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Introduction
Application of advanced control methods has rapidly in-
creased since the 1990s in the chemical, petrochemical, 
and oil refining industry. The terms DCS, PLC and PID 
can be found in many articles like: Henriquez et al.,1 Van 
Schuppen et al.,2 Cauffriez et al.,3 Campelo et al.,4 Rullán,5 
Valencia-Palomo et al.,6 Bolton,7 Reznik et al.,8 Panda,9 and 
Escobar et al.10

Also, the terms APC, model predictive control (MPC) and 
MBC are mentioned many times in literature as in: La-
babidi et al.,11 Dobos et al.,12 Zhi Gao et al.,13 Willersrud et 
al.,14 Al-Gherwi et al.,15 Peng et al.,16 and Malchow et al.17

As can be seen, these terms are ubiquitous in chemical 
process control literature. A prerequisite for APC/MPC 
success is a well-designed primary PID control platform 
with optimized parameters. Increasing application of APC 
schemes places higher demands on the skills and experi-
ence level of process control engineers and technicians in 
the control rooms. 

This paper nicely explains the application of the power-
ful 3G optimization method,18–20 which helps the control 
engineer and technician to design and implement control 
schemes inside the DCS, optimize the controller perfor-
mance and increase the plant’s profit because of improved 
plant operation. 

Application of process control software tools for system 

identification, PID tuning optimization and APC calcula-
tions is still not too common in the control room environ-
ment in manufacturing plants. The reasons for this is that 
most current software tools and dedicated optimization 
algorithms are too complex, rather expensive, and neither 
robust nor practical for the control room environment. 

Further, applications of the newly developed 3G algorithm 
are illustrated. It can accurately identify process models 
admist the presence of large unmeasured disturbances 
or oscillations and high noise from the data, all in com-
plete closed-loop mode without conducting any additional 
new step-tests in the plant. Current system identification 
and optimization algorithms such as: autoregressive–mov-
ing-average model with exogenous inputs (ARMAX), step 
response coefficient models, Box and Jenkins, etc., are 
rather sensitive to the presence of noise, disturbances and 
drifts in the data. 

In the PID and APC parameter optimization area, the ap-
plication of internal model control (IMC), Lambda tuning, 
Ziegler-Nichols, Cohen Coon, and other methods, still 
produces conservative and not optimal control action. The 
3G algorithm can accurately calculate PID/APC parameters 
for the processes where currently known heuristic-based 
methods have failed. 

Process control application hierarchy
Fig. 1 shows the common industrial process control hierar-
chy split into three major categories. At the lowest level are 
the primary control loops – mostly PID controllers for con-
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trolling flow-rates, pressures, levels, temperatures and oth-
er variables in the industrial plant. To handle slow process 
dynamics, multivariable interactions, long dead times and 
complex control loops, pure PIDs alone cannot effectively 
provide the best control quality, and APC applications are 
necessary. Further, to incorporate market, economic con-
ditions, process and equipment constraints and nonlinear-
ities, a third application level – real time optimization, can 
further provide monetary benefits.

Real time optimization
Optimiranje u realnom vremenu

Primary control
Osnovna regulacija

flow control
regulacija protoka

temperature control
regulacija temperature

surge control
regulacija kompresora

level control
regulacija razine

pressure control
regulacija tlaka

motor speed control
regulacija brzine motora

Advanced process control
Napredno vođenje procesa

model predictive control
prediktivno vođenje

adaptive control
adaptivno vođenje

fuzzy control
neizrazito vođenje

expert systems
ekspertni sustavi

multivariable control
viševeličinsko vođenje

feedforward control
unaprijedno vođenje

Fig. 1   – Process control hierarchy 
Slika 1 – Hijerarhija vođenja procesa

Primary control and DCS-based APC, if correctly imple-
mented, can significantly increase the plant’s profit mar-
gins. Optimized primary and advanced control stabilizes 
process operation and pushes the operation closer to pro-
cess, equipment and economic constraints. This increases 
production rates, minimizes operating costs and improves 
product quality.21

Challenges and opportunities in modern 
control rooms
The increasing use of primary and advanced control poses 
the following challenges in the control rooms:

1. New control and process engineers and DCS or PLC 

technicians come into the plant on a regular basis. They 
need to be trained in practical primary and advanced pro-
cess control.
2. Many DCS-based APC concepts cannot be taught prac-
tically at schools and colleges. Learning practical process 
control skills quickly is not easy and simple.
3. Changes in process or operating conditions, complexi-
ty, nonlinearities, external unmeasured disturbances, high 
signal noises can impact closed-loop control quality result-
ing in inefficient operation including lost production, and 
could even cause equipment shutdowns and safety/relia-
bility incidents.
4. Constant software and hardware upgrades add to the 
maintenance challenges in the control room.

Using modern DCS and/or PLCs, various powerful, robust, 
money-making control schemes can be implemented. This 
paper also describes the following powerful techniques 
for designing and implementing DCS or PLC-based APC 
schemes, which are optimized using the 3G algorithm: 

1. Process dynamics identification,
2. Primary PID and APC parameters optimization,
3. Online adaptive control,
4. Model-based control for product quality and production 
rate maximization.

Process dynamics identification
Process measurement ranges can be from as fast as milli-
seconds on compressor surge control and motor control 
to as low as many hours in tall super-fractionator distilla-
tion columns. In modern control rooms, there are plenty 
of data sets available containing the controller output (OP), 
process variable (PV) and set point (SP). Data may contain 
OP step changes with the controller in manual mode, or 
may contain SP changes in auto mode. There are many op-
portunities in the plant where the operator may have made 
changes to the SP or OP. All these data sets are abundantly 
available from the plants data historians that continuously 
archive the data.

From collected data it is possible to identify process dy-
namics i.e. the dynamic relationship between the con-
trolled variable (CV) and manipulated variable (MV) for 
each control loop. Most chemical processes can be char-
acterized by one of the common industrial process models 
(zero, first or second order).22,23

Pitops24 identification and optimization software tool was 
used to identify the model parameters using existing data 
of distillation column pressure controller from an olefins 
plant, which were stored in the plant’s data historian. Fig. 
2 shows pressure control (PC) data when the loop was in 
manual mode. The PC’s output (OP), i.e. the valve position, 
was moved a few times which caused the pressure PV to 
respond. Identified first order process model parameters 
are shown on the right top side of the Figure: Time delay 
= 1.3 min; Process gain = –1.017 bar ⁄ %; Time constant 
= 5.4 min.
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The blue trend in the top window shows the model pre-
diction which follows the red trend of the actual column 
pressure data in the top window and the bottom trend is 
the control valve position.

The next example shows data on a tank level controller 
(LC) from an oil refinery – crude distillation plant sec-
tion, as shown in Fig. 3. The LC’s output (valve posi-
tion) was moved a few times (bottom window) which 
caused the level PV to respond (red trend in top win-

dow). The 3G algorithm identifies the zero order (ramp 
or integrator) model parameters all in the time domain, 
as shown on the right side of the Figure: Time delay =  
9.0 min; Process gain = −0.091 % ⁄ (% min−1).

Fig. 4 shows standard process step test data collected from 
data historian on the previous level control example. In this 
example, the open-loop data (controller in manual mode) 
is used. On the right side of the Figure, mismatch between 
the model and process variable is visible. This could appear 

Time delay = 1.3 min
Process gain = –1.017 bar ⁄ %
Time constant = 5.4 min

Fig. 2   – Pressure control loop model identification24

Slika 2 – Identificiranje modela regulacijskog kruga tlaka24
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Time delay = 9.0 min
Process gain = −0.091 % ⁄ (% min−1) 

Fig. 3   – Level control loop model identification
Slika 3 – Identificiranje modela regulacijskog kruga razine
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because of valve stiction, flow meter problems or unmeas-
ured disturbances that could mask the effect of the control 
valve step tests. Using the 3G identification algorithm, it is 
also possible to determine control valve stiction based on 
the OP and PV data.

The next example shows model parameter identification 
using closed-loop data (controller in auto mode), as shown 
in Fig. 5. This example involves a temperature controller 
which is manipulated by a steam flow controller in a distil-
lation batch process. The TC output is often zero (there is 
no steam flow). When the process is ready for increasing 
the temperature, a batch sequence logic tag changes the 

TC’s set point. Optimal tuning of the TC was demanding 
because the TC is not always in control during the day 
shift. Using temperature PV and steam flow-rate SP data 
in a closed-loop control, the first order model was iden-
tified. The identified process parameters are: Delay time 
= 1 min; Process gain = 1.234 °C ⁄ %; Time constant =  
23.7 min.

The last example shows a multivariable model-predictive 
controller from a chemical plant manufacturing catalyst 
in closed-loop mode, simultaneously manipulating three 
MVs: distillation column feed, side product flow-rate and 
reflux flow-rate, as shown in Fig. 6. The product impurity 

Fig. 4    – Level control loop model identification
Slika 4 – Identificiranje modela regulacijskog kruga razine
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Time

Time

Delay time = 1 min
Process gain = 1.234 °C ⁄ %
Time constant = 23.7 min

Fig. 5   – Temperature control loop model identification – closed loop mode
Slika 5 – Identificiranje modela zatvorenog regulacijskog kruga temperature
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is impacted by all three MVs (red trend in the top window). 
All three second-order models are identified simultaneous-
ly using the data from the closed-loop mode. 

This identification can be used to improve the step re-
sponse coefficient or any other kind of models used in the 
commercially multivariable model-predictive controllers in 
order to improve the controller performance.

PID controller tuning and optimization
Knowing the process model helps to optimally tune 
base-level and cascade/advanced controllers. Fig. 7 shows 
an industrial pressure control (PC) example, which is the 
same as in Fig. 2. The bottom window shows the PC’s out-
put. The top window shows the SP (blue trend) and PV 
(red trend).

The PC’s objective is to not only provide crisp SP control 
but also to respond aggressively when hit by a disturbance. 
Disturbances can come and go anytime and it is important 
for the PC to respond quickly by closing or opening the 
valve immediately. The key is that such aggressive control 
action needed during disturbance rejection should not re-
sult in sustained oscillations at steady state.

The 3G optimization algorithm generates such tuning pa-
rameters that give crisp, non-oscillatory SP control while 
responding quickly during fast and large disturbances. This 
resulted in increasing the controller proportional gain from 
2 to 11 in one step and the integral from 8 to 3 minutes. 

Fig. 7 – Optimized pressure controller in presence of distur- 
bance

Slika 7 – Odziv optimiranog regulatora tlaka pri pojavi poreme-
ćaja

Without modern optimization tools that use the 3G optimi-
zation algorithm, control engineers confronted with tuning 
such a PC would not have the confidence to increase the 
controller gain drastically from 2 to 11 in one step. They 
would have crept up the gain from 2 to 2.5 and 3 etc., over 
a much longer time period. And since the disturbance does 
not come all the time, it is hard to manually tune the loop 
for optimal control without the help of modern tools.

Time

bar

%

Time

Fig. 6   – Multivariable control loop model identification – closed loop mode
Slika 6 – Identificiranje viševeličinskog modela zatvorenog regulacijskog kruga
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The second example shows an illustrative simulation of 
how the PID controller parameters are optimized in the 
presence of high signal noise, as shown in Fig. 8. The real 
process is mimicked by simulating the same level and fre-
quency of white signal noise seen in the real process and 
optimal PID controller parameters are calculated with the 
3G algorithm.

The following text explains the optimization of the cascade 
control which is common in all chemical processes. Cas-
cade controllers can be fast as in PC to FC chains or slow 
as in AC to TC or TC to TC cascades controlling product 
stream quality measured by on-line analysis or tempera-

ture inferential controllers. The optimizer can identify both 
slave and cascade process dynamics and then optimizes 
cascade PID parameters. Fig. 9 shows an example of a 
master AC and its slave TC from the simulator, which mim-
ics a distillation column cascade example.

One of the most powerful schemes to maximize plant prof-
its is implementing production rate maximizer schemes in 
the DCS or PLC, as illustrated in Fig. 10. As many as ten 
or more constraints can be implemented as part of the 
constraint pusher schemes. The optimizer can identify the 
process dynamics for all the constraints and then precisely 
optimize all the tuning parameters.

Fig. 8   – Optimized PID controller in presence of SP change and high noise
Slika 8 – Odziv optimiranog PID regulatora pri promjeni radne točke i velikom šumu u signalu

bar

%

Time

Fig. 9   – Optimized cascade controllers in presence of SP change
Slika 9 – Odzivi optimirane kaskadne regulacije pri promjeni radne točke
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SP

PV
99.7 °C 400.4 kg/h 2.7 bar

PV PV
45 % 50 %

45 % SP = 180 kg/h

low selector
niski selektor<

FC

PID
2

PID
1

PID
3

65 %

SP SP100.0 °C 500.0 kg/h 10.0 bar

Fig. 10   – Production rate maximizer controllers
Slika 10 – Regulacija za maksimiziranje proizvodnje

Feedforward and model-based control
In all chemical processes, control quality can be significant-
ly improved on various important control schemes using 
feedforward control. Unfortunately, almost all feedforward 
tuning parameters are estimated today in the control room 
by trial-and-error or “best-guessed” estimates.

The 3G algorithm provides powerful functionality to math-
ematically identify the feedforward parameters: lead, lag, 
gain and dead time. Understanding how feedforwards 
work allows building custom new applications all inside in 
the DCS or PLC for numerous other innovative purposes. 
Fig. 11 shows a pulse signal input to a feedforward model 

with the lead constant less than the lag constant from the 
simulator.

%

Fig. 11   – Controller output in the case of higher lag in the feed-
forward control

Slika 11 – Djelovanje regulatora u slučaju veće zadrške u unapri-
jednoj regulaciji

Fig. 12 shows a pulse signal input to a feedforward model 
with the lead constant higher than the lag constant. Notice 
the differences in the response in the two cases. When lead 
is higher than lag, there is an initial strong kick (rise) whose 
magnitude is higher even than the total maximum change 
at steady state. This case is common when the main pro-
cess dynamics are slower than the disturbance dynamics.

%

Fig. 12    – Controller output in the case of higher lead in the feed-
forward control

Slika 12 – Djelovanje regulatora u slučaju većeg prethođenja u 
unaprijednoj regulaciji
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Fig. 13   – Feedforward control simulation and optimization scheme
Slika 13 – Prikaz simuliranja i optimiranja unaprijedne regulacije
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By mastering the quantitative details of how feedforwards 
work, an engineer, operator or technician can easily build 
powerful feedforward control schemes inside the DCS or 
PLC with numerous benefits. Fig. 13 shows a sample cal-
culation overview of a feedforward control scheme using 
the 3G algorithm.

Another great opportunity is the implementation of mod-
el-based controllers in the DCS or PLC. Any model based 
on rigorous, empirical, semi-empirical or regressed models 
can be implemented in the DCS using once through or iter-
ative calculations. Such models can be used to implement 
closed-loop controllers in the DCS or PLC. Furthermore, 
measurement feedback such as from online gas chroma-
tographs or laboratory analysis can be incorporated into 
the predictive models. This model-based controller de-
sign with predictive, corrective and feedback closed-loop 
control action can also be nicely built using the new 3G 
optimization algorithm. Model-based structure is shown  
in Fig. 14. 

Conclusion
Application of the newly developed identification and opti-
mization 3G algorithm is presented. It can be implemented 
in the DCS or PLC with increased recurring average annual 
profits ranging from 50 000 to 3 million dollars, depending 
on the size and type of the plant. Using the 3G algorithm, it 
is possible to identify process dynamics in the presence of 
disturbances and noise, design primary and advanced pro-
cess control schemes, and optimize their PID/APC param-
eters. The ability to identify system dynamics using this 3G 
approach allows successful identification using ultra-short 
duration data amidst disturbances and allows optimization 
of PID tuning and APC implementation inside an existing 
DCS or PLC in a remarkably short duration, at a lower cost 
and higher accuracy.

List of abbreviations
Popis kratica

3G – geometric, gradient, and gravity method
– geometrijska, gradijentna i gravitacijska metoda

AC – analyzer controller
– regulator sastava

APC – advanced process control
– napredno vođenje procesa

ARMAX – autoregressive–moving-average model with  
exogenous inputs

– model autoregresivnog pomičnog prosjeka s  
egzogenim ulazima

CV – controlled variable
– vođena varijabla

DCS – distributed control system
– distribuirani sustav za vođenje

DV – disturbance
– poremećaj

FC – flow controller
– regulator protoka

FF – feedforward signal
– unaprijedni signal

IMC – internal model control
– vođenje internim modelom

LC – level controller
– regulator razine

MBC – model-based control
– vođenje temeljeno na modelu

MPC – model predictive control
– prediktivno vođenje

MV – manipulated variable
– upravljana varijabla

OP – output
– izlaz

Fig. 14   – Model-based control scheme for dead-time compensation
Slika 14 – Prikaz vođenja temeljenog na modelu procesa za kompenzaciju mrtvog vremena

dead time 
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model output
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OPfb – feedback output
– izlaz regulatora s povratnom vezom

OPff – feedforward output
– izlaz unaprijednog regulatora

PC – pressure controller
– regulator tlaka

PID – proportional/integral/derivative
– proporcionalno-integralno-derivacijski

PLC – programmable logic controller
– programabilni logički regulator

PV – process variable
– procesna varijabla

RTO – real time optimization
– optimiranje u realnom vremenu

SP – set point
– radna točka

TC – temperature controller
– regulator temperature
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SAŽETAK
Primjena naprednog vođenja i optimiranja regulacije u  

industrijskim postrojenjima 
Steve Howes,a Ivan Mohler  b* i Nenad Bolf  b

U ovome radu opisana je nova praktična metoda i softver za identificiranje sustava, ugađanje pa-
rametara regulatora i optimiranje sustava za vođenje procesa. Prikazani pristup i alati omogućuju 
inženjerima projektiranje i primjenu različitih metoda vođenja procesa unutar DCS-a i PLC-a. 
Opisanom metodom identificiraju se empirijski modeli regulacijskih krugova na temelju podataka 
iz postojećih regulacijskih krugova i optimiraju se parametri regulatora. Na temelju određenih di-
namičkih i statičkih karakteristika procesa moguće je razviti prilagodljive i napredne metode vođe-
nja. Softverski alati služe za obuku inženjera i operatora, ali i za praktičnu primjenu. Optimiranjem 
standardne i napredne regulacije stabilizirat će se proces, a postrojenje će raditi bliže procesnim, 
sigurnosnim i ekonomskim granicama. Na taj način povećava se kapacitet proizvodnje, smanjuju 
se troškovi energenata i troškovi održavanja, a raste kvaliteta proizvoda.

Ključne riječi
Identificiranje sustava, ugađanje regulatora, napredno vođenje procesa, regulacija poduprijeta 
modelom procesa, optimiranje
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