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Recently proposed Cluj matrices: the Cluj-distance matrix and the

Cluj-detour matrix are reviewed. New Harary-type indices on the

detour and Cluj-detour matrices are defined. Additionally, the for-

mulae for calculating these indices of cycles are derived. Modeling

of boiling points for a set of 32 acyclic and cyclic octanes using Cluj

indices and their Harary counterparts is presented. The best struc-

ture-boiling point relationships are obtained by means of the mul-

tiple linear regression using either combinations of two reciprocal

paths numbers (1/p2, 1/p3) and detour and hyper-detour indices or

a combination of the same two reciprocal path numbers and Ha-

rary indices derived from the edge-defined and path-defined Cluj

matrices.

INTRODUCTION

In an undirected connected acyclic graph, a given pair of vertices (i,j) is

joined by a unique path p(i,j), that is, a continuous sequence of edges, with

the property that all are distinct and any two subsequent edges are adja-

CROATICA CHEMICA ACTA CCACAA 71 (3) 459¿471 (1998)

* Reported in part at MATH/CHEM/COMP 1997, an International Course and Conference on

the Interface between Mathematics, Chemistry and Computer Science, Dubrovnik, Croatia,

June 23–28, 1997.

**Author to whom correspondence should be addressed.

(e-mail address: diudea@chem.ubbcluj.ro)



cent.1,2 The length of the path p(i,j) is equal to the number of edges in the

path between vertices i and j.

In an undirected connected cycle-containing graph between any two ver-

tices, there is at least one path connecting them. If more than one path con-

nects a given pair of vertices (i,j), we denote the k-th path by the symbol

pk(i,j). The shortest path joining vertices i and j is called geodesic and its

length is the topological distance, (D)i,j. The longest path is the elongation

and its length is equal to the detour distance, (D)ij. The square arrays which

collect the lengths of the two path types are called the distance matrix,1–3

denoted as D, and the detour matrix,3–6 denoted as D, respectively:

Ne,p(i,j): p(i,j) is a geodesic if i � j
(De)ij = { (1)

0 if i = j

Ne,p(i,j): p(i,j) is an elongation if i � j
(De)ij = { (2)

0 if i = j

where Ne,p(i,j) is the number of edges on the shortest/longest path p(i,j). The

subscript e in the symbols of the above matrices means that they are

edge-defined, that is, their entries count edges on the path p(i,j). Matrices

De and De for graph G1, corresponding for example to pinane (see Figure 1),

are given in Table I.
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Figure 1. A graph G1 corresponding to pinane
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TABLE I

Distance, detour and Cluj matrices for graph G1 and the related indices

De De

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

1 0 1 2 3 2 1 2 3 3 1 1 0 5 6 3 4 5 6 7 7 1

2 1 0 1 2 3 2 1 2 2 2 2 5 0 5 4 3 4 5 6 6 6

3 2 1 0 1 2 3 2 3 3 3 3 6 5 0 5 6 5 6 7 7 7

4 3 2 1 0 1 2 1 2 2 4 4 3 4 5 0 5 4 5 6 6 4

5 2 3 2 1 0 1 2 3 3 3 5 4 3 6 5 0 5 6 7 7 5

6 1 2 3 2 1 0 3 4 4 2 6 5 4 5 4 5 0 5 6 6 6

7 2 1 2 1 2 3 0 1 1 3 7 6 5 6 5 6 5 0 1 1 7

8 3 2 3 2 3 4 1 0 2 4 8 7 6 7 6 7 6 1 0 2 8

9 3 2 3 2 3 4 1 2 0 4 9 7 6 7 6 7 6 1 2 0 8

10 1 2 3 4 3 2 3 4 4 0 10 1 6 7 4 5 6 7 8 8 0

18 16 20 18 20 22 16 24 24 26 44 44 54 42 48 46 42 50 50 52

W = 102 w= 236

Dp Dp

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

1 0 1 3 6 3 1 3 6 6 1 1 0 15 21 6 10 15 21 28 28 1

2 1 0 1 3 6 3 1 3 3 3 2 15 0 15 10 6 10 15 21 21 21

3 3 1 0 1 3 6 3 6 6 6 3 21 15 0 15 21 15 21 28 28 28

4 6 3 1 0 1 3 1 3 3 10 4 6 10 15 0 15 10 15 21 21 10

5 3 6 3 1 0 1 3 6 6 6 5 10 6 21 15 0 15 21 28 28 15

6 1 3 6 3 1 0 6 10 10 3 6 15 10 15 10 15 0 15 21 21 21

7 3 1 3 1 3 6 0 1 1 6 7 21 15 21 15 21 15 0 1 1 28

8 6 3 6 3 6 10 1 0 3 10 8 28 21 28 21 28 21 1 0 3 36

9 6 3 6 3 6 10 1 3 0 10 9 28 21 28 21 28 21 1 3 0 36

10 1 3 6 10 6 3 6 10 10 0 10 1 21 28 10 15 21 28 36 36 0

30 24 35 31 35 43 25 48 48 55 145 134 192 123 159 143 138 187 187 196

WW = 187 ww = 802

CJDu CJDu

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

1 0 4 3 3 3 7 3 5 5 9 1 0 2 2 3 2 2 2 2 2 9

2 6 0 7 3 6 5 5 5 5 6 2 4 0 4 1 6 4 2 2 2 4

3 2 3 0 4 2 5 1 6 6 6 3 1 1 0 1 1 1 1 1 1 1

4 5 2 6 0 6 5 4 4 4 5 4 5 1 4 0 4 4 2 2 2 5

5 2 2 2 4 0 6 2 5 5 6 5 1 2 1 1 0 1 1 1 1 2

6 3 2 3 3 4 0 3 3 3 3 6 1 1 3 1 1 0 3 3 3 1

7 4 5 3 6 4 5 0 9 9 6 7 3 3 3 3 3 3 0 9 9 3

8 1 1 1 1 1 1 1 0 1 1 8 1 1 1 1 1 1 1 0 1 1

9 1 1 1 1 1 1 1 1 0 1 9 1 1 1 1 1 1 1 1 0 1

10 1 1 1 1 1 1 1 1 1 0 10 1 1 1 1 1 1 1 1 1 0

25 21 27 26 28 36 21 39 39 43 18 13 20 13 20 18 14 22 22 27

CDp = 432 CDp = 168

CDe = 214 CDe = 62



When paths of length 1 � �p� � �p(i,j)� are counted on path p(i,j), another

pair of matrices can be constructed

Np,p(i,j): p(i,j) is a geodesic if i � j
(Dp)ij = { (3)

0 if i = j

Np,p(i,j): p(i,j) is an elongation if i � j
(Dp)ij = { (4)

0 if i = j .

They are path-defined matrices and the number of paths Np,p(i,j) is ob-

tained from entries (Me)ij , Me = De or De, by:7,8

Np,p(i,j) = ��(Me)ij�
2 +(Me)ij�/2 . (5)

Matrices Dp and Dp for the pinane graph G1 are also given in Table I.

Several graph descriptors (topological indices) TI can be calculated as

the half-sum of entries in the above matrices:

TIe/p = (1/2)
i

ij

j

� � ( )M e / p (6)

where (the edge-defined index) TIe represents the Wiener index9 W and the

detour index4–6,10–13
�, while (the path-defined index) TIp is the hyper-

Wiener index14–16 WW and the hyper-detour index8,10
��, respectively.

Values of these indices for the pinane graph G1 are given in Table I.

The detour and hyper-detour indices have been recently introduced and

tested in structure-property modeling.6,10,11 The obtained results encour-

aged us to continue the investigation along the same line using the recently

proposed Cluj matrices.17,18 In the present paper, Harary-type indices19–22

will be derived from the detour and Cluj-detour matrices. Modeling of the

boiling points for a set of 32 acyclic and cyclic octanes using these indices

will be reported.

DEFINITION OF CLUJ MATRICES

Cluj matrices CJDu and CJDu have been recently proposed by Diu-

dea.17,18,23–25 These matrices are n 	 n square matrices, which are unsym-

metrical. Note that subscript u denotes the unsymmetricity of matrices. The

non-diagonal entries, (Mu)ij, Mu = CJDu or CJDu, in the two Cluj matrices

are defined as:
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(Mu)ij = Ni, pk (i,j) = max�Vi, pk (i,j)� (7)

Vi p i jk, ( , ) = �v� v 
 V(G); Div < Djv; ph(i,v)� pk(i,j) =

�i� : pk(i,j) is a geodesic�; k = 1,2, ...; h = 1,2... (8)

or

Vi p i jk, ( , ) = �v� v 
 V(G); Div < Djv; ph(i,v)� pk(i,j) =

�i� : pk(i,j) is an elongation�; k = 1,2, ...; h = 1,2... (9)

Quantity Vi p i jk, ( , )denotes the set of vertices lying closer to vertex i than to

vertex j, (condition Div < Djv – previously proposed by Gutman26 in defining

the Szeged index) and are external with respect to path pk(i,j) (condition

ph(i,v) � pk(i,j) = �i�). Since in cycle-containing structures, various shortest

paths pk(i,j), in general, lead to various sets Vi p i jk, ( , ), by definition, the (ij)-e-

ntries in the Cluj matrices are taken as max �Vi p i jk, ( , ) �. The diagonal entries

are zero. For paths ph(i,v), no restrictions related to their length are im-

posed. The above definitions (Eqs. (7)–(9)) are valid in any connected graph.

Cluj matrices are also given for the pinane graph in Table I. One can see

that all entries in CJDu related to vertex 3 in G1 are equal to 1, as are those

related to the external vertices 8, 9 and 10 (which are at the same time end-

points of the paths that contain them). This property has been called25 the

internal ending of all longest paths joining vertex i and the remaining verti-

ces in G1 and vertex i, like 3, an internal endpoint. More details about the

Cluj matrices can be found elsewhere.17,18,23–25

The two Cluj matrices Mu allow the construction of the corresponding

symmetric matrices Mp (defined on paths) and Me (defined on edges) by:

Mp = Mu � (Mu)T (10)

Me = Mp � A (11)

where A is the adjacency matrix (having the non-diagonal entries equal to 1

if vertices i and j are adjacent and zero otherwise).27 Symbol � means the

Hadamard matrix product,28 i.e., (Ma � Mb)ij = (Ma)ij (Mb)ij.

In the case of acyclic structures, the two variants of Cluj matrices coin-

cide, as a consequence of the uniqueness of the paths. The symmetric matri-

ces, edge-defined and path-defined ones, in both variants, are identical to

the Wiener matrices29,30 We (edge-defined) and Wp (path-defined), respec-

tively.

Recall that for trees, the Wiener index can be calculated8 by:
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W =
ij

� Ni,p(i,j) Nj,p(i,j) (12)

where Ni,p(i,j) and Nj,p(i,j) have the same meaning in trees as the quantity

Ni p i jk, ( , ) in Eq. (7). The summation runs over all edges. Product Ni,p(i,j) Nj,p(i,j)

is the (i,j)-entry in the Wiener matrix We from which W can be calculated as

the half-sum of its entries:

W = (1/2)
ij

� (We)ij . (13)

One can consider We as the weighted adjacency matrix since (We)ij � 0 if

and only if vertices i and j are adjacent. When p(i,j) represents a path, then

a relation similar to (12) defines the hyper-Wiener index WW:14–16

WW =
ij

� Ni,p(i,j) Nj,p(i,j) (14)

where the product Ni,p(i,j) Nj,p(i,j) is the (i,j)-entry in the Wiener matrix Wp,

from which WW can be calculated as the half-sum of its entries. The

summation in Eq. (14) is over all paths.

In cycle-containing graphs, the Wiener matrices are not defined. Wiener

indices are calculated by means of the distance-type matrices as shown

above. In such graphs, the two versions of Cluj matrices are different.

Several indices can be derived from the Cluj matrices,18 either as the

half-sum of entries in the corresponding symmetric matrices or directly

from the unsymmetric matrices:

TIe/p 
�
e /p

(Mu)ij (Mu)ji . (15)

When defined on edges, TIe is a Cluj index: denoted by CDe or CDe,

depending on whether it is derived from the Cluj-distance or Cluj-detour

matrix. Similarly, when defined on paths, TIp is a hyper-Cluj index denoted

by CDp or CDp. Values of these indices for a set of 32 acyclic and cyclic

octanes are given in Table II.

For cycles, the Cluj-detour indices can be calculated by the formulae:25

CDe = N (16)

CDp = (k + 1) N (4k2 + 3yk + 2k + 3y) / 6 (17)

k = �(N–1)/4�; y = (N–1) mod 4 .

The edge-defined Cluj-detour index CDe is equal to N, the number of

vertices, or to the number of edges in a cycle. The path-defined Cluj-detour
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TABLE II

Cluj indices of acyclic and cyclic octanes

No Oct ane CDe CDp HCDe HCDp CDe CDp HCDe HCDp

1 N8 84 210 0.648 5.86 84 210 0.64821 5.8593

2 2MN7 79 185 0.708 7.89 79 185 0.70774 7.8939

3 3MN7 76 170 0.724 8.58 76 170 0.72440 8.5244

4 4MN7 75 165 0.729 8.69 75 165 0.72857 8.6897

5 3EN6 72 150 0.745 9.30 72 150 0.74524 9.2952

6 25MN 6 74 161 0.767 10.178 74 161 0.76726 10.1783

7 24MN6 71 147 0.784 10.892 71 147 0.78393 10.8922

8 23MN6 70 143 0.788 11.099 70 143 0.78810 11.0992

9 34MN6 68 134 0.801 11.634 68 134 0.80060 11.6339

10 3E2MN5 67 129 0.805 11.788 67 129 0.80476 11.7881

11 22MN6 71 149 0.784 10.959 71 149 0.78393 10.9589

12 33MN6 67 131 0.805 11.855 67 131 0.80476 11.8547

13 234MN5 65 122 0.848 13.759 65 122 0.84762 13.7587

14 3E3MN5 64 118 0.821 12.571 64 118 0.82143 12.5714

15 224MN5 66 127 0.843 13.577 66 127 0.84345 13.5767

16 223MN5 63 115 0.860 14.402 63 115 0.86012 14.4017

17 233MN5 62 111 0.864 14.598 62 111 0.86429 14.5976

18 2233MN4 58 97 0.919 17.420 58 97 0.91964 17.4196

19 112MC5 67 150 1.004 9.28 34 74 3.42857 15.8452

20 113MC5 71 170 0.970 7.75 32 70 3.09524 17.5119

21 IPC5 73 186 1.002 5.94 40 92 3.85238 15.7523

22 PC5 78 215 0.943 4.37 45 113 3.79286 13.2595

23 11MC6 104 197 0.686 6.73 24 75 4.95238 17.9940

24 12MC6 106 202 0.677 6.46 25 81 4.53571 15.5634

25 13MC6 108 211 0.669 5.78 24 80 4.28571 16.2579

26 14MC6 110 220 0.661 5.61 24 80 4.28571 16.2857

27 EC6 109 226 0.626 4.49 29 94 4.89286 15.1845

28 C8 128 288 0.500 3.28 8 64 8.00000 19.0000

29 123MC5 70 164 0.956 8.22 34 77 2.92857 14.3452

30 1M2EC5 72 178 0.944 6.49 39 93 3.36905 13.2857

31 1M3EC5 76 199 0.911 5.50 37 88 3.03571 14.7023

32 MC7 88 225 0.754 4.62 16 71 6.14286 17.5595

Note that the symbols have the following meaning: N = chain length; M = Methyl; E = Ethyl;

P = Propyl; IP = Isopropyl; CN = N–membered cycle. Hence, for example, the sets of symbols

2233MN4 and 1M2EC5 should be read as 2,2,3,3-dimethylbutane and 1-methyl-2-ethyl-cyclo-

pentane, respectively.



index CDp depends on mod 4 in a manner similar to that found for the path-

defined Cluj-distance index CDp.18

RECIPROCAL DETOUR AND CLUJ-DETOUR INDICES

Harary indices H are constructed on reciprocal matrices Mr, i.e. matrices

having (Mr)ij = 1/(M)ij:
20–22,31

H = (1/2)
ji

�� 1/(M)ij (18)

the symbol M stands for detour and Cluj-detour matrices De, Dp, CJDe and

CJDp.

In the case of simple cycles CN, the Harary-type indices defined on de-

tour and Cluj-detour matrices can be expressed in closed form:

H
eD

= z �N
i

N




�

�
1

1 2( )/

(N–i)–1� + (1–z) �N
i

N




�

�
1

2 2( )/

(N–i)–1 + 1� (19)

H
pD

= z N
i

N




�

�
1

1 2( )/

�(N–i+1) (N–i)/2�–1 + (1–z) �N
i

N




�

�
1

2 2( )/

�(N–i+1) (N–i)/2�–1 +

+ (N/2) �(N/2)+1 (N/2)/2�–1� (20)

H
pCJD = 2 N

i

k




�
1

i–2 + N y (k+1)–2/2 (21)

where

z = N mod 2 (22)

k = �(N–1)/4� (23)

y = (N–1) mod 4 . (24)

Expansion of sums in the above equations leads to:

H
eD
= –z N y �(1 – N)/2� – N y (–N/2) + N y (1–N) + 1 + z Ny (–N/2) – z (25)

H
pD

= 2 (N2 + N – 2 z) / (N + 1) (N + 2) (26)

H
pCJD = 2N �–� (1, k + 1) + p2/6� + Ny/2 (k + 1)2 (27)
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where �(x) = D�ln(g(x), x�, �(N,x) = D(y(x), x 
N), �(0,x) = �(x) and g(x) =

interpol(exp(–t) *tˆ(x–1)); t = 0,..., �. The reader should note that D is a

mathematical function, which should not be confused with the symbol D

which stands for the detour matrix.

For cycles, CDe = H
eCJD = N. Values of reciprocal detour and Cluj-detour

indices for the octanes and cyclooctanes are also given in Table II.

MODELING THE BOILING POINTS OF ACYCLIC AND CYCLIC

OCTANES

Lukovits10 used detour-type indices in explaining the variation of boiling

points BP, of alkanes. He considered 77 alkanes and cycloalkanes up to N =

10 (all acyclic alkanes from methane up to octanes and some cycloalkanes).

In that study, the number of carbon atoms N and their square roots N1/2

were used as the simplest descriptors and the correlation coefficients ob-

tained (r = 0.977, 0.986) were fair. Fractional exponents were used for the

Wiener and the detour indices, in single variable regression (equations of

the type BP = a + bI1/m ); none of these indices surpassed the correlation co-

efficients obtained with N1/2. Composite indices, for example, of the type

(W�)1/m or two variable regressions combining the Wiener and the detour in-

dices yielded much higher correlation coefficients, e.g. (Ww)1/8
; r = 0.994; but

the standard deviation s was still high; s = 6.4.

When the correlation analysis was repeated on the subset of isomeric

(acyclic and cyclic) octanes (n = 29), parameter N obviously could not be

used any more. Wiener and hyper-Wiener indices did not correlate with boil-

ing points. However, detour and hyper-detour indices showed significantly

higher r values, although these were also far from acceptable values (w: r =

0.747; ww: r = 0.759). Fractional exponents of these indices or composite in-

dices slowly increased the correlation coefficient, which, however, did not

surpass 0.800.

A part of Lukovits’ analysis10 was repeated by Trinajsti} and co-

workers6 in their work on the uses of detour matrix in chemistry. They con-

sidered 76 lowest alkanes and cycloalkanes. The best structure-boiling point

correlation was obtained by BP = a + b(Ww)c; r being 0.995 and s = 6.2.

In the present work, a set of 32 octanes, also investigated by Lukovits,10

have been considered. Cluj indices and their Harary counterparts have been

calculated and listed in Tables II and III. The number of paths of length 2

and 3 (p2 and p3) are also given in Table III.

As in the previous study,18 none of the indices reported in Tables II and

III produced an acceptable structure-boiling point correlation. Only the

hyper-detour index ww, distance-Cluj index CDp and the related Harary in-

dex H
pCD , surpassed the 0.800 limit (r = 0.816, 0.844 and 0.808, respec-

tively).
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TABLE III

Boiling points32 and Wiener, detour and path indices of acyclic and cyclic octanes.

No. Octane BP W WW w ww HDe HDp HDe HDp p2 p3

1 N8 125.8 84 210 84 210 13.74 10.56 13.74 10.56 6 5

2 2MN7 117.6 79 185 79 185 14.10 10.86 14.10 10.86 7 5

3 3MN7 118.8 76 170 76 170 14.26 10.98 14.26 10.98 7 6

4 4MN7 117.7 75 165 75 165 14.31 11.01 14.31 11.01 7 6

5 3EN6 118.9 72 150 72 150 14.48 11.13 14.48 11.13 7 7

6 25MN6 108.4 74 161 74 161 14.46 11.16 14.46 11.16 8 5

7 24MN6 109.4 71 147 71 147 14.65 11.30 14.65 11.30 8 6

8 23MN6 115.3 70 143 70 143 14.73 11.36 14.73 11.36 8 7

9 34MN6 118.7 68 134 68 134 14.86 11.46 14.86 11.46 8 8

10 3E2MN5 115.6 67 129 67 129 14.91 11.50 14.91 11.50 8 8

11 22MN6 107.0 71 149 71 149 14.76 11.43 14.76 11.43 9 5

12 33MN6 112.0 67 131 67 131 15.03 11.63 15.03 11.63 9 7

13 234MN5 113.4 65 122 65 122 15.16 11.73 15.16 11.73 9 8

14 3E3MN5 118.2 64 118 64 118 15.25 11.80 15.25 11.80 9 9

15 224MN5 99.3 66 127 66 127 15.16 11.76 15.16 11.76 10 5

16 223MN5 110.5 63 115 63 115 15.41 11.96 15.41 11.96 10 8

17 233MN5 114.6 62 111 62 111 15.50 12.03 15.50 12.03 10 9

18 2233MN4 106.0 58 97 58 97 16.00 12.50 16.00 12.50 12 9

19 112MC5 113.5 56 92 106 278 16.66 13.33 9.45 5.76 12 13

20 113MC5 115.5 58 100 104 266 16.50 13.20 9.52 5.80 12 11

21 IPC5 126.4 62 114 106 286 16.00 12.73 9.78 6.12 10 11

22 PC5 131.0 67 135 111 315 15.56 12.36 9.50 5.90 9 10

23 11MC6 119.5 59 103 119 337 16.33 13.03 8.17 4.49 11 10

24 12MC6 126.6 60 106 124 362 16.16 12.86 7.81 4.19 10 11

25 13MC6 122.3 61 110 123 355 16.08 12.80 7.83 4.21 10 10

26 14MC6 121.8 62 115 122 349 16.03 12.76 7.87 4.22 10 10

27 EC6 131.8 64 122 124 368 15.78 12.53 8.00 4.40 9 10

28 C8 146.0 64 120 160 552 15.66 12.40 5.08 11.60 8 8

29 123MC5 115.0 58 99 109 290 16.41 13.10 9.15 5.50 11 13

30 1M2EC5 124.0 61 110 111 307 16.08 12.80 9.26 5.65 10 12

31 1M3EC5 121.0 63 119 109 294 15.95 12.70 9.37 5.68 10 11

32 MC7 134.0 61 109 142 451 16.00 12.70 6.34 2.80 9 9

Note that the symbols have the following meaning: N = chain length; M = Methyl; E = Ethyl;

P = Propyl; IP = Isopropyl; CN = N-membered cycle. Hence, for example, the sets of symbols

2233MN4 and 1M2EC5 should be read as 2,2,3,3-dimethylbutane and 1-methyl-2-ethyl-cyclo-

pentane, respectively.



Multiple linear regressions, with two and three variables, were not suc-

cessful, either. However, when 1/p2 and 1/p3 were associated with the detour

indices (see Table IV; entries 1 and 2), a correlation coefficient higher than

0.9 was obtained. Combination of four variables, the first two being p2 and

p3 or their reciprocals, and the last two detour indices, yielded a higher cor-

relation coefficient (r > 0.950; entries 4 and 5); on the contrary, Wiener indi-

ces did not surpass r = 0.94 limit.

Similar results have been obtained by using the Cluj indices and their

inverses (see Table IV; entries 6 to 9). Predicting ability of the best regres-

sion equations was tested by a cross validation procedure (leave 1/3 out –

see below).

Note that the best structure-boiling point correlation (r = 0.966, s = 2.5,

F = 95) was achieved using the following set of indices: 1/p2, 1/p3, H
eCD and

H
pCD obtained from the Cluj matrices CJDe and CJDp. A cross-validation

procedure (leave 1/3 out) led to r(cv) = 0.934 and s(cv) = 3.3

CONCLUSIONS

Two variants of Cluj matrices have been illustrated. New Harary-type

indices, based on the detour and Cluj-detour matrices, have been intro-

duced. The formulae for calculating these indices for simple cycles have

been derived. Modeling the boiling points of a set of 32 acyclic and cycle-

containing octanes illustrated the superior ability of the Cluj indices and

their Harary derivatives in comparison to that of the Wiener indices, to ac-

count for the variation in boiling points. This study indicates the possible

usefulness of both detour and distance-Cluj indices in modeling physico-

chemical properties of chemical structures.
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TABLE IV

Statistics of multivariable regression.

No. Variables r s F

1 1/p2; 1/p3; w 0.939 3.326 69.892

2 1/p2; 1/p3; ww 0.952 2.980 89.387

3 p2; p3; W; WW 0.932 3.588 44.303

4 p2; p3; w; ww 0.966 2.563 93.291

5 1/p2; 1/p3; w; ww 0.956 2.892 71.842

6 p2; p3; HCDe, HCDe 0.958 2.826 75.538

7 p2; p3; CDp; HCDp 0.961 2.714 82.522

8 p2; p3; HCDe; HCDp 0.959 2.802 76.965

9 1/p2; 1/p3; HCDe; HCDp 0.966 2.542 94.995

The symbols have the following meaning: r = correlation coefficient; s = standard error of

estimate; F = Fischer test.
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SA@ETAK

Indeks zaobila`enja i Cluj-ski indeks zaobila`enja

Mircea V. Diudea, Gabriel Katona, István Lukovits i Nenad Trinajsti}

Prikazane su nedavno uvedene Cluj-ske matrice: Cluj-ska matrica udaljenosti i

Cluj-ska matrica zaobila`enja. Definirani su novi indeksi Hararyjeve vrste na mat-

rici zaobila`enja i Cluj-skoj matrici zaobila`enja. Tako|er su izvedene formule za ra-

~unanje tih indeksa za prstenove. S pomo}u Cluj-skih indeksa i njihovih Hararyjevih

ina~ica predvi|ena su vreli{ta za 32 acikli~ka i cikli~ka oktana. Najbolje je predvi-

|anje postignuto s pomo}u vi{estruke linearne regresije, uporabom kombinacije dva-

ju recipro~nih brojeva staza (1/p2, 1/p3) s indeksima zaobila`enja i hiperzaobila`enja

ili kombiniranjem istih recipro~nih brojeva staza s Hararyjevim indeksima izvede-

nim iz dviju Cluj-skih matrica, jedne definirane s pomo}u bridova i druge, s pomo}u

staza.
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