg) series.

Stage do=1 d1=0
0 y1 1
1 l+y 1
2 2y + 2 Y+ P
3

312 + 23 22 + 3

n Fnyl_l +Fn—17ﬂ Fn}ﬂ +Fn—1}ﬂ+x
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Figure 3. A magnified portion of Figure 2 illustrating the structure of Table IV and
d; and d2 distances of Lemma 2.

~N N
N-
-
-

21326515877 [ 4,4, 4
90340574445 [ 4,4, 4

-
HO
L
abhn
PRREGIN
"_k -
-y

Ny N

RTINS
N~
N

1621095817661 [
6867072066967 [ .
20089384105824 [4,4,444,4421,
- 123224608457425 [ 44,4,
521987817988657 [4,4,4
2211175880326082 [
8366691339432090 [

-
- .

'S
»
FES
o
-
MNP oo
SN,
(&5 N
[N
2z
n o
N ©
N
g

that the values of the first column represent the number of Kekulé structures of the
members of the B series (c¢f. Figure 1).

Observe that the value of (d; + dj) at stage (j—1) leads to d, at stage j
when scaled down by y. E.g., at stage 0, d; + dy = 1 + ¥ which when mul-
tiplied by y becomes 1 + y which is d, at stage 1. While 1 + y+ 1 =2 + y=
d; + d, at stage 1 which when scaled by y becomes 2y + y* = d, at stage 2
and so on, which accounts for the scaling — invariance of this model.
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Continued Fractions of B Series

In Ref. 1, we demonstrate how self-similarity (as uncovered by the / re-
lation) is reflected when K;_,/K; for a homologous series of benzenoids is ex-
pressed in the form of continued fractions.! The B, type (Figure 1) repre-
sents a rare case of exact self-similarity. For example (K(B)),/(K(By)); = 2/3
= [1,1,1]; (KB)/AKBy)3 = 3/5 = [1,1,1,1], ... Indeed, as L—woo
(KB /K(By), = [1,1,1,...,1] = [1] and that is why such expressions are
sometimes described as a fixed point of the hyperbolic map.

In Figure 4, we expressed (K(Bs));_;/(K(B3)), in their continued fraction
forms. For this series, there is some degree of self-similarity manifested as
strings of 4’s. However, these strings are followed by seemingly random
numbers ordered in a chaotic fashion.

DISCUSSION AND CONCLUSIONS

The equivalence relation introduced earlier and reconsidered here is an
»artificial« device to uncover some of the hidden properties of Kekulé counts
of benzenoids, such as graph generation?58 (in which K(B) can be expressed
as a sum of hypercubes for any catacondensed B), numerical self-similar-
ity’® and modeling of quasicrystals.>!2 Here, we have presented two pecu-
liar cases where the structure of the homologous series does not change un-
der the equivalence relation, (¢f. Eqs. (27a), (27b). Instead, a system is
simply regressed to an earlier member of the same homologous series, Eq.
(28). We »borrowed« an »elementary« argument from renormalization theo-
rems in physics to propose that the B; and B; systems represent a »thresh-
old structure« analogous to the critical percolation density,!® which remains
self-similar under a renormalization operation:'* we claim here that B, and
B; are the only two benzenoid systems containing no more than one
brnached hexagon whose Kekulé counts obey Eqs. (27a), (27b). Although not
explicitly stated, the chemical graph theory has »renormalized« unbranched
benzenoids into caterpillar trees and the branched ones as Clar graphs!!8
Analogously, when B is catacondensed, the relation / renormallizes K(B) as
a sum of hypercubes! If the statistical distribution of these hypercubes re-
mains self-similar under the / operation (as in B, or B; series), the system
is defined here to be statistically self-similar. It is conjectured that B, and
B; are the only two systems which possess statistical self- similarity in cata-
condensed benzenoids with no more than one branched hexagon.
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Appendix

Inductive proof of Lemma 1
we start with Binet formula.1?

+1 +1
AT e

W=£E§AT' (A-2)

Now,

Then

n+l n
2 5-3 B-1 5-3
Fnyn'i’Fn_ly"*'l:m[l—(‘/_z ] ]+ 2{5 [1—[\/_2 J :I (A—3)

| Let

B-3 , 2 _h-1
2 BBy ¢ ek (B4

We assume that Lemma is true for (n-1) and (n), i.e.,

A=

B(1-A") + C(1-A™1) = 1

(A-5)
B(1-A™!) + C(1-A") = 1
and it is required to prove the Lemma for (n+1) i.e.,
B(1-A™?) + C(1-A™1) = 1.
Now,
(1-A™)(144) =1 - A" + A - A™?
=1-A™! + A(1-A™Y)
1-A™1 4+ A(1 - A1)
. _AM) =
C(1-AY) a+4 (A-6)
1-A™2 4+ A(1-A"
_An+ly —
(1-A"+1) T+ 4)

Hence, using (A-6) in (A-5), we obtain;

B((1-A™?) + A(1-AM) + C((1-A™1) + A(1-A™1)) = (1+A)

B(1-A™*2) + C(1-A™') + BA(1-A") + CA(1-A™1) = 1+A
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B(1-A™%) + C(1-A™1) = 1 + A — A(B(1-A™) + C(1-A"1) =1+A ~-A =1

which proves Lemma for (n+1).

(K(B)),

«(B)
K(B(2))

s

K(2)
(K@),

/

Glossary of Important symbols
Kekulé structure of the L™ benzenoid system B in a homologous
series.
Kekulé space of a benzenoid system B, Eq. (1).
The number of Kekulé structures of the resonating part of B in
which j terminal R, circuits are fixed. C £. Eqgs. (9)—(11) or (15)—(18).
Symmetry factor e.g. s = 2 in Eq. (10’) s = 3 in Eq. (16), (17). See
also Table III, first column.
An abbreviation for sK(B(2)). Cf. Egs. (2), (3), (7a), (8a).
The value of K(2) for the L*" member of a given homologous series.
Cf. Eq. (7a), (8a), Figure 1.
An equivalence relation which expresses K(B) as a sum of hyper-
cubes. cf. Egs. (7a) and (8a) are examples of the application of # on
a given series of benzenoids.
nt* Fibonacci number.

lim F,/F,,, 27%({5-1) = the golden mean.
300

n
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SAZETAK

Poseban oblik numeritke samosli¢nosti Kekuléovih brojeva
benzenoida ugljikovodika

Sherif El-Basil

Ranije definirana relacija ekvivalencije, oznatena s /, Kekuléovih brojeva,
oznafenih s K(B), katakondenziranih benzenoidnih ugljikovodika klasificira Keku-
léove strukture prema broju njihovih krajnjih konjugiranih krugova. Relacija ekvi-
valencije # omoguéuje otkrivanje manje uo¢ljivih kombinatori¢kih svojstava brojeva
K(B), kao §to su numeri¢ka samosli¢nost, generiranje grafova, modeliranje kvazikri-
stala i modeliranje Feigenbaumove teorije kaosa. U ovom su radu razmatrana dva
benzenoidna sustava: By — benzenoidni cik-cak sustav bez grana, i Bz — benzenoidni
cik-cak sustav s jednakom granom. Takve benzenoidne sustave karakterizira poseb-
no svojstvo, a to je da statisti¢ka raspodjela hiperkocki (¢évorovi, bridovi, kvadrati...),
koje ¢éine njihov Kekuléov prostor, ostaje invarijantna na djelovanje relacija ekviva-
lencije /. To svojstvo omoguéuje jednostavno prebrojavanje konjugiranih krugova By
i B3 benzenoidnih sustava. Pokazano je takoder da K(Bg) i K(B3) modeliraju jedno-
dimenzijski kvazikristal.



