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Introduction

Bioreactors which energy in a liquid and gas 
form is imported are universal in regard to manage-
ment and establishment a definite mass exchange as 
mixing. In the mechanical mixing of the environ-
ment, the gas reaches its highest dispersion in the 
liquid as a result of the turbulence received. Having 
enough gas content, this may cause a huge relative 
surface of the phases contact; thus allowing the de-
velopment of cultivation environments having com-
ponents that differ significantly in respect to densi-
ty. These advantages of stirred tank bioreactors 
(have led to their broad usage. They are mostly used 
in the production of enzymes, amino acids, antibiot-
ics, etc.1,2

However, for optimal cultivation performance, 
each specific system (culture + bioreactor) requires 
individual adjustment and optimisation of the culti-
vation conditions.3

In our study4, an alternative concept of the 
global models, namely functional state modelling, 
has been used. With this approach, the whole pro-
cess is decomposed to functional states, each of 
which is described with a local model. The general 
disadvantage of this approach is that there are no 
clear criteria for understanding the phase of the pro-

cess and the great number of coefficients in the 
model. Therefore, it is unsuitable for optimization 
and optimal control.

Multiple objective optimisation is a natural ex-
tension of the traditional optimisation of a single 
objective function. On the one hand, if the multiple 
objective functions are commensurate, minimizing 
single objective function, it is possible to minimize 
all the criteria and the problem could be solved us-
ing traditional optimisation techniques. On the other 
hand, if the objective functions are incommensurate 
or competing, then the minimization of one objec-
tive function requires a compromise in another ob-
jective function. The competition between multiple 
objective functions is a key distinction between 
multiple objective optimisation and traditional sin-
gle objective optimisation.5–7

A Pareto optimisation technique has been used 
in study8 to locate the optimal conditions for an in-
tegrated bioprocessing sequence. The benefits of 
first reducing the feasible space by development 
provide a smaller search area for the optimisation.

Tonnon9 used an interactive procedure to solve 
multiple objective optimization problems (MOOP). 
A fuzzy sets theory (FST) has been used to model 
the engineer’s judgment on each objective function. 
The properties of the obtained compromise solution 
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were investigated along with the links between the 
present method and those based on fuzzy logic.

In his works, Wang10 applies a fuzzy-deci-
sion-making procedure to find the optimal feed pol-
icy of a fed-batch fermentation process for fuel eth-
anol production using a genetically engineered 
Saccharomyces yeast as well as a fuzzy optimiza-
tion of a two-stage fermentation process with cell 
recycling including an extractor for lactic acid pro-
duction.

A method based on FST has been used for op-
timization of batch and fed-batch fermentation pro-
cesses, as well as for optimization of gas-liquid 
mass-transfer in stirred tank bioreactors.11,12

This study suggests a global model for model-
ling a process of different mixing types of the Sac-
charomyces cerevisiae cultivation. The concept of 
Pareto optimality is applied for finding a solution to 
MOOP. By using an assigned membership function 
for each of the objectives, the general multiple ob-
jective optimization problem (GMOOP) can be 
converted into a maximizing decision problem. In 
order to obtain a global solution, a FST method is 
introduced to solve the maximizing decision prob-
lem.

Material and methods

Experimental results

The deformation damage of the cells in the in-
tensively mixed zones proved to be much more 
dangerous than the insufficient mass exchange in 
the so-called dead zones of the bioreactors. A spe-
cial bioreactor design EDF5-30 was developed for 
simulation of these situations to provide producers 
sensitive to deformation forces with equally mixed 
cultivation conditions. The specific instruments 
BiO-3 and SiMD were developed for control of the 
process (www.bioreactors.net). BiO-3 allowed the 
control of all conventional parameters: temperature, 
pH, pO2, gas flow rate, shaft rotational speed, etc. 
SIMD measured the kinetic energy of flow fluctua-
tions.

The experiments were realised in a batch cul-
ture (2 % glucose broth) of Saccharomyces cerevisi-
ae in aerobic conditions (aeration – 1 L gas per 1 L 
broth).

A laboratory bioreactor EDF-5.3 was used in 
the experiments. It was equipped with a novel upper 
magnetic drive, bioprocess controller BIO-3 and 
SCADA (Fig. 1).13,14

F i g .  1  – Schematic diagram of the fermentation process
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Two experiments4,14 were carried out in a biore-
actor with a total volume of 5·10–3 m3 and a work-
ing volume V = 3·10–3 m3. The impulse mixing sys-
tem included a double Rushton turbine with baffles. 
The maximum rotation speed of the stirrer nm = 260 
rpm and mixing impulses had a frequency f = 0.5 s–1 
and a period T = 2 s (Fig. 2a). The vibromixing was 
carried out by replacing the turbine stirrer with a 
vibrator plate, maximal amplitude Am = 10·10–3 m 
and frequency f = 10 s–1 (Fig. 2b).

Fig. 3 shows the results of the biomass and 
substrate concentration curves for the Saccharomy-
ces cerevisiae cultivation using the impulse and vi-
bromixing systems after applying a cubic spline 
procedure for experimental data.

As for the impulse mixing, the classic growing 
curve with a plateau region observed at the end of 
the process (Fig. 3), indicates that the substrate is 
completely used by the cells. This was confirmed 
by the glucose consumption rate (rS) (Fig. 4).

The specific glucose consumption rate (RS) 
curve (Fig. 5) shows that at the end of the process, 
this indicator of impulse mixing processes practical-
ly reaches zero, while for vibromixing conditions, 

the curve of the specific glucose consumption rate, 
increases only in the third hour of cultivation.

When the yeast growing process was analysed 
using the specific growth rate (m) of the culture, the 
curves show (Fig. 6.) that by using a Rushton tur-
bine with impulse mixing, microorganism growth is 
rapid in the first three hours after which the rate of 

F i g .  2  – Realisation of the impulse and vibromixing systems; 
a) impulse mixing, where T is period, s; nm – maximal rotation 
speed, rpm; t – time, h; b) vibromixing, where 1 is vibrator 
plate; D – bioreactor diameter, m; Am – amplitude, m; r – axis 
and z – axis

F i g .  3  – Experimental results for biomass and substrate con-
centration of Saccharomyces cerevisiae

F i g .  4  – Glucose consumption rate (rS) for the Saccharomy-
ces cerevisiae growing process

F i g .  5  – Specific glucose consumption rate (Rs) for the Sac-
charomyces cerevisiae growing process



534 M. PETROV and T. ILKOVA, Modelling and Fuzzy-Decision-Making of Batch…, Chem. Biochem. Eng. Q., 28 (4) 531–544 (2014)

the process decreases. This can be explained by the 
decrease of substrate concentration and slower mass 
exchange. For vibromixing conditions, at the begin-
ning of the process, the value of the specific growth 
rate increases in the first two hours, after which 
changes are minor.

One of the main process parameters is product 
yield (YX/S); it is yeast biomass. Fig. 7 shows that the 
yield of biomass for a rotary stirrer decreases twice 
and then remains approximately at the same level 
(slightly increases only during the third hour). In the 
case of vibromixing, the yield of biomass increases 
slowly; in the second hour it reaches the turbine pro-
cess level, and then the curves of both of the process-
es have an approximately common tendency.4

The results of this experiment show that in re-
gard to the real fermentation processes, the process 
optimisation is even more important than the design 
of the mixing system.

Kinetic models

The mathematical model of the process for the 
impulse and vibromixing is based on the mass bal-
ance equations through perfect mixing in a bioreac-
tor:
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The reaction rates for the cell and glucose are 
expressed as follows:
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The initial conditions of the impulse mixing 
and vibromixing are:
impulse mixing:

 (0)Xg =0.89 kg m–3, (0)Sg =13.89 kg m–3;

vibromixing:

 (0)Xg =1.20 kg m–3, (0)Sg =15.75 kg m–3,

and
 V0 = 3·10–3 m3.

The substrate inhibition occurs generally at 
high substrate concentrations. Different substrate 
inhibition models (Monod, Aiba, Andrews, Hal-
dane, Luong, Edward, and Han-Levenspiel) are 
considered to explain the cell growth kinetics.15–17

Evaluation of the model parameters

The mathematical estimation of the model pa-
rameters is based on the minimization of some 
quantities which can be calculated and which repre-
sent a function of the parameters to be estimated. If 
the model under consideration is linear, the estima-
tion is generally an easy task. However, there is no 
general theory for nonlinear parameter estimation. 
The least-squares error is commonly used as a crite-
rion for inspecting how close the computed profiles 
of the state variables are to the experimental obser-
vations.

We have used time as a weight factor for each 
experiment in the method of the smallest squares 
shown in this study. The criterion (Qk) is expressed 
in the form below18:
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F i g .  6  – Specific growth rate (m) of Saccharomyces cerevisiae

F i g .  7  – Yield of biomass from glucose (YX/S) growing the Sac-
charomyces cerevisiae in different mixing conditions
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The least-squares regression sums up every ob-
served error in (2) to yield an objective function. 
For parameter identification, we take the worst ob-
served error of all experiments for an objective 
function. This approach is a special case of multiple 
objective parameter estimation of problems. The 
parameter estimation problem becomes a min–max 
problem18

  expmin min max , 1, ...,kk
Q Q k N 

x x
 (3)

Models validation

The best dependences are defined by the statis-
tical criteria: experimental correlation coefficient 
(R2

E), experimental Fisher coefficient (FE), relative 
error (SL), and statistic l for different mixing sys-
tems of growth rate models. The statistic l has 
F(M, Nexp – M) distribution. Statistic l is defined by19
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The relative error (SL) is determined by the fol-
lowing equation:
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After identification of the parameters for 
growth rate models, the models (1) are compared to 
given statistical criteria. The model that has the best 
criteria values is used to the MOOP of the processes 
for the different mixing systems.

Multiple objective decision-making problems

The objective of the problem is to find optimal 
initial conditions of biomass ( (0)Xg ), glucose con-
centration ( (0)Sg ),maximal rotation speed (nm) for 
impulse mixing, and maximal amplitude (Am) for vi-
bromixing where h? the following objective func-
tions have maximum and minimum values
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The first objective function corresponds to bio-
mass production. The second objective function 
corresponds to the residual of the glucose.

In order to define concisely the Pareto optimal 
solution, we have introduced the following defini-
tion8,10

Definition 1. The feasible region in input 
space, W, is the set of all admissible control vari-
ables and the system parameters that satisfy the sys-
tem constraints

  0 min max( , ), (0) and   £ £u z f z u z z u u u

where umin and umax are lower and upper bounded vec-
tors of the control variables ( 1 (0) ,X gu 2 (0) ,S gu  

3 max maxu n or A ). Here, the state equation 
( , )z f z u  consists of batch model (1) for impulse 

or vibromixing.
We are now in a position to define Pareto opti-

mal solutions in respect of the combined optimal 
control and optimal parameter selection problem.

Definition 2. The control action u* is a Pareto 
optimal policy, if and only if, uÎΩ does not exist 
there:
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In general, there are an infinite number of Pare-
to policies for a given MOOP. The collection of Pa-
reto policies is the Pareto set. The image of this set 
is called the trade-off surface.

After the optimal solution is obtained through a 
multiple objective optimization technique, the sec-
ond requirement in this decision-making problem is 
then performed to check whether the optimal solu-
tion satisfies the threshold values assigned. If the 
optimal solution does not satisfy the threshold val-
ues, the DM has to assign another threshold require-
ment. The problem should then be repeated to find 
another optimal solution. Interactive programming 
can be used to solve the decision-making problem. 
In this study, the interactive fuzzy optimisation is 
elaborated to solve the multiple objective optimal 
control and optimal parameter selection problem.

Fuzzy-decision-making problems

The optimal solution has to satisfy completely 
the assigned threshold values. It is assumed that the 
DM has fuzzy goals for each of the objective func-
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tions (6). As a result, the DM considers that the 
fuzzy objective function J1 should be substantially 
greater than or equal to the threshold interval 

1 1[ ]L UJ J . The second goals should be substantially 
less than or equal to the assigned threshold interval 

2 2[ ]L UJ J .
The multiple objective optimization problem 

(6) is now extended to the GMOOP given as

 1 0 ( ) (0)max ( )
ftfuzzy J V g gX Xu

 (7)

 2 0 ( )min
ftfuzzy J V gSu

 (8)

The fuzzy requirement for each of the objective 
functions can be quantified by eliciting membership 
functions from the DM. Maximizing the fuzzy goal 
stated by the DM may achieve “substantially great-
er than or equal to some intervals”, and the DM is 
asked to determine the subjective membership func-
tion which is a strictly monotonically decreasing 
function compared to Jk. The linear membership 
functions are used in this study. The membership 
function for fuzzy maximizing goal (7) has the fol-
lowing type20:
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The membership function for fuzzy minimizing 
goal (8) has the following type:
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The membership function for each of the ob-
jective functions is described in Fig. 7.

Having elicited the membership functions from 
the DM for each of the objective functions, the 
GMOOP (7)-(8) can be converted into the fuzzy 
multiple objective optimization problem (FMOOP) 
by aggregation of the criteria10,20

 1 1 2 2min[ ( ) ( ) ]TJ J
Î
n n

u

By introducing a general aggregation operator 
nD(Jk), the fuzzy multiple objective decision-making 
problem (FMODMP) or maximizing decision prob-
lem can be defined by10,20

 max D
Î
n

u
 (11)

In this study, the fuzzy decision or minimum 
operator of Bellman and Zadeh19 is selected as ag-
gregation operator:
  1 1 2 2min ( ), ( )D k

J Jn  n n

Observe that the value of the aggregation oper-
ator can be interpreted as representing an overall 
degree of compliance with the DM’s multiple fuzzy 
goals. Let us consider the fuzzy maximizing prob-
lem. On the one hand, while the objective function 
value is greater than the assigned upper bound, such 
a solution absolutely satisfies the DM. On the other 
hand, the objective function value is smaller than 
the lower bound. It has to be rejected. As far as the 
objective function value is located in the threshold 
interval, the DM has satisfied the solution to some 
degree.

Fundamental to the MOOP (6) is the Pareto op-
timal concept. Therefore, the DM must select a 
compromise solution among the many Pareto opti-
mal solutions. The relationships between the opti-
mal solutions of (11) and the Pareto optimal con-
cept of the MOOP can be characterized by the 
following theorem:10, 21

Theorem 1. If u* is a unique optimal solution 
to the FMODMP (11), then u* is a Pareto optimal 
solution to the MOOP (6).

This theorem is used to guarantee that the 
unique optimal solution of (11) is a Pareto solution 
to the multiple objective optimal control problems 
(7)-(8). The statement of this theorem does not 
guarantee a unique optimal solution to (11).

Sakawa21 introduced the concept of fuzzy Pare-
to or M-Pareto optimal solutions for the general 
multiple objective nonlinear programming prob-
lems. Such a definition can be developed in regard 
to the combined optimal control and optimal param-
eter selection problem. This is defined by using 
membership functions objective functions.

Definition 3. If u*ÎΩ is said to be an M-Pa-
reto optimal solution to GMOOP and only if 
 another u*ÎΩ does not exist there, such that 

*[ ( )] [ ( )]k k k kJ Jn nu u  will exist for all k and 
*[ ( )] [ ( )]j j j jJ Jn  nu u  – for at least one j.

Note that the set of Pareto optimal solutions is 
a subset of the set of M-Pareto optimal solutions as 
observed from Definitions 1, 2, and (9). Here, M 
refers to membership. Using the concept of M-Pare-
to optimality, the fuzzy version of Theorem 1 can 
be under slightly different conditions10.

Theorem 2. If u* is a unique optimal solution 
to the FMODMP (11), then u* is a Pareto optimal 
solution to the GMOOP (7)-(8).
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Theorem 2 is used to guarantee that the unique 
optimal solution to the maximizing decision prob-
lem (11) is an M-Pareto optimal solution of fuzzy 
problems (7)-(8). The key point for using this theo-
rem is to find a unique optimal solution to problem 
(11). A global optimization method has to be used 
to determine such a unique solution.

The proof of these theorems can be found in 
the publications of Wang10 and Sakawa.21

An algorithm and a program have been devel-
oped to find a satisfactory solution to the GMOOP. 
The algorithm is explained below:

1. Assigning the threshold intervals [ ]L U r
k kJ J .

2. Eliciting a membership function ( )k kJn  
from the DM for each of the objective functions.

3. Solving the maximizing decision problem 
(11). Let [ , ( )]r r

k kJnu  be the M-Pareto optimal 
solution to the GMOOP (7)-(8).

4. If the DM is satisfied with the current levels 
of ( 1,2)( )r

k k kJ n , the current M-Pareto optimal solu-
tion [ , ( )]r r

k kJnu  will be the satisfactory solution 
for the DM. Otherwise, the objectives are classified 
into three groups based on the DM’s preference:

(a) a class of the objectives that the DM wants 
to improve,

(b) a class of the objectives that the DM may 
possibly agree to relax, and

(c) a class of the objectives that the DM ac-
cepts.

The index set of each class is represented by 
Ir, Rr, and Ar, respectively. The new threshold 
 intervals 1[ ]L U r

k kJ J   are reassigned in such a way 
that 1[ ] [ ]L U r L U r

k k k kJ J J J   is for any k Î Ir, 
1[ ] [ ]L U r L U r

k k k kJ J J J  for any k Î Rr, and 
1[ ] [ ]L U r L U r

k k k kJ J J J   is for any k Î Ar. Then 
Step 2 is repeated.

Here, it should be noted that any improvement 
for one of the objective functions could be achieved 
only at the expense of at least one of the other ob-
jective functions.

The programs developed were written using a 
COMPAQ Visual FORTRAN 90 Pro language. All 
computations were performed on AMD Athlon II 
X2 245, 2.9 GHz computer using Windows XP op-
erating system.

Results and discussion

The reasoning mentioned above in regard to 
the two mixing systems suggests that, instead of 
seeking a mathematical description of the specific 
rates of the process using global models (models of 
specific rates in the entire time of cultivation), it is 

more appropriate to seek different dependence rela-
tionships of the glucose. This is confirmed also by 
the initial structural identification of the specific 
grown rates. The identification of the growth rate 
models is not made separately from the decision of 
the model (1). It is done simultaneously by testing 
different dependencies. The parameters considered 
for the different growth rate models are given in Ta-
ble 1. They are estimated using a developed algo-
rithm and program.

The computing values of the statistical index 
are shown in Table 2.

Theoretical Fisher coefficient is FT(2, 4) = 
6.256, theoretical Fisher coefficient for statistic l is 
F’T(4, 2)=6.944, and theoretical correlation coeffi-
cient is R2

T(4) = 0.811.21

The results obtained for correlation coefficient, 
Fisher coefficient, relative error and statistics l (Ta-
ble 2), show that all growth rate models are ade-
quate (R2

E>R2
T, FE<FT, and Statistics l>F’T) and can 

be used for modelling processes for different 
 mixing systems. The best statistical indexes for 
 impulse mixing are shown by the Luong model (Ta-
ble 1, Table 2). The results after simulations using 
the Luong model for biomass (gX) and glucose con-
centrations (gS) are presented in curves for Saccha-
romyces cerevisiae cultivation using impulse mixing 
(Fig. 8).

For vibromixing, the criterion for minimization 
minQ

x
 (Table 1) has the lowest value for the Hal-

dane model ( 5min 48.674 10Q  
x

). Statistics l 

(Table 2) has the maximal value for the Haldane 
model. The correlation (R2) and Fisher coefficients 
(FE) have minimal differences for Haldane and Lu-
ong model (Table 2). The relative error (SL) for Lu-
ong model is lower than Haldane model (Table 2). 
Therefore, we chose the Luong model for vibromix-

F i g .  8  – Membership function for each of the objective func-
tions
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ing. Thus, both mixing systems have the same 
growth rate models. The difference between Hal-
dane and Luong models is insignificant and clearly 
seen in Fig. 9, which shows the results after simula-
tions of biomass (gX) and glucose concentrations 
(gS) for Saccharomyces cerevisiae cultivation using 
vibromixing conditions for Haldane and Luong 
models.

The model of the processes (1) for both mixing 
systems has the following form:

 

max
*

*
/
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1
1

n
X S S

X
S S S

n
S m S S

X
X S S S S

d
dt K

d
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Ta b l e  1  – Estimated parameters of various growth rate models

Model Equation
Parameters 5min 10Q 

x

impulse mixing vibromixing impulse mixing vibromixing

Monod max S

S SK
m g

m
g

mmax = 0.3305

KS = 0.1736

YX/S = 0.1678

mmax = 0.2389

KS = 0.1000

YX/S = 0.1777
73.199 67.288

Aiba max expS S

S S IK K
 m g g
 m 

g  

mmax = 0.4648

KS = 0.8963

KI = 39.2377

YX/S = 0.1691

mmax = 0.3066

KS = 0.4997

KI =54.2976

YX/S = 0.1771

42.827 52.674

Andrews max

( ) 1

S

S
S S

I
K

K

m g
m

 g
 g 
 

mmax = 0.4139

KS = 0.6106

KI = 52.7565

YX/S = 0.1683

mmax = 0.3651

KS = 0.8431

KI = 26.5504

YX/S = 0.1771

52.557 52.674

Haldane max
2

S

s
S S

I
K

K

m g
m

g
g 

mmax = 0.4673

KS = 0.9693

KI =31.0819

YX/S = 0.1685

mmax = 0.4443

KS = 1.4153

KI = 15.3327

YX/S = 0.1771

44.172 48.674

Luong max
*1

n
S S

S S SK

 m g g
 m  g g 

mmax = 0.7916

KS = 3.2294
*
Sg  = 22.2013

n = 0.9092

YX/S = 0.1700

mmax = 0.7323

KS = 4.8893
*
Sg  = 21.8363

n = 0.9287

YX/S = 0.1781

16.314 91.150

Edward max
2

1

S

s S
S S

SI
K

K K

m g
m

  g g
 g   

  

mmax = 0.4798

KS = 1.0685

KSI = 38.0981

K = 34.3451

YX/S = 0.1691

mmax = 0.3843

KS = 1.0673

KSI = 29.6737

K = 33.7743

YX/S = 0.1771

37.596 52.674

Han- 
-Leven spiel max *

*

1

1

n
S S

m
S S

S M
S

C

 g g
 m m  g    g

 g  
g 

mmax = 0.5839
*
Sg  = 27.7536

CM =1.7444

n = 0.8822

m = 0.1597

YX/S = 0.1698

mmax = 0.3453
*
Sg  = 19.0112

CM = 0.8449

n = 0.2980

m = 0.0305

YX/S = 0.1771

24.535 52.858
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The parameters in model (12) are:
Mixing 
systems mm KS YX/S n *

Sg

Impulse 
mixing 0.79 h–1 3.23 kg m–3 0.17 kg kg–1 0.91 22.20 kg m–3

Vibro-
mixing 0.73 h–1 4.89 kg m–3 0.18 kg kg–1 0.93 21.84 kg m–3

Further herein, we will determine the global 
optimal solutions.

Determining of the global optimal solution

In order to obtain a global optimal solution, an 
FST method20,23,24 was introduced to solve the max-
imizing decision problem (11). A simple guideline 
is presented in the interactive programming proce-
dures in order to find a satisfactory solution to the 
FMODMP. The function used to determine a global 
solution is defined as

 0 max Db @ n
u
  (13)

where: „ max ” means „in possibility maximum”, 
„@” means „has come into view approximately in 
following relation”.

Fuzzy sets theory20 allows development of a 
“flexible” model that reflects in more detail all pos-
sible values of the criterion and control variables 
under the model developed. The model of the pro-
cesses (12) for impulse mixing and vibromixing is 
considered the most appropriate, but deviations are 
admissible with a small degree of acceptance. It is 
represented by a fuzzy set of the following type gX 

Ta b l e  2  – Statistical index values

Statistical index RЕ
2 FE

systems impulse mixing vibromixing impulse mixing vibromixing

№ Models X S X S X S X S

1 Monod 0.9982 0.9985 0.9971 0.9994 1.0290 1.0060 1.0473 1.0145

2 Aiba 0.9988 0.9991 0.9981 0.9985 1.0182 1.0036 1.0313 0.9957

3 Andrews 0.9986 0.9989 0.9983 0.9983 1.0245 1.0049 1.0294 0.9938

4 Haldane 0.9988 0.9991 0.9986 0.9994 1.0237 1.0052 1.0187 0.9875

5 Luong 0.9994 0.9997 0.9972 0.9991 1.0093 0.9965 1.0264 0.9889

6 Edward 0.9989 0.9992 0.9982 0.9993 1.0183 1.0034 1.0260 0.9906

7 Han-Levenspiel 0.9992 0.9994 0.9981 0.9992 1.0117 1.0012 1.0229 0.9903

Statistical index SL Statistic l

systems impulse mixing vibromixing
impulse mixing vibromixing

№ models X S X S

1 Monod 0.0481 0.6081 0.0605 0.0378 109956 17302

2 Aiba 0.0385 0.5652 0.0484 0.1667 259986 39092

3 Andrews 0.0364 0.5983 0.0437 0.1666 186131 53005

4 Haldane 0.0297 0.5617 0.0366 0.1675 235709 87643

5 Luong 0.0211 0.4849 0.0284 0.0983 1373534 53775

6 Edward 0.0363 0.5550 0.0362 0.1673 343001 83206

7 Han-Levenspiel 0.0295 0.5311 0.0325 0.1610 618070 84510

F i g .  9  – Experimental and simulation results using the im-
pulse mixing system
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and gS for different mixing systems and has come 
into view approximately by the following relations

 2
1

( ) , 1, 2
1i

i
ib  

 e
u  (14)

where:

 1
X

X
d
dt
g

e  mg , 2 //S
X X S

d
Y

dt
g

e  mg .

The prepositional “flexible” model of the pro-
cess reflects better influence of all good values of 
the kinetics variables. The “flexible” model reflects 
in more detail all possible values of the criterion 
and control variables under the model developed. 
After examination, the model is considered the most 
acceptable.

The fuzzy set of the solution is presented with 
a membership function of the criteria β0 and model 
b1 and b2 for different mixing systems23,24

2 2

D
0 0

( ) (1 ) ( ) 1 [1 ( )]i i
i i

i i

q q

 

  
 b  x b x  b
  

 u u u  (15)

This was obtained by using the common de-
fuzzification method BADD25

0

1

1

( )
, 1,..., ; 1,..., ;

( )

i
i

i
j

q
D i m

p
i

D
j

i q j p p q
q

q



b
   

b




u u
u

u
 (16)

This method allows direct (non-iterative) deter-
mination of the optimization problem.

The control variables are satisfied in the fol-
lowing intervals:
initial condition

 
1 1 1min max[0.80 1.5]u u u £ £   kg m–3,

and

 
2 2 2min max[13.0 17.0]u u u £ £   kg m–3;

rotation speed for impulse mixing

 [
3 3min 3 max240 280]u u u £ £   rpm,

or amplitude for vibromixing

 [
3 3min 3 max8.0 12.0]u u u £ £  ·10–3 m.

The assigned threshold interval and the optimal 
membership function value for each objective func-
tion are

Objective 1st 2nd

[ ]L U
k kJ J [8·10–3 kg 

12·10–3 kg]
[0.01·10–3 kg 
0.50·10–3 kg]

Impulse mixing, * ( )k kJn 0.268 0.752

Vibromixing, * ( )k kJn 0.155 0.879

Now, the global solution (13) can be obtained 
by (14)-(16). By choosing 15 time partition for all 
the control variables (0)Xg , (0)Sg , nm or Am, have to 
be determined in the finite-dimensional optimiza-
tion problem.10 The values elected for the pa-
rameters that characterize the compensation degree 
(x), and weights of b(u) are x = 0.95, q0 = 1, and 
qi(i=1, 2) = 0.9, respectively.

Table 3 shows the optimal membership func-
tion value for each of the objective functions as 
well as the optimal values of the control variable of 
the batch cultivation of Saccharomyces cerevisiae. 
Stage 0 shows the process before optimisation, 
Stage 1 – after optimisation with different initial 
conditions, Stage 2 – after optimisation with differ-
ent optimal initial conditions (after Stage 1), and 
Stage 3 shows the membership function value for 

Ta b l e  3  – Results after multiple optimisation of Saccharomyces cerevisiae batch cultivation

Impulse mixing

Stage
0
1u  

kg m–3

0
2u  

kg m–3

0
3u  

rpm
b0 
–

J1 
kg

*
1 1( )Jn  

–
J2 
kg

*
2 2( )Jn  

–

0 0.89 13.80 260 0.000 7.04·10–3 0.000 16.00·10–6 0.013

1 1.45 15.69
211

0.997 9.87·10–3 0.290 4.00·10–6 0.882

2 1.43 14.00 0.973 8.80·10–3 0.199 1.00·10–6 0.714

3 1.42 13.75 177 0.573 10.29·10–3 0.573 5.60·10–6 0.706

Vibromixing

0 1.20 15.75 10.0 0.000 8.02·10–3 0.005 2.23·10–3 0.000

1 1.35 13.33
8.3

0.954 8.63·10–3 0.156 0.47·10–3 0.890

2 1.41 13.50 0.783 8.75·10–3 0.188 0.35·10–3 0.827

3 1.42 13.75 8.0 0.268 9.08·10–3 0.269 0.49·10–3 0.971
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each of the objective functions with identical initial 
conditions for both systems.

The optimisation results (Table 3 – Stage 1) 
have shown that the biomass concentration increas-
es by more than 45 % for impulse mixing and only 
by 9 % for vibromixing. The glucose concentration 
decreases by more than 70 % in the impulse mixing 
and more than 80 % in the vibromixing. These re-
sults indicate that the biomass production (J1 = 
9.87·10–3 kg) in the impulse mixing process is better 
than that in the vibromixing (J1 = 8.63·10–3 kg), and 
the residual glucose concentration is also much bet-
ter (impulse mixing J2 = 4.00·10–6 kg) than the one 
in the vibromixing (J2 = 0.47·10–3 kg).

The results for the biomass and glucose con-
centrations for different mixing systems before and 
after optimisation are shown in Fig. 11 and Fig. 12.

The results shown in Fig. 11 and Fig. 12 are 
related to different initial optimal conditions.

It is interesting to determine what the optimal 
values of the objective functions for identical initial 
conditions will be.

The initial conditions are examined within the 
optimum values [1.35 kg m–3 £ u1 £ 1.45 kg m–3] 
and [13.33 kg m–3 £ u2 £ 15.69 kg m–3]. The 
 maximal rotation speed (nm = 210.72 rpm) for im-
pulse mixing, the amplitude (Am = 8.17·10–3 m) for 
vibromixing, and the threshold interval are not 
changed.

FDMOOP (11) and the maximizing decision 
problem (13)-(16) are solved again for these inter-
vals of the control variables.

The results show (Table 3 – Stage 2) that the 
biomass concentration decreases by more than 8 % 
for impulse mixing and increases by 2.5 % for vi-
bromixing. The glucose concentration decreases by 
more than 80 % in impulse mixing and by more 
than 20 % for vibromixing. These results show that, 
for impulse mixing, the biomass production decreas-
es (around 0.02 %) and there is significant improve-
ment of the residual of glucose (more 80 %). For 
vibromixing, we have improvement of both objec-
tive functions. The biomass production increases by 
2.5 % and the residual glucose concentration de-
creases by more than 20 %. The difference in the 
biomass production of both systems does not differ 
significantly (around 0.5 %).

The results (Table 3 – Stages l and 2) show that 
both mixing systems can and must be with the same 
initial conditions (mean values between Stage 1 and 
Stage 2), i.e. (0) 1.42Xg   kg m–3 and (0) 13.75Sg 
kg m–3. Under these conditions, the optimization 
problem was solved again. The maximal rotation 
speed (nm) or amplitude (Am) were changed in wider 
intervals u3Î[100 rpm ÷ 280 rpm], or u3Î[6·10–3 m 
¸ 12·10–3 m]. The results are shown in Table 3 – 
Stage 3. These results show that the biomass con-
centration increases by more than 12 % for impulse 
mixing and increases only by 1.31 % for vibromix-
ing. The glucose concentration increases more than 
8-fold for impulse mixing and by more than 18 % in 

F i g .  1 0  – Experimental and simulation results using the vi-
bromixing system

F i g .  11  – Results before and after optimisation for impulse 
mixing systems

F i g .  1 2  – Results before and after optimisation for vibro-
mixing systems
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vibromixing. The results also show that, in impulse 
mixing, the biomass production increases by more 
than 17 % and residual glucose increases 8-fold at 
the end of the process. The results for vibromixing 
are similar in biomass production (about 4 %) and 
the residual glucose concentration decreases by 
more than 37 %. The improvement of the objective 
function (J1) leads to a change in another objective 
function (J2).

The results for the biomass and glucose con-
centrations for different mixing systems after opti-
misation with identical initial conditions are shown 
in Fig. 13 and Fig. 14.

The obtained results show that impulse mixing 
is preferable to vibromixing. Another advantage is 
that expensive special equipment is not required. It 
can be realized easily in any bioreactor having con-
trol systems equipped with a generator for a saw 
impulse.

Conclusions

1. The present results show that the Luong 
growth rate model proposed seems to be useful for 
representing the kinetics of substrate inhibition in 
impulse mixing and vibromixing. This model is of a 
generalized Monod type, but it accounts for sub-
strate stimulation at low and high concentrations. 
The model has the capability to predict the values 
of critical inhibitor concentration. When their max-
imum value is reached, the reactions stop.

2. In comparison to traditional continuous mix-
ing, impulse and vibromixing decrease the ability of 
cells to present themselves in the local intensive zone 
in similar mixing conditions. In the Saccharomyces 
cerevisiae fermentation, a higher maximum growth 
rate is achieved by impulse mixing rather than with 
vibromixing. However, a similar process yield is 
reached in the case of vibromixing. Having reached a 
certain biomass density, impulse mixing starts to af-
fect cell growth. This means that at a greater biomass 
density, sufficient prevention of the presence of cells 
in locally intensive zones is not possible.

3. The results achieved after the multiple optimi-
sation of Saccharomyces cerevisiae batch cultivation 
for different mixing systems, show a significant in-
crease in biomass concentration, and respectively an 
increase in biomass production. It also significantly 
reduces the residual glucose concentration. After 
solving again the fuzzy-decision-making problem 
and finding the global solution by the previously es-
tablished values of optimal control variables, the re-
sults show that the biomass concentration decreases 
for impulse mixing and increase for vibromixing. The 
glucose concentration decreases for both mixing sys-
tems. Finally, in regard to the identical initial condi-
tions, the results have shown that the biomass con-
centration increases for impulse mixing and 
vibromixing systems. The glucose concentration in-
creases more than 8-fold for impulse mixing and by 
more than 18 % for vibromixing. Here, it should be 
noted that, any improvement for one of the objective 
functions, can be achieved only at the expense of at 
least one of the other objective functions. These re-
sults indicate that the biomass production in the pro-
cess of impulse mixing is better than that in vibromix-
ing. The residual glucose concentration is also much 
better. In addition, this system is easier to realize. Let 
us keep in mind that the results are theoretical and 
they have not been confirmed by experiments.

4. The applied multiple objective optimisation 
of the process has shown а vast increase in produc-
tivity, and respectively a decrease in the residual of 
the glucose concentration. This result leads to high-
er effectiveness for each of them. The results of this 
investigation show that the optimisation of the pro-
cess is more important for real fermentation pro-
cesses than for the design of mixing systems.

F i g .  1 3  – Results after optimisation with identical initial 
conditions for impulse mixing systems

F i g .  1 4  – Results after optimisation with identical initial 
conditions for vibromixing systems
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N o m e n c l a t u r e

Am – maximal amplitude for vibromixing, m
CM – Monod’s constant, kg m–3

D – diameter of bioreactor, m
f – frequency, s–1

Jk – objective functions, kg
L
kJ , U

kJ  – low and upper values of objective functions, kg
K – constant in Edward model
KI, KSI – inhibition constants, kg m–3

KS – saturation coefficient, kg m–3

М – number of kinetics variables, M = 2
m – constant which accounts the relationship between 

CM and gS
n – constant which accounts the relationship between 

m and gS
Nexp – number of experiments
nm – maximal rotation speed, rpm
NS – number of sampling data
minQ

x
 – criterion for parameters identification in the 
 growth rate models, –

q – number of discrete values of vector u
r – r – axis, m
rS – glucose consumption rate, kg m–3 h–1

RS – specific glucose consumption rate, h–1

rX – growth of biomass rate, kg m–3 h–1

T – period, s
tj – glucose at sampling time, h
tf – final process time, h
u – vector of control variables, 

(0) (0) max max[ , , ]T
X S n or A g gu u

umin and umax – lower and upper bounded vectors of the 
    control variables

u* – optimal values of control variables, after M-Pare-
to optimal solutions

u0 – global optimal values of control variables
V0 – initial liquid volume, m–3

x – vector of estimated parameters in growth rate 
models, 
x = [mmax, KS, KSI, KI, …]T

YX/S – yield coefficient, kg kg–1

z – z – axis, m

G r e e k  l e t t e r s

b0(u) – membership function for solution to the maxi-
mizing decision problem

bi(u) – membership function for the model (i = 1, 2)
g – mass concentration, kg m–3

gX – biomass mass concentration, kg m–3

(0)Xg  – biomass initial mass concentration, kg m–3

gS – glucose mass concentration, kg m–3

*
Sg  – critical inhibitor concentration, above which the 

reactions stop, kg m–3

0
(0)S Sg  g  – glucose initial mass concentration, kg m–3

( ) ( ),
j jXe t Se tg g – the measured data at t = tj

( ) ( ),
j jXm t Sm tg g  – concentrations calculated using the  

      model, kg m–3

max max
,Xe Seg g  – maximal measured concentrations, kg m–3

x – parameter characterizing the compensation degree
μ – specific growth rate of cell culture from glucose, h–1

mm – maximum specific growth rate of cell culture 
from glucose, h–1

nD – general aggregation operator
ei – deviations of the basic model
qi – parameters, those give weight of bi(u)
ci – weight coefficients

( )k kJn  – membership function for each objective function
Ω – feasible region in input space

A b b r e v i a t i o n s

BADD – Basic Defuzzification Distributions
DM  – Decision Making
FMODMP – Fuzzy Multiple Objective Decision-Making 

   Problem
FMOOP – Fuzzy Multiple Objective Optimization 

  Problem
FST  – Fuzzy Sets Theory
GMOOP – General Multiple Objective Optimization 

  Problem
MOOP – Multiple Objective Optimization Problem
SCADA – Supervisory Control and Data Acquisition

R e f e r e n c e s

1. Kafarov, V., Vinarov, A., Gordeev, L., Modelling Biochemi-
cal Reactors, Moscow, Lesnaya promishlenost, 1979, 
pp.179 – 296 (in Russian).

2. Vanags, J., Rikmanis, M., Ushkans, E., Viesturs, U., Stirring 
characteristics in bioreactors, AIChE J. 36 (1990) 1361.
http://dx.doi.org/10.1002/aic.690360909

3. Viestur, U., Kuznetzov, A., Savenkov, V., Systems Fermenta-
tion, Riga, Zinatne, 1986, pp. 90 – 127 (In Russian).

4. Viesturs, U., Berzins, A., Vanags, J., Tzonkov, St., Ilkova, T., 
Petrov, M., Pencheva, T., Application of different mixing 
systems for the batch cultivation of the Saccharomyces cer-
evisiae. Part I: Experimental investigations and modelling, 
Int. J. Bioautomation 13(2) (2009) 45.

5. Sendín, O., Vera, J., Nestor, T., Model based optimization 
of biochemical systems using multiple objectives: A com-
parison of several solution strategies, Math. and Comp. 
Model. Dyn. 12(5) (2006) 469.
http://dx.doi.org/10.1080/13873950600723442

6. Sergienko, I., Parasyuk, N., Kaspshitskaya, M., A fuzzy 
problem of multiparametric choice of optimal solutions, 
Cybern. and Syst. Anal. 39 (2003) 163.
http://dx.doi.org/10.1023/A:1024731004624

7. Vera, J., de Atauri, P., Cascante, M., Torres, NV, Multicri-
teria optimization of biochemical systems by linear pro-
gramming. Application to the ethanol production by Sac-
charomyces cerevisiae, Biotechnol. and Bioeng. 83(3) 
(2003) 335.
http://dx.doi.org/10.1002/bit.10676

http://dx.doi.org/10.1002/aic.690360909
http://dx.doi.org/10.1080/13873950600723442
http://dx.doi.org/10.1023/A:1024731004624
http://dx.doi.org/10.1002/bit.10676


544 M. PETROV and T. ILKOVA, Modelling and Fuzzy-Decision-Making of Batch…, Chem. Biochem. Eng. Q., 28 (4) 531–544 (2014)

8. Zhou, Y. H., Titchener-Hooker, N. J., The application of a 
Pareto optimisation method in the design of an integrated 
bioprocess, Bioprocess and Biosyst. Eng. 25 (2003) 349.
http://dx.doi.org/10.1007/s00449-003-0318-0

9. Tonon, F., Bernardini, A., Multiobjective optimization of 
uncertain structures through fuzzy sets and random set the-
ory, Comput.-Aided Civ. Inf. 14 (1999) 119.
http://dx.doi.org/10.1111/0885-9507.00135

10. Wang, F.-S., Chang-Huei, J., Fuzzy-decision-making prob-
lems of fuel ethanol production using a genetically engi-
neered yeast, Ind. and Eng. Chem. Res. 37 (1998) 3434.
http://dx.doi.org/10.1021/ie970736d

11. Petrov, M., Ilkova, T., Fuzzy optimization of biosynthesis of 
L-lysine, Chem. Biochem. Eng. Q. 19(3) (2005) 283.

12. Petrov, M., Multiple objective optimization and optimal 
control of fermentation processes, Int. J. Bioautomation 10 
(2008) 21.

13. Vanags, J, Rychtera, M., Ferzik, S., Vishkins, M., Viesturs, 
U., oxygen and temperature control during the cultivation 
of microorganisms using substrate feeding, Eng. in Life sci. 
7(3) (2007) 247.
http://dx.doi.org/10.1002/elsc.200620184

14. Vanags, J., Viesturs, U., Bērziņš, A., Performance of the cul-
tivation of microorganisms using different mixing systems, 
18th Int. Congress of Chem. and process Eng. – CHISA’08, 
Summaries 3. Systems and Technology, 24-28 august 2008, 
prague, Czech republic. p. 851, CDROM full text 1-8.

15. Gera, N., Uppaluri, R. V. S., Sen, S., Venkata Dasuc, V., 
Growth kinetics and production of glucose oxidase using 
Aspergillusniger NRRL326, Chem. Biochem. Eng. Q. 
22(3) (2008) 315.

16. Namjoshi, A., Ramkrishna, D., Multiplicity and stability of 
steady states in continuous bioreactors: Dissection of cy-
bernetic models, Chem. Eng. Sci. 56(19) (2001) 593.
http://dx.doi.org/10.1016/S0009-2509(01)00166-X

17. Chen, Y., Wang, F.-S., Crisp and fuzzy optimization of a 
fed-batch fermentation for ethanol production, Ind. Eng. 
Chem. Res. 42 (2003) 6843.
http://dx.doi.org/10.1021/ie0210107

18. Wang, F.-S., Tzu-Liang, Su, Horng-Jhy, J., Hybrid differen-
tial evolution for problems of kinetic parameter estimation 
and dynamic optimization of an ethanol fermentation pro-
cess, Ind. Eng. Chem. Res. 40 (2001) 2876.
http://dx.doi.org/10.1021/ie000544+

19. Giridhar, R., Srivastava, A. K., Model based constant feed 
fed-batch L-Sorbose production process for improvement in 
L-Sorbose productivity, Chem. Biochem. Eng. Q. 14(4) 
(2000) 133.

20. Bellman, R., Zadeh, L., Decision making in a fuzzy envi-
ronment, Manage. Sci. 17(4) (1970) B141.
http://dx.doi.org/10.1287/mnsc.17.4.B141

21. Sakawa, M., Fuzzy Sets and Interactive Multiobjective Op-
timization, Plenum Press, New York, 1993.
http://dx.doi.org/10.1007/978-1-4899-1633-4

22. Stoyanov, S., Optimization Methods and Algorithms, Tech-
nique, Sofia, 1990, pp.391 – 398 (in Bulgarian).

23. Angelov, P., An analytical method for solving a type of 
fuzzy optimization problems, Control and Cybern. 24(3) 
(1995) 363.

24. Angelov, P., Generalized approach to fuzzy optimization, 
Int. J. of Intell. Sys. 9(3) (1994) 261.
http://dx.doi.org/10.1002/int.4550090302

25. Filev, D., Yager, R., A generalized defuzzification method 
via bad distribution, Int. J. of Intell. Sys. 6 (1991) 687.
http://dx.doi.org/10.1002/int.4550060702

http://dx.doi.org/10.1007/s00449-003-0318-0
http://dx.doi.org/10.1111/0885-9507.00135
http://dx.doi.org/10.1021/ie970736d
http://dx.doi.org/10.1002/elsc.200620184
http://dx.doi.org/10.1016/S0009-2509%2801%2900166-X
http://dx.doi.org/10.1021/ie0210107
http://dx.doi.org/10.1021/ie000544%2B
http://dx.doi.org/10.1287/mnsc.17.4.B141
http://dx.doi.org/10.1007/978-1-4899-1633-4
http://dx.doi.org/10.1002/int.4550090302
http://dx.doi.org/10.1002/int.4550060702

