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A simple derivation of the general equations of the Tamm-Dankoff
approximation (TDA) is presented using the equation-of-motion
technique to describe electronic excitations in molecules. It is em-
phasized that the performance of this method strongly depends on
the accuracy of the reference (ground) state. Though the Hartree-
Fock ground state is commonly applied, the 'all-single CI' (CIS)
method based on it is not too reliable. On the other hand, if the
ground state is described by sophisticated wave functions like
CISD or a coupled cluster ansatz, the TDA equations become quite
complicated and may even turn inconsistent. We advocate the use
of geminal type ground state wave functions, which, if the strong
orthogonality condition is utilized, provide an efficient starting
point, being not only highly correlated but also very transparent.
Fully consistent TDA equations are derived for strongly orthogonal
geminals, which can be of great help in the interpretation of mo-
lecular spectra in terms of local contributions and chromophores.

INTRODUCTION

In ground state quantum chemistry, one has the basic guide: the varia-
tional principle. Even if some standard methods are not variational in na-
ture (cf. the perturbational schemes or the coupled cluster approach), a
variational calculation at a similar level of accuracy can always serve as a
test of the results.

The theory of excited states, unfortunately, lacks such a clear principle.
While the approximate ground state wave function can be always defined as
the one minimizing the energy within the given function class, the same
does not apply to excited states. From the formal point of view, one may de-
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fine the first excited state as the state which minimizes the energy but is or-
thogonal to the ground state, and so on. However, this definition is not too
useful in practice as we usually do not know the exact ground state either.
Demanding the excited state wave function to remain orthogonal to an ap-

proximate ground state is a rather arbitrary auxiliary condition and may
cause cumulative inaccuracies in describing excited states.

Therefore, practical treatments of excited states of molecules are usually
based on some excitation models, such as the single transition approxima-
tion (STA), Tamm-Dankoff approximation (TDA),1 the random phase ap-
proximation (RPA),1,2 multi-root configuration interaction (CI) techniques,
etc. Among these, the TDA is the first level that fulfils the condition of or-
bital invariance (the requirement that the excited states remain invariant
to any unitary transformation within the space of occupied (or virtual) orbi-
tals). This plays, therefore, a fundamental role in the theory of excited
states, even if its accuracy is not satisfactory in usual implementations.

In this paper, we shortly review the derivation of the TDA equations us-
ing the equation of motion (EOM) technique,2 and discuss the conditions by
which the standard CIS (CI with single excitations) method3 can be ob-
tained from the general TDA equations. Then, we shall report our recent re-
sult, which concerns improvement of the accuracy of the TDA without de-
stroying the mathematical consistency and the simplicity of the formalism.

Numerical calculations will be performed subsequently and reported in
a forthcoming paper.

REVIEW OF TDA EQUATIONS

In this Section, we present a short summary of the TDA equations
through the equation of motion technique. We use a simplified derivation4

which is sufficient for the present purpose; for a more general discussion,
see Ref. 1. Consider the Schrödinger equation

�H n E nn� . (1)

It is convenient to define an excitation operator as

�O nn

� �0 (2)

and the corresponding de-excitation operator as

�O nn

� � 0 . (3)

In Eqs. (2–3), 0 is the true ground state. We demand that 0 cannot be
further de-excited, that is
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�On

� �0 0 . (4)

A formal construction of the excitation and de-excitation operators in the
bra-ket formalism is clearly:

�O nn

� � 0 (5)

and

�O nn

� � 0 . (6)

From this latter equation, we see that �On

� is the adjoint of �On

� .

Let us now study the commutator of the Hamiltonian and the excitation
operator. Using Eq. (5), we get:

� ��, � � � ( )H O H n n H E E nn n

� � � � �0 0 00 (7)

where the Schrödinger equation (1) was utilized. That is, denoting the
excitation energies ( )E En � 0 by wn, we have:

� ��, � �H O On n n

� �� w . (8)

By analogy to Heisenberg's equation of motion, this result is usually called
the equation of motion (EOM) for the excitation operator.2 It is quite
interesting that such a simple formal derivation indeed produces something
nontrivial: as we shall see below, Eq. (8) can be used in practice to
determine the excitation operator �On

� . It is also obvious from Eq. (2) that the
explicit knowledge of �On

� permits one to construct excited state wave
functions. Excitation energies emerge as byproducts when solving Eq. (8).

Solution of Eq. (8) can proceed in the following manner. First, we expand
the unknown operators �On

� as linear combinations of some properly selected
fundamental operators �Ak

� :

� �O X An k

n

k

k

� �� � . (9)

Similarly, the de-excitation operators are expanded in terms of the adjoint
fundamental operators

� �*O X An k

n

k

k

� �� � (10)

where � ( � )A Ak k

� �� † and the asterisk denotes complex conjugation of the
expansion coefficients X k

n to be determined from Eq. (8).
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Expansions (9–10) do not involve any approximation if the set of funda-
mental operators is complete in the operator space. In practice, however,
one has to use truncated expansions.

Substituting the operator expansions (9) into the EOM (8), multiplying
the expanded equations from the left (and from the right) by �AL

� , and sub-
tracting the resulting two equations, we get the generalized eigenvalue
equations

� �A BLK

K

K

n

n LK

K

K

nX X� �� w (11)

where operators �A and �B are defined by the commutators

� �� �� � , �, �ALK L KA H A� � � (12)

and

� �� � , �BLK L KA A� � � . (13)

These are the general TDA equations in operator form. Taking the ex-
pectation value of Eq. (11) with the ground state, we get the general TDA
equations in their matrix form:

A BLK

K

K

n

n LK

K

K

nX X� �� w (14)

where the TDA matrices are defined as

� �� �ALK L KA H A� � �0 0� , �, � (15)

and

� �BLK L KA A� � �0 0� , � . (16)

Solution of Eq. (14) consists of two steps: (i) one has to evaluate the TDA
matrices according to Eqs. (15,16); and (ii) one has to solve the generalized
eigenvalue equations (14).

For evaluation of the matrix elements, we define a set of many-electron
wave functions by

K Ak� �� 0 (17)

where 0 is the true ground state satisfying Eq. (1), but the wave functions
K are not eigenfunctions of the Hamiltonian, they merely serve as a basis
in the many-electron space. Putting down the adjoint of Eq. (17), we have
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K Ak� �0 � . (18)

With the aid of these basis functions, the matrix elements BLK can be
written as

BLK � � � �� � � � � �0 0 0 0 0 0� � � � � �A A A A A A L KL K K L L K
. (19)

Here, the second term of the commutator vanished due to Eq. (4). That is,
provided this consistency requirement if fulfilled, B is just a metric matrix
in the space of many-electron basis functions.

Under the same conditions, the matrix elements ALK can similarly be
transformed to

ALK = L H K E L K� � 0 (20)

by which the general TDA equations become

L H K X E L K X
K

K

n

n K

n

K

� ( )� �� �0 w . (21)

These are analogs to the CI equations, to which they can be reduced in
special cases (vide infra). To get rid of the ground state energy for Eq. (21)
and to simplify further, let us study the matrix elements of the Hamiltonian:

� �L H K A HA A R A H A R E LL K L K K L K
� � � � � � � � � �� � � � �� � � � � � �0 0 0 0 0 0 0 K (22)

where operators �RK

� are defined as the commutator

� �� �, �R H AK K

� �� . (23)

Substituting this into Eq. (21), we finally get the direct-TDA equations

0 0� �A R X L K XL K K

n

n

KK

K

n� � � �� w . (24)

It is to be emphasized that these equations are exact (i.e., they yield the
exact excitation energies and excited wave functions) provided the following
two conditions are fulfilled:

1. 0 is the true ground state
2. the fundamental operators �Ak

� form a complete set.
In this case, the symbol 'A' in acronym 'TDA', referring to 'approxim-

ation', is not too fortunate. However, neither of these two conditions can be
fully satisfied in practical calculations, and one can merely expect that the
better they are fulfilled, the more accurate the solutions of the TDA equa-
tions will be.
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CIS EQUATIONS

Standard CIS equations are easily recovered from general TDA if the
approximations defined by the following two conditions are made:

condition 1. 0 is chosen as the Hartree-Fock ground state:

0 1 2
~� � � � �HF vacnf f f... . (25)

condition 2. the fundamental operators AK

� are single-particle excita-
tions from the occupied orbital i to the virtual MO p*:

AK p i

� � �� f f* (26)

where fp*
� and fi

� are creation and annihilation operators for Hartree-Fock
MOs, and label K is now equivalent to the composite index 	 
p i* .
Then, matrix B is easily evaluated as

BLK j q p i pq ij KLHF HF� � �� � � �f f f f d d d* * . (27)

Similarly, matrix A reduces to

ALK j q p i HF ij pqHF H HF E� �� � � �f f f f d d* *
� (28)

which can also be evaluated in a straightforward manner. In words, B is
the unit matrix and the first term of A is the matrix of the Hamiltonian in
the space of single excitations with the HF reference state. With these
matrices, the TDA equations (14) go over the usual CI equations among
singly excited configurations (CIS method).

The CIS approach is known to provide a relatively poor description of
excited states.3 In particular, it does not account for correlation effects in a
satisfactory manner. However, though the contrary is sometimes stated,3

the CIS excited state does contain some correlation. This can be proven by
checking the occupancies of its natural orbitals, which are fractional num-

bers in general, indicating an inherently multiconfigurational behavior.
It is clear from the discussion in the previous Section that all the short-

comings of the CIS method should be traced back to the two approximations
listed above. Improvements of this scheme should either involve a better
ground state or a more complete description of excitations.

CONSISTENCY REQUIREMENT IN TDA

Besides its simplicity, there is an important advantage of the CIS
method: it satisfies the consistency requirement expressed by Eq. (4). This
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is an especially appealing feature, which is not trivial to maintain when go-
ing beyond the CIS approximation or beyond the TDA scheme. In particular,
neither the well-known random phase approximation (RPA),1 nor TDA-tape
schemes with standard correlated reference states will meet this require-
ment.

To see that Eq. (4) is indeed fulfilled for CIS, we write

� �*
*
*

*
*

O X A X HFn K

n

k

K

ip

n

i p

ip

� � � �� � �� �0 0 0f f (29)

where the last equation is true as no virtual can be annihilated from the HF
ground state.

If, however, one uses a multideterminantal reference ground state Y0

instead of HF , then fp*
� �Y0 0 in general, as Y0 may have a component

in which orbital p* is occupied. This leads to the consistency requirement
being lost, unless special care is taken to define the reference ground state
and the excitation space in a constitent manner.

We note that instead of Eq. (4), one could also consider the more general
requirement

� � �O m O On n m nm

� � �� �0 0d (30)

which expresses the ortogonality of different excited states:

n m O On m nm� �� �0 0� � d . (31)

It is also easy to show that the CIS model fulfils this requirement, as well.
In this paper, we propose to replace condition 1. of the previous Section

by using a correlated reference state, and to modify condition, 2. accord-
ingly, in a way allowing the consistency requirement of Eq. (4) to be pre-
served. The suggested wave function will be described in the next Section.

STRONGLY ORTHOGONAL GEMINALS

Let us define a ground state N-electron wave function with variationally
determined strongly orthogonal geminals � i

�, as their antisymmetrized
products (APSG):


 � � �0 1 2 2
APSG

N vac� � � �
� / . (32)

The geminals � i

�-s can be expanded in mutually exclusive orthogonal
subspaces to ensure strong orthogonality:

� i

i
i

C a a i N� � �

�

� �� mn m n

m n

, , ,...
( )

1 2 (33)
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where the superscript (i) on the summation indicates that only those indices
m and n are considered which belong to the subspace assigned to geminal i.
In Eq. (32), operators a im m� �( ) create electrons on orbitals spanning the i-th
subspace. Although the form of the wave function in Eq. (32) is analogous to
the Hartree-Fock case, Eq. (25), 
0

APSG is clearly a multi-reference state
which consists of many determinants with high excitations.

If the geminals are not fully variational, but the one-particle subspaces
are intuitively selected*, we refer to them as strictly localized geminals
(SLG).5–13

The algebra of the APSGs is given by

� � � �� � � �i k i k

� � � �, , 0 (34)

� �� �
i k i k iQ, �

,
� � d (34)(35)

where the quasiparticle commutator has the form5,6,10,12,13

�Q P a ai

i
i

� � � �1 mn

mn

m n (36)

with Pi being the first-order density matrix for geminal i, for which, using
the convention C Ci i

ml lm
m l� � �for , we get:14,5,12,10

P a a C Ci i

i i
i

mn m n ml nl

l

� �� �� �
( )

. (37)

Relation (35), which is a consequence of the strong orthogonality of the
geminals,12 is extremely important as it tells us that the quasiparticle crea-
tion and annihilation operators commute for different geminals. This per-
mits us to use an analogous algebra in the evaluation of matrix elements as
if we had a single-reference function. We have to emphasize, however, that
this statement applies only to matrix elements in which no multiple quasi-

particle creation operator appear for one subset consecutively. Extension to a
more general case is important when studying excited states; this was done
recently and will be published elsewhere.15

Variational determination of coefficients Ci

ml
is equivalent to solving lo-

cal Schrödinger equations for each two-electron system in its associated
subspace:

�H vac E vaci

i i i� �
k

k

k

� �� (38)
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where �H i is the two-electron Hamiltonian for the i-th subspace,6 Ei

k is the
energy of the i-th geminal in its k-th state. The � �i i

� �� 0 gives a ground-state
geminal used in Eq. (32), while k > 0 refers to an excited geminal. For more
details of this formalism, we refer to previous publications of our
laboratory5–8 and to works by other authors.16–18, 14,19

TDA WITH STRONGLY ORTHOGONAL GEMINALS

As mentioned above, the accuracy of TDA is a sensitive function of the
exactness of the applied reference state. For a new representation of TDA,
which is expected to do a much better job than the CIS method, we intro-
duce the following two approximations:

1. The reference ground state is chosen as 
0
APSG of Eq. (32)

2. The fundamental excitation operators are those which replace a
ground state geminal to an excited state geminal:

�AK p i

� � �� � �k 0 . (39)

That is, K is now the composite label ipk. The adjoint operators are
clearly

�AK i p

� � �� � �0 k . (40)

It is easy to see that this choice does maintain the consistency require-
ment discussed in Section »Consistency Requirement in TDA«:

� �* *O X A XK

n

K

K

ip

n

i p

ip

� � � �� �� �0 0 0k k

k

� � 
0
APSG . (41)

The latter equation holds here because � 
pk

�

0
APSG is zero due to the proper

commutation rules (34–35) and the orthogonality of the geminals for
different states k. One can also show that the APSG-TDA model obeys the
more general requirement (30) as well.

Evaluation of the TDA matrices A and B is straightforward with the
APSG-s. However, matrix B is now not the unit matrix, but the following
result applies:

BLK j q p i ij pq iq� � � �� � � �
 � � � � 
0 0 0 0 1APSG APSG
l k lk

d d d d d(� �iq ab

q
Q) � (42)

as the state K is the i p0 � k excitation while L is j q0 �
l
.

Evaluation of the TDA matrix A can also be done, but the result is
quite lenghty and it is not reported here. Alternatively, one can use Eq. (24),
in which commutators �RK in the APSG-TDA approximation are written as
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� � � �� �, � �, �R H A H RK k p ip

� � � � �
� � �� �k i k0 (43)

by which the direct form of the TDA equations becomes


 � � 



 � �

0 0

0 0

APSG APSG

APSG

j q ip

ip

ip

n

n j q

R X� � �

�

� �

�

l k

k

k

w

�

l k k

k

� � �� � � 
q j jq

nX0 0
APSG .

(44)

Evaluation of the matrix element at the l.h.s. can also be done by the
geminal commutation rules. Solution of the standard eigenvalue problem
Eq. (44) is not difficult computationally, as the dimensionality of the
problem is (N/2)2 � M, where N is the number of electrons in the molecule
while M is the number of possible states for a geminal. For a given molecule
(given N), only this latter parameter increases with increasing basis sets,
thus one should be able to perform accurate large-basis calculations within
the proposed scheme.

We note that geminal type wave functions are also useful in connection
with the random phase approximation (RPA). For example, Öhrn and Lin-
derberg pointed out that the so-called antisymmetrized geminal power
(APG) wave function, where each geminal is identical, serves as an apropri-
ate reference state for RPA calculations.20,21

In summary, we propose a better representation of the general TDA
equations by replacing the Hartree-Fock reference state for the APSG
ground state, while changing the excitation space simultaneously in a man-
ner that excitation operators destroy a ground state geminal and create an-
other geminal in excited state. Both changes represent a substantial im-
provement to the standard CIS scheme. The excitation space represented by
Eq. (39) describes several types of single and double excitations (in terms of
electrons), thus it may be more adequate to describe electronic excitations
than the CIS scheme. However, intergeminal charge-transfer type single
electron excitations are missing from Eq. (39) – they should be accounted for
by a suitable perturbation of the TDA equations. Proper commutation rules
followed by strongly orthogonal geminals ensure the inherent consistency of
the TDA equations, for we expect better numerical results than the RPA-
type schemes that violate the consistency of the formalism. Numerical cal-
culations will be reported in a forthcoming paper.

Acknowledgements. – This work was supported by the grants MKM-183/96, AKP
96/2-462, T023052 and T021179.

498 P. R. SURJÁN



REFERENCES

1. D. J. Rowe, Rev. Mod. Phys. 40 (1968) 153.
2. C. W. McCurdy Jr., T. N. Rescigno, D. L. Yeager, and V. McKoy in: Methods of Elec-

tronic Structure Theory, H. F. Schaeffer III Ed., Plenum, New York, 1977.
3. R. J. Bartlett and J. F. Stanton, Reviews in Computational Chemistry, V:65, 1994.
4. G. B. Bacskay. Aus. J. Phys. 35 (1982) 639.
5. P. R. Surján, Phys. Rev. A 30 (1984) 43.
6. P. R. Surján, I. Mayer, and I. Lukovits. Phys. Rev. A 32 (1985) 748.
7. P. R. Surján, Int. J. Quantum. Chem. 52 (1994) 563.
8. P. R. Surján, Int. J. Quantum. Chem. 55 (1995) 109.
9. R. A. Poirier and P. R. Surján, J. Comput. Chem. 8 (1987) 436.

10. P. R. Surján, in: Theoretical Models of Chemical Bonding, volume 2, The Concept

of the Chemical Bond, Z. B. Maksi} (Ed.), Springer, Berlin-Heidelberg, 1990, p.
205.

11. P. R. Surján, Croat. Chem. Acta 57 (1984) 833.
12. P. R. Surján, Croat. Chem. Acta 62 (1989) 579.
13. P. R. Surján, Second Quantized Approach to Quantum Chemistry. Springer, Hei-

delberg, 1989.
14. C. Valdemoro, Phys. Rev. A. 31 (1985) 2114.
15. P. R. Surján, M. Kállay, and Á. Szabados, Int. J. Quantum. Chem., in press, 1998.
16. S. Bratos and Ph. Durand. J. Chem. Phys. 43 (1963) 2670.
17. M. Girardeau, J. Math. Phys. 4 (1963) 1096.
18. V. Kvasni}ka, Czech. J. Phys. B32 (1982) 947.
19. C. Valdemoro, Phys. Rev. A 31 (1985) 2123.
20. Y. Öhrn and J. Linderberg, Int. J. Quantum. Chem. 12 (1977) 161.
21. Y. Öhrn and J. Linderberg, Int. Quantum. Chem. 15 (1979) 343.

SA@ETAK

Kvantna kemija pobu|enih stanja: Uporaba koreliranih valnih
funkcija u Tamm-Dankoffovoj aproksimaciji.

Peter R. Surjan

Koriste}i se jednad`bama gibanja za elektronsku pobudu u molekulama, na
jednostavan su na~in izvedene op}e jednad`be za Tamm-Dankoffovu aproksimaciju
(TDA). U~inkovitost te metode jako ovisi o to~nosti referentnog osnovnog stanja.
Uobi~ajena uporaba Hartree-Fockova osnovnog stanja i na njemu zasnovane metode
svih jednostrukih konfiguracijskih interakcija (CIS) nije pouzdana. S druge strane,
ako se osnovno stanje opi{e finijim valnim funkcijama kao {to su CISD ili ansatzom

vezanih grozdova, TDA-jednad`be postaju zamr{ene, pa ~ak i nekonzistentne. U
ovom se radu predla`e uporaba geminalnih valnih funkcija kao dobre polazne to~ke
za opis osnovnog stanja. Te funkcije, uz primjenu uvjeta stroge ortogonalnosti ne
samo da dobro opisuju korelaciju ve} su i vrlo transparentne. Izvedene TDA-jed-
nad`be za strogo korelirane geminale mogu biti korisne u tuma~enju ovisnosti mole-
kulskih spektara o lokalnim doprinosima i kromoforima.
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